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Purpose: The aim of the study was to propose a theory based on topology and
geometry of diffusion channels in tissue to contribute to the mechanistic
understanding of normal tissue sparing at ultra-high dose rates (UHDRs) and
explore an interplay between intra- and inter-track radical recombination through
a reaction–diffusion mechanism.

Methods: We calculate the time evolution of particle track structures using a
system of coupled reaction–diffusion equations on a random network designed
for molecular transport in porous and disordered media. The network is
representative of the intra- and inter-cellular diffusion channels in tissues.
Spatial cellular heterogeneities over the scale of track spacing are constructed
by incorporating random fluctuations in the connectivity between network sites,
resembling molecular mass and charge heterogeneities at the cellular level.

Results:We demonstrate the occurrence of phase separation among the tracks as
the complexity in intra- and inter-cellular structure increases. At the strong limit of
structural disorder, tracks evolve individually like isolated islands with negligible
inter-track as they propagate like localized waves in space, analogous to the
Anderson localization in quantum mechanics. In contrast, at the limit of weak
disorder in a homogeneous medium, such as water, the neighboring tracks melt
into each other and form a percolated network of non-reactive species. Thus, the
spatiotemporal correlation among chemically active domains vanishes as the
inter-cellular complexity of the tissue increases from normal tissue structure to
fractal-type malignancy.

Conclusion:Differential FLASH normal tissue sparingmay result from the interplay
of the proximity of tracks over the intra- and inter-cellular landscape, a transition
in the spatial distribution of chemical reactivity, and molecular crowding. In this
context, insensitivities in the radiobiological responses of the tumors to FLASH-
UHDR are interpreted via a lack of geometrical correlation among isolated tracks.
The structural and geometrical complexities of cancerous cells prevent the
clustering of tracks over a timescale, in which inter-track chemical reactivities
presumably prevail in normal tissues. A series of systematic experiments on
radiolysis-induced diffusivity and reactivity in actual normal and cancerous
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tissues must be performed to classify the tissues potentially spared by FLASH-
UHDRs and verify our theory.
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flash, radiotherapy, particle therapy, radiobiology, molecular simulations

1 Introduction

The unique normal tissue sparing of FLASH ultra-high dose
rates (UHDRs), which is 40 Gy/s and higher, has recently attracted
considerable attention [1–18]. Preclinical studies have shown that
FLASH-UHDR delivery reduces the toxic effects of radiation on
DNA and cells in normal tissues compared to conventional dose
rates (CDRs), whereas tumor tissues seem to be equally responsive
to either dose rate modality ([17] and references therein).
However, the interpretation of the experimental data and the
underlying microscopic mechanism is under intensive
investigation and debate among researchers in the field of
radiation therapy.

Among the theories proposed for the interpretation of the
experimental data [1–6, 8, 9, 11], the authors of the present work
hypothesized a transition between intra- and inter-track reactions as
the major physical mechanism for differential biological responses
of CDR vs. FLASH-UHDR [10, 13, 14]. In these models, the time
evolution of radiolysis products is assumed to propagate in
homogeneous and uniform media, equivalent to water, regardless
of the tissue type. Thus, the presented models lack differentiation
with respect to tissue types upon exposure at FLASH-UHDRs.

A series of systematic experiments was recently conducted and
published [15] on measurements of chemical yields of 7-hydroxy-
coumarin-3-carboxylic acid in solutions irradiated by proton- and
carbon-ion beams at UHDRs. These experimental studies have
revealed evidence in favor of the inter-track coupling hypothesis,
originally predicted by performing molecular dynamics simulations
of track–track chemical interactions. The results of these
simulations, presented in [10], have led to the interpretation of
molecular crowding in populations of reactive oxygen species (ROS)
and the formation of agglomerates in the form of non-reactive
oxygen species (NROS), consistent with recent observations
reported in [15].

In this work, we extend our model calculation on the same
physical grounds as in [10, 13, 14] and consider the cellular structure
of normal and cancerous tissues at a coarse-grained scale. We
develop a mathematical description of tissue structure complexity
to examine the interplay between the rates of radical diffusion and
recombination as a function of this structural complexity. We
predict the occurrence of intra- to inter-track transitions as the
structural complexity decreases from, for example, tumor to normal
tissue.

1.1 Terminology

In a nutshell, the passage of a high-energy particle (electron,
proton, or heavier charged particles) through matter leaves a linear
dynamical footprint of a cylindrically symmetric (isotropic)
exchange of energy with the electrons and nuclei constituting

molecular structures. This linear structure and its branches are
known as a particle track.

A single track is a random collection of a sharp spatiotemporal
distribution of non-ionized and ionized excitations with a varying
nanometer-scale diameter, which depends on the particle’s kinetic
energy that determines the magnitude of energy exchange. Due to
the quantum electrodynamic nature of energy exchange, the
excitations are created within attoseconds after the passage of the
particle.

Immediately after their creation, molecular excitations and ions
undergo decay processes. The relaxation time associated with the
decay of excitations (including recombination of mobile ions into
various types of stable products and chemical species) is much
longer than their generation time. Because the excited molecules and
ions are mobile in cellular structures, they decay at the same time as
they diffuse away from the center of the track.

The presence of high concentrations of localized excitonic
energy of molecules surrounding mobilized ions induces an
explosive irreversible flow of thermal energy to ion species,
which, in turn, theoretically significantly enhances the effective
diffusion constant of these ions. The core temperature of a track
depends on the particle type and its linear energy loss per unit length
(linear energy transfer, LET). It can go up to several thousands of
Kelvin for heavy charged particles [13]. Ions move randomly along
the radial direction away from the hot core of the tracks with a
thermally boosted kinetic energy that generates shock waves [13,
44–46]. They asymptotically lose their kinetic energy and fall into
cold diffusion at a thermal equilibrium condition because of
collisions and energy exchange with the molecules in the
environment. Eventually, ions rest at room temperature with a
transformed chemical composition.

It should be noted that such physical and chemical phenomena
are not included in standard MC models based on homogenous and
uniform water medium. Nonetheless, these phenomena may have
significant effects on the measured endpoint of MC simulations,
such as radical yields. Throughout this process, biological damage to
the host’s cellular structure occurs as ions interact chemically with
bio-molecules, such as DNA and lipids in membranes.

A typical radiotherapy beam of particles forms a random
distribution of expanding and decaying tracks in targeted
(tumors) and untargeted (normal tissues) volumes. Initially, as
pointed out previously, the tracks expand individually via a time-
dependent diffusion mechanism as they decay due to deexcitation
and ion-recombination processes. The time evolution of such an
ensemble of individually evolving tracks can be reduced to that of a
single track if the geometrical overlap among tracks is negligible. We
refer to this limit as an “independent track structure”. Conversely,
the “strongly correlated track structure” can be anticipated at a limit
in which the process of inter-track ion exchanges, chemical
transformation, and recombination occurs simultaneously due to
the destructive interference of sufficiently close tracks, a molecular-
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crowding phenomenon. Therefore, we refer to these two
distinguishable classes of chemical exchange mechanisms as
intra- and inter-track states.

The transition between intra- and inter-track recombination
depends on the dose and dose rate. More precisely, the higher the
beam flux (the number of particles entering a unit area per unit of
time), the higher the compactness of particles in a given time interval
hitting the target. In this limit, the probability of overlap among the
tracks before their annihilation becomes significant. Thus, under
certain conditions, a transition from the intra-track to inter-track
reaction can be predicted. In our recent publications [10, 13, 14], the
latter has been hypothesized to be a physical mechanism for FLASH-
UHDRs.

2 Materials and methods

This model aims to describe the effects of intra- and inter-track
diffusion and interaction as a function of the structural complexity
of the target medium. To this end, we develop a reaction–diffusion
model of spatially and temporally separated particle tracks and
calculate the interaction of OH radicals from the tracks to form
H2O2. Importantly, the model utilizes a spatially varying diffusion
constant, whereby the solutions to the reaction–diffusion system
are calculated numerically by stochastic variation of the diffusion
constant. Subsequently, this reaction–diffusion system is related to
an analogous percolation model of diffusing ions in order to define
the target structural heterogeneity with a measure from
percolation theory, the site occupation probability p, and relate
this to the diffusion constant.

2.1 Reaction–diffusion model

In this model, the radiation-induced chemicals are
concentrated in a core of a cylindrically symmetric body/cloud
of track structure. As a track structure is nothing but a cloud of
ROS and NROS, the expansion of the track can be interchangeably
considered for the description of the time evolution of the system
of coupled ROS and NROS (i.e., their diffusion and reaction
processes). In particular, we performed the track structure
calculation by conventional MC methods in a homogenous
water medium where the location of ionization and molecular
excitation points were identified. After the construction of a
cylindrical cloud of ROS and NROS, we further considered
reaction–diffusion solutions in an inhomogeneous and rough
cellular medium. This kind of matching between MC and the
coarse-grained reaction–diffusion model is inevitable unless
atomistic (not volumetric) cellular structures and molecular
inhomogeneities are added in the next generations of MC codes.

The mathematical details of our model calculation with
analytical solutions for the time evolution of a single track are
given in the Supplementary Appendix. We used the analytical
formulas given in the Supplementary Appendix to cross-check
our numerical solutions obtained from discretizing the space and
time in a finite difference approach employed to calculate the
solutions of the coupled reaction–diffusion partial differential
equations of multi-track structures:

zu

zt
� G + �∇ · Df

�r( ) �∇u( ) − k1u + k2v − 2k3u
2 − k12uv, (1)

zv

zt
� k1u − k2v + k3u

2. (2)

Here, u( �r, t) and v( �r, t) represent ROS and NROS densities,
respectively, for example, u = [•OH] and v = [H2O2] at spatial
coordinate, �r, and time, t. G( �r, t) and Df( �r) represent the ROS
production yield, proportional to the dose rate, and diffusion
constant of the fast-moving species (neglecting the diffusion of
slow-moving species), and k1, k2, k3, k12 are reaction rate
constants. k1 represents the scavenging rate of ROS. The
dependence of the diffusion constant on cellular or tissue
inhomogeneities has been accounted for in Eq. 1 by Df( �r).

In the limit of ideal diffusion, where Df is a constant,
independent of the position of ROS in space, and in the absence
of all reaction rates, k1 = k2 = k3 = k12 = 0, the time evolution of a
single track, created initially at time t = 0, far from the initial nano-
scale dimension of the track, represented by radiusw, asymptotically
approaches a Gaussian distribution function modulus, a factor
proportional to the initial number of chemical species, c0:

u �r, t( ) � c0
4πDft

exp − r2

4Dft
( ), (3)

where c0 = πw2u0 and u0 is the initial density of ROS, integrated over
a unit length along the trajectory of the primary particle. Note that
the Gaussian function is the exact solution of the diffusion equation,
zu/zt = Df∇

2u, with a spike-like initial and boundary condition.
As a representative of ROS that causes damage to DNA and/or

lipids in membranes, we consider •OH-radicals for u. •OH-radicals
are known to diffuse through cellular space and react with
biomolecules, including DNA, proteins inside and outside the
cells, and lipids in cell membranes. Denoting k1, an average
decay (scavenging) rate of a population of •OH in the track
(resulting in DNA, proteins, lipids, or, in general, biomolecular
(BM) hydrogen abstraction as described in [30] in which [DNA•]
and [BM•] partially contribute to v, e.g., v = [H2O2] + [DNA•] +
[BM•]) introduces an exponential decay in solutions of u, in Eq. 3:

u �r, t( ) � c0
4πDft

exp − r2

4Dft
− k1t( ). (4)

If cells were uniform and homogeneous, like in liquid water, the
diffusion of ions induced by radiation must have occurred like in an
ordered medium, as described in Eq. 4. However, the current models
in radiobiology do not consider intra- and inter-cellular
inhomogeneities in the diffusion of radiolysis products due to a
lack of experimental data and theoretical models.

To fill the gaps in our understanding of diffusion channels at the
microscopic levels, we performed a series of molecular dynamics
simulations to investigate the diffusion of •OH-radicals [43]. To
visualize some of these effects in real time, we uploaded samples of
our simulations in the form of videos available on YouTube [26, 27].
The simulations have clearly shown that variability in the molecular
mass and charge distribution and, in general, chemical, physical, and
mechanical composition of the micro-environment of cells may
dramatically alter the diffusion of •OH-radicals. Therefore, it is a
natural generalization to consider spatial fluctuations in the
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diffusion constant Df( �r) because of an abundance of such
molecular heterogeneities in cellular tissue. To incorporate the
randomness at a coarse-grained level, we performed a Monte
Carlo sampling on Df and solved numerical solutions of the
stochastic reaction–diffusion partial differential equations for
various realizations of Df( �r) after discretizing the space and
time coordinates.

2.2 Random walk percolation model

As a complementary model to the reaction–diffusion model
given in Eqs 1, 2, we cross-validated the numerical results against the
solutions of random walk or Brownian motion on the same random
network throughout the percolation theory [40–42]. More details on
the description of the modeling of the diffusion constant can be
found in Supplementary Section SE.

In this context, a regular lattice is a lattice with no disorder. It is
an ordered lattice with all diffusion links connected to neighboring
sites throughout the lattice points. In a classical disorder model, the
diffusion from an occupied site to a neighboring occupied site can be
simulated through the random walk. In this model, the diffusion can
be parameterized in terms of a single site occupation probability p
and the random walk probability q = 1/2d, where d is the embedding
dimension of the square lattice and 2d is the geometrical
coordination number of any site on the lattice. In other words,
on a realization of a random lattice, p and 1 − p are the fraction of
occupied and unoccupied sites, a parameter that determines the
average size of the clusters on the lattice. In this model, the diffusion
constant, Df, is an increasing function of p. It continuously increases

with p above a critical value (a percolation threshold, pc) and reaches
a maximum value at p = 1, where all lattice sites are occupied,
corresponding to a regular lattice with no disorder.

In a random walk, on a regular lattice with p = 1, at every trial or
simulation time step, the diffusing ion randomly selects one of its
nearest neighbor sites with probability q and moves to that selected
site. On a random lattice with p < 1, we first check if the site is
occupied with probability p, then the move to that site occurs with
probability q, and the ion moves one step. Otherwise, the ion stays
on the initial site with probability 1 − p, and the search for another
move to another occupied neighboring site continues in the next
randomwalk trial unless no occupied neighboring sites are available.

The diffusion constant of such a Brownian particle can be
calculated by the Einstein relation, 〈r2〉 = 2Dft. Here, �r is the
Euclidean distance that measures how far the particle has moved
randomly away from the center of the coordinates where it was
created. Above the network percolation threshold (p > pc), the
Brownian motion can find at least one trajectory to cross the
entire system, and Df = 〈〈r2〉〉/2t represents the mean diffusion
constant of the entire network. Otherwise, if all clusters are found to
be isolated, Df = 0 (including at the percolation point, p = pc). In the
latter case, although diffusion through the entire network is not
possible, a limited diffusion confined within a cluster can still occur.
In this case, the diffusion length is limited to the cluster size.

One may expect a finite number of tracks passing through a
single cluster to interact and recombine (the red tracks in Figure 1)
because diffusion among them is possible. Note that 〈〈 �r〉〉 � 0
because of the unbiased random walk considered in these
simulations. For a given p, 〈〈 / 〉〉 represents double averaging,
that is, random walk averaging subjected to a specific network
configuration, followed by ensemble averaging over a large
number of random network configurations. Thus,
Df � 〈〈r2〉〉/2t � 1

2Nc
∑Nc

i�1〈r2〉i/ti, where i is an index going over
different realizations of the Nc random configurations subjected to a
given p. Using the same simulation time for all Nc random
configurations, t1 � t2 � . . . � tNc � t simplifies the expression to
Df � 1

2tNc
∑Nc

i�1〈r2〉i. An alternative approach on ensemble average
over various clusters connecting the opposite boundaries of the
lattice is given in Supplementary Section SE.

For a perfect network (a network with no disorder, such as a
homogeneous medium in normal cells), where p = 1, Df is at its
maximum. It decays continuously to lower diffusion values for pc ≤
p ≤ 1, vanishes at p = pc, and remains zero within p ≤ pc. Note that
close to p = pc (from above), the clusters in the network form a self-
similar fractal-type structure in short distances with a Hausdorff
dimension that is a measure of the tissue/cell roughness or, more
specifically, their fractal dimension [40, 41].

Interested readers may refer to [40–42] for a discussion on the
concepts of percolation and fractal dimensionality of a porous
network embedded in three-dimensional space. The mathematical
techniques introduced in [40–42] are relevant to the present
applications, where we consider the porous space of malignant
cells in which diffusion of radiolysis products is unlikely to occur
in the voids among the clusters.

As a first step in proof-of-principle and to demonstrate the
effects of cellular structures and textures on the interpretation of the
tissue-sparing of FLASH-UHDR, we consider two types of media to
study the transport of chemical species in typical normal and tumor

FIGURE 1
Schematic sketch of tracks passing through a porous media,
representative of heterogeneities in cells and tissues. Clusters through
which diffusion is allowed are shown in blue. In contrast, diffusion is
forbidden in the void space among the clusters. Red arrows
represent interacting (mediated by diffusion) tracks as they pass
through a single cluster; hence, they are connected tracks. Orange
arrows passing through isolated islands represent non-interacting
tracks.
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cells/tissues. Because of substantial differences in intra- and inter-
cellular structure and chemical compositions of tumor versus
normal cells, we solve reaction–diffusion equations in a
homogenous and isotropic medium, similar to liquid water, as a
representative of normal cells/tissues and in a heterogenous fractal-
type porous and disordered medium for tumors [31, 32].

At the limit of strong disorder, the entire cellular structure can
be divided into clusters or isolated islands. Consider an object in
3D as sketched in Figure 1, for example, a cell or a tissue segment.
A cluster is a set of connected points on that object, disconnected
from the rest of the points via diffusion due to structural
heterogeneities. Thus, each cluster consists of connected sites,
among which the diffusion of radiolysis products occurs
normally. Hence, diffusion is forbidden in the space among the
clusters. In Figure 1, tracks with different color codes are
designated based on their classifications as interacting (red) and
non-interacting (orange). The underlying porous media,
representing the topology of diffusion channels in tumor cell/
tissue, is depicted in blue, where diffusion can be performed. The
blobs represent the topography of a spongy structure. The clusters
are separated by clear voids, the space where diffusion is forbidden.
They represent highly dense chemical heterogeneities at the
molecular level that slow down or even block diffusion. Tumor
calcification with the density in primary or metastatic lesions, such
as metastatic lymph nodes, with a CT value above 60 Hounsfield
Unit, represents such voids.

The structure in Figure 1 can be considered at the level of single
cells or cell agglomerates in tissues, depending on the scale of the
structure at hand. The topology of random diffusion channels,
sketched in Figure 1, was constructed mathematically within a
single cell and scaled up to the structure of tissues, assuming
self-similarity and scale invariance of fractal structures, one of
the characteristics of the disorder patterns. At the single-cell
level, the rationale behind such a construction is the diffusion of
•OH radicals through molecular heterogeneities.

The porous structure depicted in Figure 1 was created using a
MATLAB code with a random number generator drawn from a
uniform distribution to introduce blobs with specific radii at
random locations in a 3D cube. The radius was chosen to be
slightly larger than half the distance of a pair of nearest neighbor
sites to illustrate the overlap between the two nearest neighbor
blobs.

At UHDR, where the possibility of finding closely spaced
tracks is likely, the ratio of the cellular diffusion correlation
length ξ and the mean track spacing determines the domain of
intra- and inter-track dominance. ξ is a measure of the size of the
isolated islands in a single cell, that is, the mean diameter of the
blue blobs in Figure 1.

Note that in our approach, the details of cellular structures, such
as the exact locations of various organelles, are averaged out due to
the random distribution of cells with respect to the random
distribution of tracks, which is equivalent to a compound
distribution as considered in the formulation of the theory of
dual radiation action (TDRA) [33, 34]. TDRA considers the
energy transfer in ionizations and regards the deposited energy
proportional to the DNA double-strand breaks and the number of
cellular sublethal lesions.

3 Results

3.1 Track interaction in the
reaction–diffusion model

3.1.1 Interaction in an ordered medium
Figures 2, 3 present the time evolution of two tracks,

simultaneously starting from two cylindrically symmetric clouds
of ionization with radius w. The real-time motion of these tracks is
available online.

In Figures 2A–D, a solution of the aforementioned 2D
reaction–diffusion equation as a function of time was calculated
in a homogenous and uniform medium, such as water. As shown,
two cylindrical tracks evolve initially into two uncorrelated Gaussian
probability distribution functions (PDFs) with centers located at �ri
and �rj before they collapse together, where

ui
�r, t( ) � c0

e
− | �r− �ri |2
4Df t−ti( )−k1 t−ti( )

4πDf t − ti( ) , (5)

and

uj
�r, t( ) � c0

e
− | �r− �rj |2
4Df t−tj( )−k1 t−tj( )
4πDf t − tj( ) . (6)

Here, Df and k1 are the diffusion constant and reaction rates,
respectively. Our approach to numerical calculation of the time-
dependent solutions of the diffusion equation subjected to a
cylindrically symmetric initial condition and fitting to Gaussian
functions at distances away from the cylinder can be found in
Supplementary Appendix SD. To clarify the notations, i and j in
these equations are the indices of tracks. In a discrete space-time
version of reaction–diffusion equations, �r � (x, y, z) is expressed by
(nxΔx, nyΔy, nzΔz), where nx, ny, nz = {0, ±1, ±2, . . . } are integer
numbers and (Δx, Δy, Δz) are the elements of the space grids along (x,
y, z) directions. Similarly, t = ntΔt, where nt = 0, 1, 2, . . . and Δt

denotes the time intervals.
Without loss of generality, to illustrate the effects of tissue types,

we considered the creation time of tracks ti = tj in these simulations.
This condition approximately fulfills the time sequence of the track
inductions at UHDR. Note that, in general, the temporal
distribution of the tracks, hence their relative time elapse,
depends on the dose rate. However, at UHDR, and only for the
sake of simplicity of illustration on the effects of random diffusion
on the time evolution of the tracks and the track–track
recombination, we have intentionally neglected the time elapse
among the tracks in comparison with other time scales involved
in the present reaction–diffusion model.

As the simulation time proceeds in Figures 2A–D, two
Gaussians merge together and form an elongated single PDF.
The geometrical overlap of two Gaussians can be calculated
analytically:

〈ui|uj〉 t( ) � ∫ d �rui
�r, t( )uj

�r, t( )

� c20
e
−| �ri− �rj |2

8Dft −2k1t

8πDft
. (7)
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As the two Gaussians combine, like melting two droplets into a single
droplet, diffusion slows down in the overlap area. Instead, the diffusion is
performedwith a rate calculated by Eq. 7 from the periphery of combined
Gaussians to the outside. In this model, intra-track interaction is
parameterized by the rate constants k1, k2, k3, k12, and inter-track
interaction is the geometrical overlap of the tracks, as given in Eq. 7.

Note that the Gaussian functions in Eqs 5, 6 are the analytical
solutions of a single track in a uniform system. These solutions
demonstrate the calculation of overlap integral analytically in a
uniform system, as given in Eq. 7.

3.1.2 Interaction in a disordered medium
In a system of multi-tracks, as in Figure 2, or even a single

track in a disordered medium, such as in Figure 3, the analytical
solutions are not available, and the overlap integral should be
calculated numerically by discretizing space and time. In such
situations, we used analytical forms of solutions derived in the
Supplementary Appendix to compare with the numerical
solutions and check the accuracy of our finite difference
method.

As shown in Figures 3A–D, we calculated a solution of a
reaction–diffusion equation with an identical initial condition as
in Figures 2A–D, except that the calculation was performed on a
network with random connectivity between the neighboring sites to
mimic the geometrical disorder of tumor cells with strong
inhomogeneity and/or fractal-type porosity.

A series of connectivity probabilities p was drawn from a uniform
distribution within the interval of zero and one and subsequently
convoluted to the diffusion constant Df for each diffusion site in the
network. Although the reaction rate k1 can be considered another random
variable, we kept it constant at the same value as in the simulation shown
in Figure 2 to isolate the effects of diffusion.Note that a special case of p=1
describes the transport of ions on a homogeneous network with uniform
connectivity that links nearest neighbor sites, corresponding to the kinetics
of ions among normal cells, with the results depicted in Figure 2.

The time and length scales in Figures 2, 3 were chosen based on the
conventional values of the diffusion constants. To simulate the expansion
of a track of •OH-radicals at thermal equilibriumwith the environment at
room temperature and by using an empirical value Df �
4.3 × 10−9m2/s � 0.43�A

2
/ps [13], we divide the square sides of the

FIGURE 2
Time evolution of two tracks, ui (x, y) and uj (x, y), in a homogeneous and uniform medium. c (x, y) = ui (x, y) + uj (x, y) is the total density of ROS
calculated by the superposition of individual ROSs. (x, y) are the planner coordinates of the plane perpendicular to the axis of cylindrical tracks. The length
scales are displayed in nm, and the time scales are 26, 220, 569, and 1,146 ps for (A–D), respectively
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computational boxes into steps with 0.1 nm length. In these calculations,
the time advances via 0.1 ps intervals to fulfill the
Courant–Friedrichs–Lewy condition or the Nyquist sampling theorem
in signal processing, in which the simulation time steps are required to be
half or less of the period of the quickest dynamics. Accordingly, such
length scales set the lateral sides of the computational boxes in Figures 2, 3
to 13 nm, larger than six folds of the width of a DNA double-stranded
helix that is approximately 2 nm. The running times of these simulations
were terminated at 0.5 μs with no significant differences from the times
corresponding to Figures 2D, 3D. This condition simply allows the
simulation to run until the numerical solutions converge to a satisfactory
value. Bymonitoring the overlap integral between two tracks as a function
of time, the numerical results do not change significantly beyond a time
value, reported as a cutoff time. Once this condition has been fulfilled
numerically, we terminate the simulation.

3.2 Relation to the percolation model

The overlap between two adjacent tracks is expected to happen at time
scale t = ℓ

2/2Df if the relevant length scale for diffusion (i.e., the diffusion

length), 〈〈r2〉〉1/2, becomes comparable to inter-track spacings ℓ. Even
below the percolation limit, p< pc, where clusters do not connect fromone
side of the tissue to the other, tracks can overlap through intra-cluster
diffusion channels if two or more tracks pass through a single cluster.

Another interesting combination of a system of tracks and
isolated clusters can be represented by two neighboring tracks
that pass through two separated and disconnected clusters with
no diffusion channel between them, corresponding to a non-
interacting track configuration as shown in Figure 1, where our
construction of the structure and topology of random diffusion
channels is illustrated schematically.

A collection of configurations of a system of tracks and tissue
clusters under the condition, p < pc, some with finite Df, combined
with vanishing Df, leads to a system of tracks with lower effective
interaction compared with tissues under the condition p > pc, where
all clusters are connected. The former represents tumors, and the
latter represents normal tissues. Thus, the problem is interesting
from a mathematical point of view as it describes the time evolution
of percolating tracks mediated through diffusion channels subjected
to percolation of the underlying medium, cellular structures, and
tissues (i.e., a compound percolation system).

FIGURE 3
Time evolution of two tracks in a porous medium with random connectivity among the diffusion sites. Similar to Figure 2, c (x, y) = ui (x, y) + uj (x, y).
The length scales are displayed in nm, and the time scales are 4, 268, 1,186, and 2,183 ps for (A–D), respectively
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At FLASH-UHDR conditions, if the correlation length in the
network connectivity, ξ, (i.e., a measure of cluster size) is smaller
than the mean inter-track distances, diffusion effectively does not
occur to the extent of track spacings; thus, the response of the tissue
falls into the class of isolated/single track states. This is a scenario the
percolation theory predicts for typical tumor cells/tissues irradiated
by a source of FLASH-UHDR.

As can be seen clearly from these two simulations, the effect of
randomness in connectivity among the diffusion channels is to
localize the tracks such that the cell/tissue responses exhibit
insensitivity to the time-elapse among the tracks simply because
of negligible inter-track overlaps. Hence, the cells and tissues with
strong porosities and disorder in their diffusion channels (either
normal or cancerous) under radiation must exhibit insensitivity to
the dose rate, the same phenomenon observed empirically from the
tumors under FLASH-UHDR.

To illustrate the ideas proposed in this work in the clinical
setting, Figures 4A, B present schematic sketches of two tracks
generated by two beamlets before and after entering the patient’s
body, respectively. The diffusive expansion of the beamlet tracks in
normal tissues, depicted by the thicker arrows, and in tumor
(prostate), depicted by thinner arrows, are seen. At a given time
after the beamlets enter, they expand more rapidly in normal tissues

because of higher diffusivity compared to the two isolated beamlets
in tumors. A larger expansion of tracks in normal tissues yields
higher overlaps.

We note that the two-track calculation presented in these
figures, with the use of a periodic boundary condition, an
equivalent of the repetitive configurations, has been presented
only to illustrate the effects of disorders. The readers must be
aware that this calculation is in no way a substitute for the
quantification of the dosimetry aspects of the beams. The latter
must be done by a MC toolkit, such as TOPAS [47], with an
extension and inclusion of the disorders in the simulation of
reaction and diffusion of the chemical species.

4 Discussion

Understanding the chemical processes of reaction–diffusion
processes of radiation-induced chemical species in cells is crucial to
the proper modeling of FLASH UHDRs. Current approaches to this
modeling neglect a) the effect of thermal spikes in the cores of particle
tracks on the diffusion of the resultant chemical species and b) the
influence of spatial heterogeneities within tissue on their diffusion. In
recent years, several techniques have been developed to measure
molecular diffusion in cellular environments [31, 32, 35–38]. In
general, the diffusion constant substantially depends on the size of
molecules, the roughness of the inter- and intra-cellular structures, and
the chemical composition, such as calcification at themetastatic lesions
and texture of the cells. The cellular texture may range from uniform
and homogeneous to strongly disordered, exhibiting fractal geometries
as in tumor cells [31, 32]. The latter mechanism bounds the range of
molecular random walks and blocks the Brownian motion of chemical
pathways below the percolation limit of the diffusion at p = pc
associated with the underlying fractal dimensionality and self-
similarity of the cellular structure. Despite these reports and
observations, there is no study in the radio-biological literature to
address the effects of cell types on the diffusion of ion species.

This study aims to qualitatively highlight the tissue
heterogeneities in modeling inter-track coupling at FLASH-
UHDR, particularly as all models neglect the differences in
heterogeneities among tissues and consider all cell types to be
equivalent to uniform and homogenous liquid water.

More sophisticated models, such as molecular dynamics
simulations, require the incorporation of cellular internal and
external structures in the calculation of Df. Our recently
performed simulations [43] revealed the sensitivity of Df on local
chemical, physical, and mechanical molecular compositions of the
environment of •OH-radicals, including the density of water
molecules. The details of these simulations are beyond the scope
of this work; however, the results clearly support the hypothesis of
the present study (e.g., the diffusion processes of ROS and NROS in
the following real-time simulations [26, 27]).

Along this line of thoughts, we remark that the reported abnormal
growth of the tumor cell membrane [31, 32] and its fractal-type interface
may lead us to suggest a correlation with the growth of internal
heterogeneities in the physico-chemical and molecular composition in
the bulky texture of the cell that influences the Brownian motion and the
spatial distribution of small radiolysis molecules including •OH radicals.
To the best of our knowledge, there is no experimental evidence in favor

FIGURE 4
Schematic sketch of the diffusion expansion of two-particle
tracks in the air before (A) and after (B) entering the patient body. The
width of the arrows in normal tissues (thicker arrows) and the tumor
(thinner arrows in the prostate) demonstrates the extent of inter-
track overlaps in different tissue types. In normal tissues, the expanded
tracks allow inter-track overlaps, whereas, in tumor tissues, the
localized tracks yield negligible inter-track overlaps. At a given dose
where the number of tracks (shown by arrows) is given, the lack of
inter-track overlaps justifies insensitivities of radiobiological responses
to dose rates.
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or against such correlations; however, we provide plausible justifications
below in favor of the existence of the disordered internal molecular
structures of cancerous cells.

In our model, diffusion through a disordered system and a porous
media, as in a single cell, has been described by random walks through
fractal-type structures embedded in three-dimensional space regardless of
the roughness of the cellular surface, in which it controls inter-cellular
diffusion through the cell membranes. In this model, a combination of
these two types of diffusive channels determines the overall intra- and
inter-track recombination of chemical species.

Although diffusion and reaction within a single cell and to the
cell nucleus are considered a source of DNA damage, there are
recent studies related to non-DNA damage through lipids [18] and
cell membranes [28] through Ferroptosis pathways [29]. The intra-
and inter-cellular diffusion mechanism introduced in this
theoretical study correlates the DNA and lipid damage
throughout cell nuclei and membranes to the hypothetical intra-
and inter-track FLASH mechanisms.

At the level of a single cell, in the absence of any experimental data,
one may propose a reasonable assumption that the bulk properties of
tumor cells resemble their fractal-type surface morphology unless there
was an annealing or relaxation process that allowed repositioning of the
atoms and molecules to reside at their equilibrium locations, like in a
controlled process of crystal growth of materials. For example, such a
process may occur in liquid or more advanced techniques, such as in
vapor deposition or epitaxy, where crystal defects and imperfections can
be eliminated by controlling environmental and external parameters,
such as pressure and temperature.

Under in vivo or in vitro conditions, the rapid doubling time in the
growth process of the wild-type cancerous cells means that such
annealing that requires a slower processing timescale is unlikely to
occur. Unlike controlled manufacturing conditions in the growth
processing of artificial materials, the internal physical structure of
tumor cells under uncontrolled growth may face alteration of the
stored mechanical energy and tension due to out-of-equilibrium
rearrangement of the molecules. Thus, it is expected that the internal
structure of tumor cells exhibits roughness in theirmechanical properties,
heterogeneity in their mass densities, and disorder in their diffusion
channels, behaviors observed in growth conditions far from equilibrium.

Snowflakes with internal defects similar to colloidal aggregates
in their crystalline structure are another example of natural systems
exhibiting bulky heterogeneities with a correlation to their fractal-
type surface interface. Similar to our hypothetical malignant cells,
they belong to states of matter that exhibit topologically distinct
classes of porosity in their mass density. Thus, the systems form
under ballistic growth conditions [48]. Metallic glass alloys are yet
another example of a glassy or disordered phase of materials that
form under a rapid decrease in temperature (i.e., quenching
conditions). Closer to our hypothetical heterogeneities in tumor
cells, we may enumerate abnormalities, such as grain boundaries,
crystalline defects, and dislocations that affect stored mechanical
energies and local diffusion channels in normal metallic alloys.

The underlying physical processes of tissue response to radiation
dose rate, including differential biological responses of various
tissues, either normal or malignant, can be formulated through
inter-track overlap. In this model, the tissue’s biological responses
are categorized based on the geometrical correlation and collective
evolution of the tracks. In a single fraction, tracks with negligible

overlaps do not lead to a physico-chemical response sensitive to the
dose rate. Thus, the typical tumor responses fit into topologically
distinct classes of uncorrelated and evolutionary single tracks:
dominant intra-track recombination. In contrast, normal tissue
responses can fall into another class of collective chemical
crowding of the correlated tracks, where inter-track
recombination is dominant. The transition between inter- and
intra-track reaction–diffusion processes is responsible for these
two seemingly distinguished behaviors among tissue types.

As illustrative examples of structural disorders, we presented time
evolutions of the solutions of the coupled partial differential equations of
two separate tracks, initially created at two locations, in Figures 2, 3. An
underlying network among the reaction–diffusion sites is considered to
model the diffusion channels in tissues. In this model, a tissue is
represented by a network with random connectivity among the sites.
In Figure 2, a network with uniform and homogeneous connectivity has
been considered to represent normal tissues. In Figure 3, a random
network defined by a random represents cancerous cells or tissues
identified to behave like self-similar fractals at the percolation
threshold, p = pc, the point where the diffusion channels are blocked
due to the emergence of isolated islands.

The results shown in Figure 2 illustrate the role of tissue texture
in forming overlaps among tracks as a function of time. In Figure 3,
randomness in diffusion channels, which is unique to transport
through porous and disordered structures, limits the diffusion range.
Thus, the tracks evolve individually like isolated islands with
negligible overlap. This is consistent with the scaling theory of
percolation and localization of thermal waves/Schrödinger equation.

Note that lowering the diffusion constant without incorporating
the randomness in the network connectivity does not lead to the
localization of Gaussian PDFs, as the absolute value of the diffusion
constant does not change the overall effect in inter-track evolution
and their overlap. More precisely, the time evolution of the diffusion
equation is invariant under the scaling of the diffusion constant. A
simultaneous scaling of diffusion length and time gives a similar
trend in the tracks’ geometrical overlaps. However, with constant
intra- and inter-track reaction rates, this scaling rule breaks down
unless we scale them simultaneously.

Finally, for the interested readers, we remark that track localization
observed in these simulations that is consistent with the percolation
theory of diffusion on porous and disordered media was extensively
studied in the context of semiconductor physics. The phenomenon
known as Anderson localization [49] was extensively studied
quantum mechanically to describe the metal-insulator transitions in
condensed matter and solid-state physics. Here, we map the normal
and tumor tissues problem to a similar transition between metals (where
conduction electrons are in the extended states) and insulators (where
conduction electrons form pockets of localized states). We suggest that
the mechanism modeled in these computer simulations interprets the
empirically observed differential tissue-sparing of FLASH-UHDR. The
interplay of this hypothesis and that of differential antioxidant or oxygen
concentrations is currently under investigation.

The relevance of inter-track interaction has recently been
examined in [22] by MC simulation of interacting proton tracks,
where no significant changes in •OH-radicals or H2O2 yields were
found at clinically relevant doses. This claim is also supported by
other simplistic geometric track overlap models. A similar
assessment was given for clinical beams of carbon [21].
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These theoretical results contrast the experimental evidence of [23],
which measured lower H2O2 yields at UHDR compared to CDR.
Furthermore, references [4, 24] observed a similar decrease in H2O2

yields at UHDR with electrons. This discrepancy and the observation
that MC simulations tend to measure an increase in H2O2 yields as the
dose rate increases as opposed to the experimentally measured decrease
in H2O2 yields suggests that the theoretical models andMC simulations
do not provide an adequate representation of the interdependent
chemical reactions occurring in the irradiation of oxygenated water.
This may have to do with limitations of theMC simulations, such as the
lack of any simulated dissolved oxygen or the neglect of physical effects,
such as thermal spikes. In either case, the chemical impact of inter-track
interactions at UHDR continues to demand further studies for a
complete understanding but remains outside of the scope of the
present manuscript, which instead examines the effect of structural
heterogeneity in biological tissue on inter-track interaction.

5 Conclusion

This theoretical study aims to present a model calculation based
on the reaction–diffusion of reactive species induced by ionizing
radiation and points to possible transitions in the molecular
crowding of the track structures. This transition is dependent on
the structural heterogeneity of the target tissue. As described in the
model, higher heterogeneity results in limited diffusion of reactive
species, decreasing the probability of inter-track overlap. Tracks
with negligible overlaps do not lead to a physico-chemical response
sensitive to radiation dose rate. A significant difference in this
structural heterogeneity between normal and tumor tissue is
hypothesized to result in the observed differential sparing of the
FLASH effect. A systematic experimental cell/tissue database must
be generated to validate the hypothesis presented in this work.
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