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Satellite signal threat is an important kind of satellite signal anomaly, which will
lead to ranging biases of user receiver. BOC modulation is used more and more
widely in the field of satellite navigation system. In the existing literature, thereis a
shortage that the non-ideal characteristics of the channel are not taken into
account in the ranging biases analysis of BOC signal threat. The non-ideal
characteristic of the receiving channel is one of the main bias sources of
navigation signal reception. In the process of receiving navigation signal, due
to the jitter caused by channel noise and the non-ideal phase of the channel,
ranging biases will be introduced. To solve this problem, this paper proposes the
analysis model of ranging biases of BOC signal threat based on non-ideal channel
characteristics, and analyzes the non-ideal group delay characteristics of BOC (1,1)
signal incoherent ranging mode. From the analysis results of ranging biases under
multiple threated signals, it can be seen that the non-ideal group delay
characteristics will worsen the ranging biases of BOC signal threat in most
cases. In the sense of minimum ranging biases caused by BOC signal threat,
0.3chip~0.35chip is the recommended parameter for non-coherent reception of
BOC (1.1) early late code.

KEYWORDS

GNSS signal threat, binary offset carrier (BOC) signal, ranging biases, non-ideal channel,
group delay characteristics

1 Introduction

Satellite signal threat is one of the faults of the satellite system that results in abnormal
integrity. In history, GPS signals have been detected abnormal for many times [1-4]. The
study of the effect of satellite signal threat is an important content of the study on integrity of
satellite navigation system. After the signal threat of GPS PRN 19 satellite in 1993 [1], the
International Civil Aviation Organization (ICAO) used the second-order step threat model
to describe the threat characteristics of BPSK signal [5-7]. The second-order step threat
model of BPSK signal is also called ICAO threat model. Although the modeling of ICAO
threat model is derived from the approximation of GPS PRN 19 satellite signal threat
characteristics, it describes the general impact on signal characteristics when the general
digital and analog devices in the satellite signal generation unit are abnormal. Therefore, as
the basic model of BPSK signal integrity research, this model has extensive research
significance and application value.
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With the wide application of BOC modulation in GPS
modernization program, European Galileo system and Beidou system
in China [8-10], experts at home and abroad have made in-depth
research on parameter design of BOC signal and user reception
algorithm [10-15] but the research on the integrity of BOC signal
has just started [16, 17]. At present, the main research on the integrity of
BOC signal is that the BOC signal threat results in the receiver ranging
biases. Phelts et al. extended the ICAO threat model of BPSK signal to
the BOC signal and expanded the ranging of threat parameters. The
ranging biases of BOC threat signal to ideal infinite bandwidth receiver
in the form of early late code incoherent tracking were simulated and
analyzed [16]. Fontanella et al. extended the threat parameter ranging of
ICAO model to a greater extent to describe the threat model of BOC
signal, and finally simulated and analyzed the ranging biases of BOC
threat signal to the ideal low-pass filter receiver [17]. Xiao et al. compared
the differences of phase discriminator functions of several typical BOC
tracking modes and gave suggestions on the design of receiver front-end
filter bandwidth and correlator interval, but did not analyze the ranging
biases performance of BOC threat signals through non-ideal receiving
channels and different receiver algorithms [18, 19]. The influence of
waveform threat on ranging performance was analyzed by He et al. The
signal used was BPSK signal, which did not involve the analysis of IBOC
signal [20-23]. Gabriel Wong et al. introduced the threat of different
satellite signals and the ranging biases under different code intervals [24].
M. Jean Baptiste Pagot et al. established signal threat models for new
GNSS signals such as Galileo E1C, E5a, GPS L5, and compared the effect
of different front-end bandwidth on signal reception [3]. Therefore, the
current research on receiver ranging biases caused by BOC signal threat
does not take into account the non-ideal characteristics of the channel.

Channel is an important part of the signal link of navigation receiver.
Its non-ideal group delay characteristics can lead to threat of signal
correlation peak, which affects the receiver’s ranging performance [25].
Chen et al analyzed the influence of receiver group delay on QMBOC
signal correlation peak, but did not involve signal threat and final ranging
biases [26]. Li et al have done a lot of research on channel characteristics
of navigation signals, which can provide theoretical reference for channel
model in this paper [27-35]. In order to reduce the influence of group
delay on signal ranging performance in actual receiver channel design, it
is necessary to study the effect of channel characteristics on ranging
performance to guide receiver design.

This paper focuses on the influence analysis of receiver ranging
biases caused by BOC signal threat. This paper reviews ICAO threat
model and its extension on BOC signal, and establishes a theoretical
analysis model of BOC signal threat ranging biases considering
channel non-ideal characteristics. Considering the non-ideal
characteristics of channel group delay, the relationship between
the BOC(1,1) signal threat ranging biases and the design parameters
such as the receiver’s early late code interval is analyzed, and useful
conclusions for the design of BOC receiver are obtained.

2 Signal threat model

Starting from the actual satellite signal generation process, the
International Civil Aviation Organization (ICAO) uses a second-
order step threat model to describe the BPSK signal threat. The
traditional BPSK signal threat model can be extended to the BOC
signal threat. In Figure 1, satellite signal generation components
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include digital devices and analog devices in two categories [5,
36-38]. The second-order step threat model is divided into three
basic models based on the failure condition of each type of device:
digital threat (Threat Model A, TM A), analog threat (Threat Model
B, TM B), digital-analog threat (Threat Model C, TM C). Digital
threat model corresponds to some digital faults such as satellite
navigation data processing unit, analog threat model corresponds to
some analog processing unit faults in the satellite signal generation
process, and digital-analog threat model corresponds to the faults in
the whole satellite signal generation process [2, 8].

2.1 Digital threat model (TM A)

The digital threat signal is caused by faults of the digital
device (navigation data unit) in the satellite signal generation
unit, which shows that the falling edge of the pseudo code is
ahead of or behind the normal falling edge. The falling edge of
pseudo code is represented by A. When A > 0, the falling edge of
pseudo code is behind the normal falling edge; When A <0, the
falling edge of pseudo code is ahead of the normal falling edge.

2.2 Analog threat model (TM B)

Analog threat signal is caused by faults of analog devices in the
satellite signal generation unit, which exhibits a second-order
damped oscillation in amplitude. The analog threat signal can be
equivalent to the response of a normal pseudo code signal after
passing through a second-order filter, which is mathematically
described as the unit-step response:

0 t<0

e(t) = o N 1
®) 1—e“"<coswdt+—sinwdt> t>0 )
Wy

where ¢ is the decay frequency of the second-order damped
oscillation, the value ranging is 0.8Mneps/s <o < 8.8Mneps/s, wy
is the oscillation angular frequency of the second-order damped
oscillation: wg = 27 f 40
second-order damped
4MHz < f4 < 17MHz.

fa is the oscillation frequency of the

oscillation, the value ranging is

2.3 Digital-analog threat model (TM C)

Digital-analog threat signals is caused by faults of digital and
analog device in the satellite signal generation unit. The signal
amplitude exhibits a second-order damped oscillation, and the
pseudo code falling edge is ahead or behind the normal falling
edge. The ranging of each threat parameter is
—0.12chip < A<0.12chip, 0.8Mneps/s < o < 8.8Mneps/s, 7.3
MHz< f4<13MHz.

The top of the correlation peak between the receiver’s local
pseudo code signal and the digital-analog threat signal is flat and the
whole correlation peak is threated. Figure 2 Al, Bl show digital
threat signal and the correlation peak for the BOC(1,1) signal; Figure
2 A2, B2 show analog threat signal and the correlation peak for the
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FIGURE 1

Corresponding relationship between signal threat model and fault of satellite signal generator.

BOC(1,1) signal; Figure 2 A3, B3 show digital-analog threat signal
and the correlation peak for the BOC(1,1) signal:

3 Analysis model of ranging biases of
BOC signal threat

From the perspective of the complete processing flow from
generation to reception of BOC signal, BOC signal will go
the space
propagation, ground user reception and measurement. The

through process of satellite generation,
analysis of space propagation characteristics is relatively
complex, including the influence of troposphere, ionosphere,
multipath and interference, among which the troposphere
propagation characteristics are mainly represented by the
propagation delay independent of carrier frequency. If
various factors such as multipath and interference are
considered in the actual environment, the complete signal
flow of BOC signal will be very complex. In order to simplify
the analysis of the problem, this section temporarily does not
consider factors such as multipath and interference, but mainly
considers the influence of non-ideal channels such as signal
generation filter, ionospheric propagation characteristics and
receiver equivalent filter on BOC signal threat. Therefore, the
BOC signal processing flow is simplified as shown in Figure 3.

The threat of the BOC signal is mainly manifested in the threat of
the correlation peak function, which leads to the biases of the receiver
when tracking the BOC signal and measuring the pseudo range. The
factors that cause the threat of correlation peak function include:
threat of BOC signal, non-ideal characteristics of satellite signal
generation filter (including non-ideal amplitude frequency
response and non-ideal group delay), ionospheric propagation
characteristics and non-ideal characteristics of receiver equivalent
filter. In order to simplify the analysis, the non-ideal characteristics of
filter,
characteristics and receiver equivalent filter are collectively referred
to as channel non-ideal. It is worth pointing out that the threat of BOC

satellite signal  generation ionospheric  propagation

signal correlation peak leads to the biases of receiver measurement
(mean shift of measurement biases), which is independent of noise
[27, 28]. Therefore, the influence of thermal noise is not considered in
the analysis of ranging biases of BOC signal threat.

Frontiers in Physics

In this way, if the channel is not ideal, the equivalent analysis
model of ranging biases of BOC signal threat is shown in Figure 4.

The original BOC signal generated on the satellite is set as s (t),
the BOC threat signal is set as s (), the BOC signal after passing the
ideal low-pass filter and the channel non-ideal equivalent filter is
s (). The local signal sg (f) generated at the receiver is correlated
with the received BOC signal Spy(f) to obtain the correlation
function Rpy(7), and then the ranging biases of BOC signal
threat is obtained according to the correlation function and
tracking discrimination function analysis.

According to the conversion relationship between the time
domain cross correlation function and the frequency domain
cross power spectrum of the two signals, we can get:

IiLN 7)
- | S(OH(AEs (DS (Ple™d s o

- [ Gru(NHL(NHN (Pledf

Where, H ( f) is the frequency domain response function of the
ideal low-pass filter, Hy ( f) is frequency domain response function
of channel non-ideal equivalent filter, S( f) is the spectrum of the
BOC threat signal 5(t), S, (f) is the spectrum of the local signal
sr (1), Gram (f) is the cross power spectrum of the BOC threat signal
and the BOC ideal signal.

The definition of ideal low-pass filtering can be written as:

Hy ()2 A(f)e’ ) (3)

Where, B, is the one-sided cutoff bandwidth for ideal low-pass
filtering.

The definition of the channel non-ideal equivalent filter can be
written as:

Hy (f)2 A(f)e’* (/) (4)

Where, A(f) and ¢ (f) are the amplitude frequency response
and phase frequency response of channel non-ideal equivalent filter,
the group delay is defined as [9]:

B -5 200 ®
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FIGURE 2
Time domain waveform and correlation peak of BOC (1,1) signal threat
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FIGURE 3
Simplified process of BOC signal generation and reception.
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FIGURE 5
Correlation function by BOC (1,1) Bump-jump method under
ideal condition.

4 BOC(1,1) signal threat ranging biases
based on non-ideal channel group
delay

The equivalent analysis model in Figure 4 can be used to
analyze the BOC signal threat ranging biases based on the non-
ideal group delay characteristics. The non-ideal group delay
characteristics are the typical non-ideal channel effect [27, 28].
This section analyzes the influence of BOC signal threat under the
non-ideal group delay characteristics. Let A(f) =1, 74 (f) takes
different the
characteristics and ranging biases of BOC signal under the

functions to analyze correlation function

non-ideal group delay. Next, under the quadratic curve group
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delay characteristics, the influence of threated signals on ranging
biases is analyzed for BOC (1,1) signals.

Assuming that B, = 3MHz, the non-ideal filter is quadratic curve
group delay characteristic:

7(f) =KTe(f/B.) ©)

Where T is a chip width of the PN code of the BOC(1,1) signal,
the normalized coefficient is taken as 3.

BOC signal tracking adopts the structure of Bump-jump early late
code non-coherent tracking. In the Bump jump method, the correlation
function of energy can be obtained by computing the square sum
(VE? + P2) of the correlation output values of far instant and leading
paths. Based on this correlation function, the unambiguous BOC signal
can be captured. The output of the instant and leading correlation
function obtained by the Bump jump method are [9]:

1 (% / .
R, (&) = T_Pjtd_TpSf (t=7)r,(t - T)dt (7)
R _ Loy t- t—)dt (8)
VE(Ef)_T_Pjtd_TPSf( T)rye(t - 1)
ry(t—17)=c(t—1)sc;(t —7) = c(t —T)sc(t - T) 9)
R G Ve Gy
ryp(t—17) =c(t—T)scq(t—7)=c{t-7—- B sc|t—-T- B
(10)

Figure 5 shows the correlation by BOC(1,1) Bump-jump method
under ideal conditionR), (¢;) and Ry, (&) are the correlation functions
of the filtered received BOC signal and the local BOC signal respectively,
rp(t = 7) and ryg (t — 7) are the local BOC signals. s'f (t) is the received
BOC signal.

The ranging biases of BOC (1,1) signal under three threat
models of digital threat (TM A), analog threat (TM B) and
digital-analog threat (TM C) are analyzed.
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4.1 The digital threat model (TM A)
of A = 0.1chip

Under the digital threat model (TM A) of A =0.Ichip,
considering the quadratic curve group delay characteristics of
the non-ideal filter, the correlation peak result of the BOC signal
Bump-jump early late code non-coherent tracking is shown in
Figure 6. The comparison between the ranging biases results
under the group delay characteristics of the quadratic curve and
the ranging biases results under the ideal low-pass filter is shown
in Figure 7.
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4.2 The analog threat model (TM B) of
fq = 6BMHz, 0 = 3Mnepers/s

Under the analog threat model (TM B) of f;=6MHz,
0 = 3Mnepers/s, considering the quadratic curve group delay
characteristics of the non-ideal filter, the correlation peak result of
the BOC signal Bump-jump early late code non-coherent tracking is
shown in Figure 8. The comparison between the ranging biases results
under the group delay characteristics of the quadratic curve and the
ranging biases results under the ideal low-pass filter is shown in
Figure 9.
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4.3 The digital-analog threat model (TM C)
of fy = 6MHz, 0 = 3Mnepers/s, A = 0.1chip

Under the digital-analog threat model (TM C) of f; = 6MHz,
0 = 3Mnepers/s, A =0.1chip, considering the quadratic curve
group delay characteristics of the non-ideal filter, the correlation
peak result of the BOC signal Bump-jump early late code non-
coherent tracking is shown in Figure 10. The comparison between
the ranging biases results under the group delay characteristics of the
quadratic curve and the ranging biases results under the ideal low-
pass filter is shown in Figure 11.
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Based on the above results, the following conclusions can be
drawn: when the group delay characteristics of the channel are
not ideal, the correlation peak shape of BOC signal threat will be
further deteriorated under most of the early late code interval
parameters, which will greatly increase the code tracking biases
of BOC (1,1) signal. In addition, it is not difficult to find out
from the above data results that, from the perspective of
minimizing the ranging biases caused by signal threat, for
the design of non-coherent reception of BOC (1,1) signal
early late codes, if the early late code interval is selected
between 0.3 chip and 0.35 chip, the ranging biases of BOC
signal caused by the above three threat models under the ideal
low-pass filter and non-ideal quadratic group delay channel
characteristics are minimal or relatively small.

5 Conclusion

The non-ideal characteristics of channel group delay are not
considered in the analysis of BOC signal distortion ranging
deviation in the existing literature. This paper proposes an
equivalent analysis model which is based on the assumption
that the Bump-jump tracking method is used. And the range
deviation of BOC (1,1) signal distortion under the time delay of
the quadratic curve group is analyzed. The analysis results show
that, the correlation peak of the BOC signal received through
the non-ideal channel is deformed more than that of the BOC
signal received through the ideal channel, and the ranging biases
fluctuates significantly under different early late code intervals.
Therefore, the characteristics of the non-ideal channel will
worsen the ranging biases of the BOC signal threat in most
cases. For the receiver, the early late code interval that is closer
to the ranging biases of the ideal filter should be selected. It can
be seen from the analysis results of ranging biases under
multiple threated signals that in the sense of minimum
caused by BOC threat,
0.3 chip~0.35 chip is the recommended parameter for BOC
(1,1) incoherent reception of early late codes. The analysis

ranging  biases signal

model in this paper can also be used to analyze the ranging
biases of other higher-order BOC signals under different
channel non-ideal characteristics when they are threated.
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