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Background: Shoulder ultrasound is a well-established point-of-care diagnostic
modality in orthopaedic and sports medicine. Despite offering measurements of
high-quality morphology, this methodology has faced several challenges,
including variability in ultrasound systems, operator dependency, and lack of
reliable and objective quantitative measures to track disease progression and
responses to therapeutic interventions. Computer-aided quantitative ultrasound
algorithm (CAQUSA) is an emerging novelty that automates the detection of
normal and abnormal structures. Although CAQUSA has been shown to improve
detections and diagnoses of soft tissue lesions, the proof-of-concept of utilizing
CAQUSA to measure subacromial space width and its encroachment to the
rotator cuff tendon have not been tested to assist in clinical decision-making
for subacromial pain syndrome.

Objective: This study aimed to develop a CAQUSA that measured the
acromiohumeral distance (AHD) and test the algorithm’s reliability and
agreement with manual measurements in wheelchair users with spinal cord
injury (SCI).

Methods: 116 ultrasound video clips recorded from 10 manual wheelchair users
with SCI were evaluated manually by an experienced examiner with expertise in
AHD examination and by the CAQUSA, which was developed for bone
segmentation with probability mapping. The reliability and agreement of the
diagnostic performance between the examiner and the CAQUSA were
calculated and compared in both groups of AHD measurements.

Results: The CAQUSA achieved a satisfactory agreement between computer-
aided (11.95 ± 2.29 mm) and manual (11.33 ± 2.48 mm) measurements. The
intraclass correlation coefficient between the two measures was excellent
(ICC = 0.95). The sensitivity was 0.2 mm, with 95% true positives and 5% false
positives at the fixed threshold of CAQUSA.

Conclusion: AHD measurements made by the clinical observer were similar to
that of the CAQUSA for assessing the clinical metrics related to subacromial pain
syndrome. However, the CAQUSA showed greater reliability in its unclear or
misleading image analysis. Based on the findings of this proof-of-concept
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study, the CAQUSA has promise for clinical utilization and interchangeability to
minimize examiner-dependent errors and potentially reduce the cost of care.
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Introduction

Subacromial pain syndrome (SAPS) is one of the most frequent
causes of shoulder pain and dysfunction among individuals with
spinal cord injury and disease (SCI/D) [1]. SAPS is reported in 40%–
60% of manual wheelchair users with SCI who have had longer
wheelchair uses. These individuals have an approximately 10-fold
higher risk for rotator cuff tears than able-bodied individuals [2,3].
Rotator cuff injuries resulting from aging and degenerative changes
within the subacromial space affect the quality of life among these
individuals and inhibit their functional independence [4].

The subacromial space width has been widely used as a clinical
index, representing the occupation ratio of the supraspinatus tendon’s
thickness within the subacromial space [5]. Themanual measurement
of the subacromial space width, defined as acromiohumeral distance
(AHD), has been discussed in a recently published systematic review
to be one of the contributing factors of shoulder pain and dysfunction
[6]. Conventional grey-scale ultrasound that examines AHD is a well-
established point-of-care diagnostic modality in musculoskeletal and
sports medicine rehabilitation [7–10]. The ultrasound system
provides portability, no radiation exposure, relatively low cost, and
capacity for AHD imaging in dynamic functional positions, making
this modality valuable in the clinical care of patients with shoulder
disorders. Ultrasonographic AHD measurements identify the bone
morphology based on the echo intensity of brightness-mode images
[11,12]. Despite offering measurements of high-quality morphology,
this modality has faced several challenges, including variability in
ultrasound systems, operator fatigue, and lack of reliable and objective
quantitative measures to not only identify bonemorphologies but also
screen for the stage or progression of the AHD, as well as assess
responses to therapeutic interventions [13]. Computer-aided
quantitative ultrasound algorithm (CAQUSA) is an emerging
novelty that automates the detection of normal and abnormal
structures [14–16]. Although CAQUSA has been shown to
improve detections and diagnoses of soft tissue lesions, there is
very little research that explores the segmentation of bone
surfaces from echogenicity-based ultrasound images and tests the
proof-of-concept and reliability of utilizing CAQUSA to measure
AHD in high-risk populations, such as manual wheelchair users with
spinal cord injury (SCI). In this study, we developed a CAQUSA to
measure the AHD and tested the reliability and agreement with
manual measurements in manual wheelchair users with SCI.

Methods

This was a cross-sectional study conducted at two universities’
laboratory settings. Before participating in this study, all participants
read and signed the informed consent forms, which were approved
by both universities’ Institution Review Board.

Participants

The inclusion criteria for participants were between 18 and
65 years old, having SCI that occurred over a year prior to the start of
the study and using a manual wheelchair as the primary means of
mobility (self-propel at least 40 h per week). Participants were
excluded from this study if they had a history of fractures or
dislocations in the shoulder, from which they had not fully
recovered; upper limb dysthetic pain because of a syrinx or
complex regional pain syndrome; and a history of cardiovascular
and cardiopulmonary diseases. Participants were excluded if they
had pain in an upper extremity that would interfere with normal
functioning and daily activities.

Study protocol

Quantitative ultrasound protocol has strong reliability and
validity to determine acute changes in tendon appearance and
subacromial space with repetitive wheelchair activity
[9,10,17–19]. The rater reliability of AHD measures has been
reported good to excellent in SCI population [20]. As
recommended to improve reliability of the measures, a single
examiner (YSL) with experiences in clinical ultrasound shoulder
examinations among wheelchair users scanned and recorded all
ultrasound images in a randomized order [9,20]. Image field depth
was set at 5 cm, and gain was set at 75 dB in each ultrasound system
to minimize the variations of echogenicity of raw images that were
optimized based on the relative contrasts to differentiate bone
surfaces from other surrounding tissues [17]. Shoulder
ultrasound images were captured from the Philips HD11
1.0.6 ultrasound machine with a 5–12 MHz linear transducer or
the Supersonic Imagine Aixplorer Ultrasound Machine with an
SL14-5 transducer placed on the skin above the deltoid muscles
of the non-dominant arm. Each video clip was recorded at 10 Hz for
approximately 10 s. Operators recorded two shoulder ultrasound
clips to ensure that each frame included scapular and humeral
structures. AHD measurements were recorded on the non-
dominant shoulder in four different positions: shoulder in a
neutral resting position without weight, neutral position with a 3-
lb (1.4 kg) weight, 45° and 90° arm elevation in the scapular plane
with humeral internal rotation (IR) while holding a 3-lb weight,
similar to the methods in previous research protocols [20]. AHD
ultrasonographic images were recorded at 10 Hz for each scan using
an external video recorder. All collected video clips were converted
into a series of ultrasound (US) snapshots and processed in the
MATLAB software (Mathworks, Natick, United States). The first
and the last 2 seconds of each clip were excluded from the analysis
due to the transducer’s preparation and separation from the region
of interest. A licensed physical therapist (AS), experienced in
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imaging AHD and blinded from the data collection and
experimental setup, performed manual identification of bony
landmarks for calculating the AHD.

Image processing

Our computer-aided approach included two sections. The
first section demonstrated the pipeline of echogenicity-based
extraction from snapshots of pre-recorded ultrasound video
clips. The second section described the CAQUSA based on the
probability map used to extract the superior surfaces of the
acromion and humeral head for AHD measurement within

each ultrasound snapshot. The flowchart of the proposed
CAQUSA method for processing an ultrasound video clip to
measure AHD is illustrated in Figure 1.

Datasets

This dataset comprised a total of 116 video clips obtained from
10 manual wheelchair users with SCI.

Segmentation method with bone probability
mapping

As a significant proportion of the acoustic energy was reflected
toward the transducer when comparing the reflected signal from the
bone relative to surrounding structures, the acromion and humeral head
surfaces were more hyperechoic than the deltoid and supraspinatus
tendon in ultrasound images (Figure 2A). The greater pixel values above
the shaded area were identified as a bone surface with augmented
features through our proposed development of post-processing
techniques. Figure 2B represented the inadequate image quality of
bone surface to proceed the analyses. Boundaries of bone surfaces
were effectively isolated by a local phase extraction procedure, as the
echo signal beam reflection was enhanced on bone surfaces and
attenuated in other regions. Bone surfaces in ultrasounds exhibit
ridge-like responses that were well captured by local image phase
symmetry features [14]. We implemented the phase symmetry Log-
Gabor filter using the monogenic signal to compute the odd and even
responses from band-pass quadrature features [21]. This filter could
construct the arbitrary bandwidth to characterize the shadowing effect
below the bone surface in ultrasound images (Figure 2C). We applied a
binary threshold mask that filtered the neighboring pixels and intensity
values lower than two standard deviations from the average
neighborhood echogenicity to exclude shallow soft tissue structures
above the bone surfaces, thereby reducing the processing time and
efficiency (Figure 2D). The Laplacian Gaussian filter detected reflections
fromUS images and carried zero filter responses to a boundary of bright,
ridge-like structures. US waves did not penetrate the bone structures,
showing higher intensity from soft tissues above and lower intensity
from those below the bone structures. This filter resorted to
dichotomizing positive responses to low pixel intensity and negative
responses to high pixel intensity, resulting in brighter surface areas on
the acromion and humeral head and other structures The Laplacian of
Gaussian filter was then applied to blur images from the Gaussian kernel
(Figure 2E). The shadowing effect of the image was used to eliminate
unwanted ridge-like structures above a bone area (Figure 2F). We then
multiplied the Gaussian kernel using Gaussian weighting function to
calculate the pixel intensities below the shadowiness and the weighted
sum of the pixels used to smooth images and remove details and noises
as described previously [22,23]. To minimize false-positive and false-
negative detections from structures bearing similar echogenicity to bone
features in US images, we further processed our images with a
backscattering to reduce the interference from soft tissues above the
bone structure (Figure 2G). The scan lines of ultrasound backscattering
energy were considered to enhance the probability of detecting bone
areas, as most of the ultrasound energy was higher in areas of the bone
structure. The integrated backscattering energy was calculated by the

FIGURE 1
Flowchart of the proposed computer-aided quantitative
ultrasound algorithm (CAQUSA) for processing an ultrasound video
clip to quantify the acromiohumeral stance in wheelchair users with
spinal cord injury.
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FIGURE 2
CAQUSA Pipeline-post imaging process. (A) example US imagewith AHDmeasurement (B) example of inadequate US image (C)US imagewith Log-
Gabor filter applied. (D) Binary features (E) Laplacian of Gaussian with Gaussian Kernel (F) shadowed US image (G) integrated backscattering (H) example
probability map.
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sumof squared intensities above a given pixel on a scan line to reduce the
number of incorrect probability responses [14]. The bone-probability
map was constructed by themultiplication of normalized products from
the Log-Gabor filter with the band-pass quadrature filter to integrate
backscattering and bone shadowing features [24] (Figure 2H).

We identified the acromion and humeral head based on the
degree of discontinuity acquired from each vertical (column) scan
line in US images using a threshold value of 0.5, as described in
previous literature, to separate bone surfaces from other unwanted
structures [14,21]. We then optimized a bone probability map for a
bone-detection process [22]. The Cost (i, j) function (Eq. 1)
represents the continuity of pixels to enhance the segmentation
of bone structures and eliminate unwanted hyperechogenic or
hypoechogenic pixels of segmented bone structures.

Cost i, j( ) � �������������������������
pixi+1−
∣∣∣∣ pixi

∣∣∣∣2 + pixj+1−
∣∣∣∣ pixj

∣∣∣∣2√
(1)

In Eq. 1, i and j are rows and columns, respectively, and Pix
indicates pixel coordinates in a 2D.

US image. Cost (i, j) represents the distance between pixels in the
jth scan line and the adjacent scan line. A higher referred to adjacent
pixels being sparser; therefore, it carried more degrees of
discontinuity. Detected bone-like surfaces in US images were not
always firm. Thus, we enhanced those features by filling in gaps
between pixels with a degree of discontinuity lower than a certain
number of pixels, n, in Eq. 2.

Condition � path, if cost i, j( )≤ n
Continue if cost i, j( ) > n

{ (2)

Specific conditions for Eq. 2 are shown above, where j is the column
of a US image, and n is a constant that is determined by the user based
on the specs of the US machine, including resolution and scale. In a
user-specified range of j scan lines, the algorithm found two specific
pixels that carried Cost (i, j). If Cost (i, j) was less than or equal to the
user-specified constant n, the two pixels were assumed to have
originated from homogeneous bone-like features. The algorithm
connected the two pixels by the creation of a path. If Cost (i, j) was
higher than n, the two pixels were assumed to have originated from two
heterogeneous bone-like features. Therefore, the algorithm continued to
the following scan lines to find other pixels in the following conditions.
When a path was created, other pixels between the two specified pixels
were assumed to be soft tissue and, therefore, eliminated. According to
the principle of ultrasound bean reflection, only one pixel per column
on the bone probability map is recognized to initiate the segmentation
(Eq. 3). The recognition was performed as follows:

∀c,∃sj ∈ 0, R[ ], s � ∑R

i�ripB i, j( ) (3)

where j is the column index, R is the number of rows in the US
image, and B is the bone probability map described in previous fast
automatic bone surface segmentation [25]. After generating the
bone probability map, the segmentation can then be obtained as
follows:

SegB r, c( ) � 1 if r � sc
0 else

{ (4)

Detected pixels were then segmented based on a Cost function
that was recognized as a “jump” in Eq. 5.

J i( ) � cost i, j( )≥ n
0 < n{ (5)

S i + 1( ) � J i( ) + 1, i � 1, 2, . . . k

In Eq. 5, J(i) indicates a specific column in a US image; it
carries a higher Cost (i, j) than the user-determined value of n and
is considered as a “jump.” Meanwhile, S(i) is the number of
segments determined by the number of “jumps.” Our study used
3.4 mm, the minimum AHD reported previously [26], as a
standard to assess the value n. Therefore, spaces between two
pixels that were higher than this number indicated the existence
of a jump between two heterogeneous segments. On the other
hand, the algorithm did not detect bone surfaces if Cost (i, j) was
consistently lower than value n, which occurred primarily in cases
without hypoechogenic bone features in the US images. A “jump”
defined two segments that were located anterior and superior to
the “jump.” When multiple “jumps” were detected, additional
features could be determined between jump points in addition to
the two segments. Assuming that bone surfaces carried a more
significant number of pixels, the algorithm excluded segments
composed of lower numbers of pixels. It retained two details
bearing the first and second highest number of pixels. These two
remaining segments were considered as the acromion and
humeral head. Once all unwanted components were
eliminated, AHD was calculated by selecting two points, the
pixel’s most inferior in the acromion and the most superior in
the humeral head. After selecting points in each segment, the
point-to-point distance was defined as the AHD.

Data analysis

Sensitivity analyses were conducted by excluding low-quality
snapshots containing indistinguishable acromion or humeral
head in the US images, examined by the experienced
examiner. The agreement and reliability were calculated again.
If there were no significant changes, the outcome of the
computer-aided algorithm was reliable and insensitive to the
lower-quality images. For the validation of the proposed
computer-aided segmentation method, we compared the AHD
measured by our algorithm to that from manual measurement.
We compared the processing time between both methods to
determine the quantitative performance evaluation. A licensed
physical therapist (AS), blinded to the study participants and
their shoulder positions, reviewed handpicked sets of images (n =

TABLE 1 Participant characteristics and demographics.

Manual wheelchair users
with SCI (N = 10)

Mean (SD)/N (%)

Age 34.8 (10.1)

Gender (male) 8 (80.0%)

Body Mass Index 26.0 (3.6)

Time since injury (months) 22.3 (8.8)
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116) and manually analyzed the AHD. The intra-measurement
reliability between the gold standard and computer-aided
analyses of AHD was examined using the intraclass correlation
coefficient (ICC), a two-way random method with an average of
two measurements. The following ICC scale was used for the
evaluation: almost perfect (0.81–1.00), excellent (0.61–0.80),
moderate (0.41–0.60), and poor to fair (below 0.40) [27].
Correlations between the two methods of measurement were
assessed using a Bland-Altman plot. The confidence interval
within 95% of the mean differences between the two methods
was evaluated. We further validated our segmentation method by
evaluating the percentage of a surface fitting between computer-
aided and manually segmented bone pixels. To elaborate clinical
tolerance (0.5 mm), we extended the surface of manually
segmented bone areas by ± 7 pixels.

Results

Acromion and humeral head surface
segmentation between CAQUSA and
manual measurement

The characteristics of manual wheelchair users are summarized
in Table 1. A total of 116 measurements were included in the
analysis of AHD measurements. The developed CAQUSA
demonstrated 95% true positive with 5% false positive when fixed
parameters of the threshold and the 4th power of shadowiness were
used to achieve the detection rate. Figure 3 demonstrates the bone
surface segmentation determined by manual selection and
CAQUSA, visualizing the acromion and humeral head
morphology in US images from one of the SCI participants.

FIGURE 3
Acromion and humeral head surfaces determined by CAQUSA and manual measurement. Pictures in 1st column show bone surface detected by
CAQUSA (blue) and manual section (red). Pictures in 2nd column are original images.
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In Figure 3, we compared bone surfaces determined by two
methods. Our evaluation indicated that both the humeral head and
acromion showed great approximation errors of 95.9% ± 5.81% and
96.1% ± 5.81%, respectively.

AHD measurements between CAQUSA and
manual measurement

The mean and standard deviation of manual and CAQUSA
measurements were 11.95 ± 2.29 mm and 11.33 ± 2.48 mm,
respectively. The ICC between the two measures showed
excellent intra-rater reliability (ICC = 0.953). In Figure 4A, AHD
determined by CAQUSA showed a positive linear association with
AHD analyzed by manual detection (r2 = 0.83). Bland-Altman plots
were analyzed with reasonable limits of agreement and a mean
difference close to zero, indicating similar measurements
(Figure 4B). However, one size was over 0.27 mm, and five were
below −0.14 mm between the CAQUSA and manual measurements,
which suggests that the CAQUSA method achieved excellent
sensitivity. Compared to manual measurements, the CAQUSA
outside of a confidence interval showed a tendency to
underestimate due to the heterogeneity of bone surface reflection
in US images that were more hyperechogenic than a bony surface
during humeral active elevation.

Discussion

The use of ultrasound to measure AHD has been widely
described in SCI populations [7,17,20,28]. Since this is a safe
procedure easily to maneuver in the clinics, the US is well-
known and regarded as the optimal point-of-care modality to
image the shoulders. The US allows for the visualization of the
subacromial space, including the bone surface and soft tissues. In
addition, US offers real-time examination, no radiation, lower cost,
and portability makes the US imaging modality a suitable alternative

for imaging bones in functional postures with a higher risk of
shoulder injuries and/or pathologies, such as SCI populations.
Our study described a computer-aided algorithm utilizing
probability mapping for measuring AHD in manual wheelchair
users with SCI. The CAQUSA achieved satisfactory reliability and
validity compared to manual measurements, demonstrating
potential application not only in detecting signs of SAPS, but
also becoming an alternative for evaluating the shoulder
anatomical morphology within the subacromial space. The study
enabled the analytical capacity for addressing labor-intensive
challenge to broaden the application with a larger sample size
and assist in the grading of AHD. The CAQUSA shows the
potential to improve the efficiency and objectiveness of diagnosis
and reduce the healthcare cost for assessing SAPS that are
increasingly recognized as a popular topic in the field of
orthopaedic medicine.

While a growing body of literatures utilized a computer-aided
approach to segment anatomical regions of interest from US images,
the computer-assisted detection of shoulder structures in US images
is underdeveloped and still considered as a research tool in clinical
settings [29–31].

Pandey and the colleagues reviewed the common techniques for
2D bone segmentation and reported a lack of standardized
validation metric or data set to compare which methods or
benchmarking is recommended [23]. In addition, the comparison
between using AHD measurements via CAQUSA and independent
manual AHD measurements among individuals relying on
shoulders as primary means of mobility has not been previously
reported. Several studies have employed computer-aided algorithms
to segment anatomical features using local phase feature-based
methods to automate the analyses in US images [7,32]. Jia and
his colleagues developed a computer-aided tracking system with an
automatic bone segmentation algorithm based on the US intensity
information, including backscattering, acoustic shadows, and local
phase features [14]. As the proposed automatic bone detection using
a motion analysis system showed the feasibility of quantifying the
three-dimensional hip joint rotation angles, the ability to whether

FIGURE 4
Correlation plot with Pearson R value squared (A) and Bland-Altman plot (B).
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this technique is clinically translatable to examine the shoulders of
individuals with SCI is unknown. Hacihaliloglu and his colleagues
developed a tool that automatically extracted bone surface
information from the B-mode US approach to calcualte local
phase-based features on the phantom, in vivo and clinical data of
bone fractures. Although this technique showed promising results in
capturing bone features, the cross-validation with an experienced
clinical specialist to confirm the proposed computer-aided method
is undetermined [21]. In addition to bone detection, Wang and his
colleagues developed a quantitative method to segment the
supraspinatus tendons using a self-shrinking snake technique
based on a multilayer segmentation framework [31]. The
technique required radiologists or US operators to define the
rough region of interest before automatically detecting the
supraspinatus tendon. Although their approach demonstrated
superior performance, the ability to detect the bone surfaces
reliably and accurately is unknown for individuals with SCI if the
images of tendon boundaries are unclear. Achieving great accuracy
in automatic bone segmentation in the clinical setting is challenging
due to the variability and heterogeneity while imaging bone surfaces.
To mitigate these constraints, specific procedures that filter the
noises and misleading artifacts are necessary to amplify the desired
features. A low-noise bone surface probability mapping is an ideal
method to bypass the constraints. Probability mapping incorporates
the results of independent post-image processing methods, and its
product indicates the likelihood that the actual bone surface exists
within that voxel. The CAQUSA minimized the independent noise-
associated features in US images and therefore enhanced the entire
bone surfaces while suppressing the shortcomings associated with
high levels of artifacts, speckle noises, and unclear boundaries of
bone surfaces in US images.

Our study had several limitations. Our dataset involved a small
sample size, which only allowed for the development the feasibility of
CAQUSA. Clinical data will be needed to verify the external validity
of the CAQUSA technique. In addition, this study only included one
experienced clinician as the evaluator, disallowing the evaluation of
the interobserver agreement among clinicians. Moreover, machine
learning-based network architecture has shown great segmentation
accuracy with recall and precision rates [33,34]. For example, US
image processing using Convolutional Neural Networks has shown
great sensitivity, specificity, and accuracy in detecting
musculoskeletal structures of the shoulder [35]. We expect further
refinements of the CAQUSAmethod tracking two-bone features will
be essential for the future application of an advanced machine
learning architectures.

Conclusion

To the best of our knowledge, this was the first study to compare
manual and automated techniques for measuring subacromial space
with B-mode ultrasound images among individuals with high risk of
SAPS. More importantly, this study showed the proof-of-concept of
utilizing CAQUSA to measure AHD, which can further assist
clinical decision-making among high-risk populations with
subacromial pain syndrome. Quantitative measurements using
CAQUSA may help identify AHD and enable tailored treatment
strategies. Future works are warranted to improve the

generalizability of CAQUSA in other non-SCI population such as
elders or athletes prone to develop the SAPS. In addition, the
receiver operating characteristic curve will also be included to
test the sensitivity and specificity of computer-aided approaches
with machine learning architecture, as well as explore quasi-real-
time measurements in the clinical environment. Our approaches
may also assist the computer-aided screening, diagnosis, and
evaluation, promoting the generalizability of quantitative
ultrasound techniques in the clinical setting.
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