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We determine a constitutive equation for developed three-dimensional granular
flows based on a series of discrete element method simulations. In order to capture
non-local phenomena, normal stress differences, and secondary flows, we extend a
previously proposed granular temperature-sensitive rheological model by
considering Rivlin-Ericksen tensors up to second order. Three model parameters
are calibratedwith the inertial number and a dimensionless granular temperature. We
validate our model by running finite difference method simulations of inclined chute
flows. The model successfully predicts the velocity and stress fields in this geometry,
including secondary vortical flows that previous first-order models could not predict
and slow creeping zones that local models miss. It simultaneously captures the non-
trivial variation among diagonal components of the stress tensor throughout the
domain.
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1 Introduction

Granular materials (sand, gravel, coal, salt, rice, wheat, pills, etc.) are essential to our lives
and used in diverse scientific fields and industries. Although the microscopic interactions
between grains are simple, the macroscopic mechanical properties of granular flows arising
from these simple interactions are surprisingly complex and still subject to debate.

One hypothetical way to write the constitutive equation for granular flows is to assume that
the deviatoric stress is codirectional to the strain rate tensor D:

σ � −PI + τ
2
_γ
D (1)

where σ is the stress tensor, P is the pressure, _γ is the shear rate, and τ is the shear stress. Let us
call this model the first-order model because this model ignores higher-order velocity gradient
terms which we will consider later in this article. Recent achievements in granular rheology have
used this first-order model and expressed τ with kinematic variables. One of them is the μ(I)
rheology [1–3], which has accurately described homogeneous flows (simple shear flows). In this
model, the shear stress is obtained from a one-to-one relation between two local dimensionless
variables: the shear-to-normal stress ratio μ ≡ τ/P and the inertial number I ≡ _γ/

������
P/ρsd

2
√

for 3D
grains where _γ is the shear strain rate, ρs is the solid grain density, and d is the mean diameter of
the grains. The μ(I) rheology claims that the shear rate vanishes if μ is smaller than a bulk
friction coefficient μs, and I monotonically increases as μ increases for μ > μs. However, in the
dense regime of inhomogeneous flows, many researchers have observed “non-local”
phenomena where this one-to-one relation between local μ and I breaks down. For
example, creeping flows characterized by exponentially-decaying velocity profiles have been
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observed in regions with μ < μs [1, 4–8]. The left contour plot in
Figure 1 shows an example of the creeping flows: The downstream
velocity in a rough-walled inclined chute flow decays exponentially
with depth, disobeying the μ(I) rheology.

To describe this non-locality, several first-order models have
introduced a diffusing scalar field that fluidizes (softens) the
material. The definition of the diffusing field depends on the
model. Some models have utilized the population of shear
transformation zones [9–11]. The partial fluidization theory
proposed by Aranson and Tsimring [12, 13]; [14] uses the average
ratio of “solid contacts” as the diffusing scalar field. Inspired by a
plastic flow model for soft glassy materials [15, 16], Kamrin and
colleagues [17–19] have proposed the non-local granular fluidity
(NGF) model that accurately describes many different
inhomogeneous flows. In the NGF model, the diffusing parameter
or “fluidity” is defined as the shear rate-to-μ ratio (g ≡ _γ/μ) and
follows an empirical diffusion-reaction equation. Later, Zhang and
Kamrin [20] found that the fluidity divided by the velocity fluctuations
δv can be approximated as a function of the packing fraction ϕ alone:
gd/δv ≈ F(ϕ). This relation is also in line with the kinetic theory of
granular flows [21–24], which mathematically derives the constitutive
equations using the Chapman-Enskog method. The pressure and the
shear stress are predicted as P = ρsF1(ϕ)T and τ � ρsF2(ϕ)

��
T

√
_γd

respectively where T ≡ δv2/D is “granular temperature” for the space
dimension D, and F1(ϕ) and F2(ϕ) are dimensionless functions
calculated from the radial distribution function. The shear-to-
normal stress ratio can be written as μ � [F2(ϕ)/F1(ϕ)] _γd/

��
T

√
which is similar to Zhang and Kamrin’s fluidity expression.

Based on the fact that the fluidity is related to the velocity
fluctuations, Kim and Kamrin [25] have recently proposed a first-
order non-local model removing rheological dependence on ϕ.
Using discrete element method (DEM) simulations in steady-
state planar shear flows, a simpler constitutive relation between
μ, I, and a dimensionless granular temperature Θ ≡ ρsT/P has been
identified:

μ � Θ−pf I( ) (2)

where the exponent p is approximately 1/6 for spheres in 3D and f(I) is
a monotonically increasing function of I and its details depends on the
material properties such as surface friction. This μ(I, Θ) relation has
successfully explained the non-locality of granular flows, bridging the
softening effect of granular temperature in the kinetic theory and the
fluidity field in the NGF model.

However, the first-order model lacks the ability to explain a group
of phenomena in granular flows. One example is a bulging surface of a
channel flow. When a granular material is released steadily down an
inclined plane with rough side walls, the surface of the flowing region
becomes convex upward [26–29]. Another phenomenon that the first-
order model cannot predict is the secondary flow. In the cylindrical
Couette geometry under gravity, non-zero velocities in the radial and
the gravity directions (transverse directions) have been observed and
named “secondary flow” in the sense that this flow is relatively slow
and perpendicular to the primary flow direction [30–33]. The right
streamline plot in Figure 1 illustrates an example of the secondary
flow: an inclined chute flow has non-zero transverse velocities
perpendicular to the downstream direction. The anomalous shear
stress observed in the plane of the secondary flows [30, 34] also cannot
be accounted for in the first-order model. These phenomena occur in
the presence of broken codirectionality, where the deviatoric stress and
strain rate tensors are not proportional. Many other studies have also
found that granular flows exhibit broken codirectionality in the form
on non-zero normal stress differences [35–45] or broken coaxiality
where the principal axes of the stress and strain rate tensors are not
aligned [45–47]. Therefore, the constitutive equation needs to be
corrected beyond the codirectionality hypothesis (Eq. 1) to achieve
higher accuracy.

In the present study, we propose a non-local second-order fluid
model to cover both non-locality and broken codirectionality of three-
dimensional granular flows. As previous researchers have suggested
[29, 45, 48], we assume steadily flowing granular fluids are
incompressible non-Newtonian fluids and adopt the tensor form of
the second-order fluid, also known as the Rivlin-Ericksen fluid of
second grade, as the constitutive equation. In this second-order model,
three functions should be calibrated. The major difference from the

FIGURE 1
Snapshot fromDEM simulation of granular flow in a chutewith an inclination angle of tan−1(0.50). Contour plot in (A) shows downstream velocity vxwhich
decreases exponentially with depth (creeping flow). The unit is

���
Gd

√
where G is gravity and d is the grain diameter. Streamlines in (B) illustrate transverse

velocity (vy, vz) which is small but not zero (secondary flow). Our goal is to build a second-order non-local model that can explain both flows. Details of the
simulation can be found in Section 3.1.
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previous second-order models is that we take into account the
dimensionless granular temperature Θ as well as I in the
calibration because we know that the first-order model’s μ depends
both on I and Θ. For the calibration, planar shear flows of frictional
spheres are simulated using the discrete element method (DEM). We
separately measure the three normal stresses, which are required to
calculate the model parameters for the quadratic terms. It also allows
us to examine the first and second normal stress differences.

Furthermore, we validate our non-local second-order model in a
more complex geometry. Using the functions calibrated from the
planar shear tests, we run the finite difference method (FDM)
simulations of rough-walled inclined chute flow (Figure 1) with
four different slope angles. We compare the FDM predictions to
the DEM data to demonstrate that our second-order model can
correctly predict the secondary flows and the stress fields as well as
the primary creeping flows.

2 Model calibration: Planar shear flows

2.1 Second-order model

Following previous studies [29, 45, 48], we assume that a flowing
granular material behaves like a second-order fluid where the stress
tensor is of the form:

σ � a0A0 + a1A1 + a2A
2
1 + a3A2 (3)

where An are called the nth order Rivlin-Ericksen tensors and an are
scalar parameters. The Rivlin-Ericksen tensors are given by the
recurrence relation

A0 � I

An � DAn−1
Dt

+ An−1L + LTAn−1 for n � 1, 2, . . .
(4)

where L = ∇v is the velocity gradient tensor. In steady state, this
relation yields A1 = 2D and A2 = 4D2 + 2(DW −WD) where D = (L +
LT)/2 is the strain rate tensor and W = (L − LT)/2 is the spin tensor.
Therefore, we can rewrite Eq. 3 as

σ � P −I + μ1
2
_γ

D − 1
3
tr D( )I( ) − μ2

2
_γ

( )2

D2 − 1
3
tr D2( )I( )[

−μ3
2
_γ

( )2

DW −WD( )] (5)

where the scalar parameters μ1, μ2, and μ3 play the same role as those
in Srivastava et al. [45]. Since all but the identity tensor in the above
expression are deviatoric, the pressure P represents the hydrostatic
pressure P ≡ − tr σ/3. Our definition of the shear rate _γ ≡

�������
2D′: D′

√
is

double the _γ used in [45]. The tensor inner product is defined by M:
N = ∑i,jMijNij for arbitrary tensors M and N. In our sign convention,
compressive normal stresses are negative.

In Srivastava et al. [45], μ1, μ2, and μ3 were assumed to depend
only on I. However, the previous non-local first-order model
by Kim and Kamrin [25], which is equivalent to the case of μ2 =
μ3 = 0, suggests that μ1 depends on both I and Θ. It suggests
that μ2 and μ3 may also be affected by Θ in inhomogeneous
flows. In this work, we run various planar shear flows using
DEM simulations to find the expressions for μ1, μ2, and μ3 in
terms of I and Θ. Using our calibrated parameters, we check the

predictive capability of our model in chute flows with different
inclination angles.

2.2 Methods

2.2.1 DEM simulation settings for planar shear flows
In order to identify the parameters in the second-order model, we

use LAMMPS (Large-scale Atomic/Molecular Massively Parallel
Simulator), which implements the discrete element method (DEM),
to simulate many different homogeneous and inhomogeneous planar
shear flows of 3D frictional spheres. The grain diameter di is set to be
uniformly distributed from 0.8d to 1.2d to prevent crystallization.
When we calculate I, the local average diameter is used. The mass of
the grains is determined as mi � 4

3 π(di/2)3ρs, which distributes
around m ≡ 4

3 π(d/2)3ρs. For the contact forces, we use the
standard spring-dashpot model introduced by Cundall and Strack
[49] with Coulomb friction. This model has been used in many
previous studies, such as to study simple shear flows in 2D [2] and
various inhomogeneous flows in 2D [5, 17, 50, 51] and 3D [20, 25]. In
this model, the normal force is given by Fn = knδn − γnvn (repulsive)
where kn is the normal elastic constant, δn is the normal component of
the contact displacement, γn is the damping coefficient, and vn is the
normal component of the relative velocity. We use kn = 2.63 N/m ×
105 N/m, d = 0.0008 m, and ρs = 2500 kg/m3 which can be considered
when reading the pressure data in Figure 13. The tangential force is
given by Ft = −ktδt for |ktδt| < μpFn and Ft = −μpFn × (δt/|δt|) for |ktδt| >
μpFn where μp = 0.4 is the surface friction coefficient and δt is the
tangential component of the contact displacement obtained by
integrating tangential relative velocity during the collision. The
minus sign indicates the tangential force is pointing in the
direction of decreasing δt. The tangential elastic constant kt is set
to be 2/7 of kn such that the frequencies of normal and tangential
contact oscillations are similar [43]. To simulate hard particles, the
stiffness number kn/Pd is kept larger than 10

5. The damping coefficient
for the restitution coefficient ϵ and the effective mass of collision meff,
which is approximately m/2, is calculated as γn ��������������������
4meffkn/(1 + (π/ ln ϵ)2)

√
[2, 51]. We set ϵ = 0.24 to match with

Kim and Kamrin [25]. The choice of kt and ϵ is known to have little
impact on the flow behavior in the case of dense flows of hard particles,
as reported in [2, 37, 52]. The simulation time step is set to be 6% of the
binary collision time τc � π

���������������
m
2kn

(1 + (ln ϵ/π)2)
√

which is half the
period of an underdamped oscillator made of the two identical grains.

As in Kim and Kamrin [25], we test simple shear flows
(Figure 2A), shear flows under gravity (Figure 2B), flows in vertical
and tilted chutes (θ = 90° and 60° in Figure 2C), and “concave flows”
(Figure 2D). The concave flow is named so because the plot of the
shear rate against height becomes concave upward due to the outward
body force �Fz � (miG/d)(z − z0)ẑ for the midpoint of the system z0.
G is a constant. The horizontal length and depth of the system are Lx =
20d and Ly = 16d respectively and the side boundaries are set to be
periodic. Following previous studies [2, 5, 20, 25, 50, 51], we move the
top wall in the z-direction to maintain the top-wall pressure Pwall. The
horizontal wall velocity Vwall is set to be constant. More detailed DEM
simulation conditions are in the Supplementary Material.

The continuum variables at each height are obtained by coarse
graining, in the same way as [25]. The instantaneous packing fraction
at time t can be calculated as
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ϕ zk, t( ) � ∑iAki

A
(6)

where A is the area of the horizontal plane and Aki is the cross-
sectional area between the ith particle and the plane of z = zk. We kept
the interval of zk less than 0.5d. The macroscopic velocity field can be
calculated as

�v zk, t( ) � ∑iAki
�vi t( )∑iAki

(7)

where �vi is the velocity of the ith particle. We define the instantaneous
granular temperature tensor as

T zk, t( ) � ∑iAki δ �vi t( ) ⊗ δ �vi t( )[ ]∑iAki
(8)

where δ �vi(t) � �vi(t) − �v(zk, t) is the instantaneous velocity fluctuation
of the ith particle. The instantaneous stress is

σ zk, t( ) � σK zk, t( ) + ∑iAkiσ i t( )
A

(9)

where σi is the contact stress of the ith particle, and σK = −ρsϕ T is the
kinetic stress [43]. The specific formula for σi is

σ i � 1
Vi

∑
j≠i

1
2

�rij ⊗ �fij (10)

where Vi is the volume of the ith particle, �rij is the displacement from
the center of the ith particle to the center of the jth particle, and �fij is the
interaction force exerted on the ith particle by the jth particle. For one
particle, the stress tensor may not be symmetric. However, if a sufficient
number of particles are averaged, the coarse-grained stress tensor
becomes symmetric as shown by [53]. We choose (Tyy + Tzz)/2 �
(δv2y + δv2z)/2 as the granular temperature T because for some flows, Txx
is measured quite differently from the other diagonal elements. The
ratios between diagonal elements of the granular temperature in the
inclined chute flow can be found in the Supplementary Material. These
coarse-grained fields are averaged over time once the flow reaches a

steady state. We cut off the data where total local shear is less than 1 or
the distance from the walls is less than 3d to include enough
configurations and exclude the wall effect.

2.2.2 Calculation of model parameters in planar
shear flows

The second-order model parameters μ1, μ2, and μ3 can be
calculated from the measured stress tensor and velocity gradient
tensor in the DEM planar shear flows (Figure 2). By symmetry,
both homogeneous and inhomogeneous flows have negligible mean
vy and vz and the mean vx changes only in the z-direction. Therefore,
the velocity gradient tensor has only one non-zero component: Lxz �
vx,z ≡ zvx

zz which can vary depending on the height. With its magnitude
_γ, the inertial number can be obtained as I � _γ/

������
P/ρsd

2
√

. By definition,
the symmetric strain rate tensor D and the spin tensor W are

D �
0 0 vx,z/2
0 0 0

vx,z/2 0 0

⎛⎜⎝ ⎞⎟⎠ and W �
0 0 vx,z/2
0 0 0

−vx,z/2 0 0

⎛⎜⎝ ⎞⎟⎠ (11)

respectively. Using

D2 − tr D2( )
3

I � vx,z2

12

1 0 0
0 −2 0
0 0 1

⎛⎜⎝ ⎞⎟⎠ (12)

and

DW −WD � vx,z2

2

−1 0 0
0 0 0
0 0 1

⎛⎜⎝ ⎞⎟⎠, (13)

we can express the stress tensor (Eq. 5) as

σ � P

− 1 + 1
3
μ2 − 2μ3( ) 0 μ1

vx,z
_γ

0 − 1 − 2
3
μ2( ) 0

μ1
vx,z
_γ

0 − 1 + 1
3
μ2 + 2μ3( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (14)

FIGURE 2
Schematic diagrams of planar shear flows used formodel calibration in Section 2: (A) simple shear, (B) shear with gravity, (C) chute flows (θ= 60° and 90°),
and (D) concave flows. Red rectangles represent wall particles whose velocities are set to form rigid walls. Dashed lines indicate velocity profiles. x is the flow
direction, y is the vorticity direction, and z is the velocity gradient direction.
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Because vx,z/ _γ � 1 for vx,z > 0 and vx,z/ _γ � −1 for vx,z < 0, the sign of σxz
is determined by the sign of vx,z while the magnitude of σxz is μ1P in
either case. We can see that the second-order model parameters μ2 and
μ3 introduce differences between the normal stress components.
Inversely, the three parameters can be extracted from the stress
measurement using the fact that the basis tensors I, (D − 1

3 tr(D)I),
(D2 − 1

3 tr(D2)I), and (DW −WD) are orthogonal to each other
under the tensor inner product:

μ1 �
1
_γP

σ: D � σxz
P

vx,z
_γ

� |σxz|
P

μ2 �
6

_γ2P
σ: D2 − trD2

3
I( ) � −σxx + σzz − 2σyy

2P

μ3 �
1

2 _γ2P
σ: DW −WD( ) � σxx − σzz

4P

(15)

with the assumption that the flow follows the second-order fluid
equation (Eq. 5).

2.3 Model calibration results from DEM planar
shear flows

2.3.1 Normal stress ratio measurement
The ratios between the coarse-grained normal stresses from the

planar shear tests are plotted in Figure 3. Figure 3A shows that the
normal stress in the flow direction σxx is nearly the same as the normal
stress in the velocity gradient direction σzz for the low I regime (I <
0.1). As I increases beyond 0.1, the magnitude of σxx becomes larger
than the magnitude of σzz and their ratio σxx/σzz keeps increasing. This
behavior is similar to previous findings in 2D and 3D granular systems
[35, 36, 38–40, 43, 45]. On the other hand, the normal stress in the
vorticity direction σyy is spread between 85% and 95% of σzz for I < 0.1.
As I increases beyond 0.1, the ratio becomes even smaller as shown in
Figure 3B. This is in line with previous observations [37, 43, 45].

2.3.2 μ1 measurement
In the planar shear tests with one velocity component, the

coefficient of the first-order derivative in the second-order model

μ1 can be calculated as |σxz|/P (Eq. 15). Previously, Kim and Kamrin
[25] have examined μ = |σxz/σzz| assuming P = −σzz and identified that
μΘp data collapse into a master curve f(I) when p ≈ 1/6. The second-
order model, however, does not assume the normal stress isotropy and
the DEM stress data actually exhibits significant anisotropy. Therefore,
we measure μ1 = |σxz|/Pwith P = −(σxx + σyy + σzz)/3 and recalibrate the
master curve that μ1Θ1/6 data collapse into.

The scattered μ1 data in the μ1 vs. I plot in Figure 4A can be
gathered to a single line by multiplying by Θp1 where p1 is roughly 1/6
as shown in Figure 4B, which is almost the same as the previous μ
behavior in [25]:

μ1Θp1 � f1 I( ) (16)
where f1(I) can be fitted by a form Iα1 where α1 gradually increases
from 0.25 to 0.5 as I increases from 10–4 to 1. For a given I, f1(I) would
increase with the surface friction μp as previous studies on
homogeneous [45] and inhomogeneous [25] flows have suggested.
For the finite difference method (FDM) simulations in Section 3, we
use p1 = 1/6 and f1(I) = 0.141I0.21 + 0.132I0.4 + 0.29I0.8 − 0.050I1.6 which
is arbitrarily chosen to depict the collapsed data of the μp = 0.4 case
shown in Figure 4B.

2.3.3 μ2 measurement
The coefficient of the D2 − tr(D2)

3 I term, μ2, can be calculated as
−((σxx + σzz)/2 − σyy)/P according to Eq. 15. It represents a measure of
the difference between the normal stress in the vorticity direction and
the mean of the other normal stresses. Simply put, the larger the μ2, the
smaller |σyy| is compared to the other normal stresses; Figure 5A shows
that μ2 monotonically increases as I increases. This monotonic
increase in the μ2 vs. I graph has also been observed by [45]. As I
decreases below 10–2, similar to μ1, the data points of μ2 in
inhomogeneous flows become more scattered. The random error in
μ2 measurement seems much larger than μ1 possibly because μ2 is
measured from the small difference between (σxx + σzz)/2 and σyy
accumulating the errors of the three stress elements. Although the μ2
data are not as clean as μ1, we can still see that μ2 exhibits Θ

dependence similar to μ1 where higher Θ lowers μ2 for a given I.
This may imply that μ2 can also be scaled by a power function ofΘ like

FIGURE 3
Normal stress ratios in planar shear tests: (A) σxx/σzz is near 1 for I < 0.1 and increases rapidly as I increases for I > 0.1. (B) σyy/σzz is spread between 0.85 and
0.95 for I < 0.1 and becomes even smaller as I increases for I > 0.1.
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FIGURE 4
(A) Shear stress to pressure ratio μ1 = |σxz|/P vs. inertial number I. Scattered data indicate μ1 is not a function of I alone. (B) Rescaling μ1 by the
dimensionless temperature to the power of 1/6 makes scattered points collapse into a master curve: μ1Θ1/6 = f1(I). Dashed trend line is f1(I) used for the FDM
simulations in Section 3.

FIGURE 5
(A) μ2 vs. I in DEM simulations of planar shear flows. Scattered data indicate μ2 is not a function of I alone. (B) Rescaling μ2 by Θp2 seems to collapse data
into a master curve when p2 ≈ 1/6: μ2Θ1/6 = f2(I). Dashed trend line is f2(I) used for the FDM simulations in Section 3. (C) Using multivariate linear regression for
five selected panels of I, the exponent of μ2 is measured as 0.154 ± 0.014 (the slopemagnitude of dashed lines) for 3D spheres with μp = 0.4. Since this error is
from the selected data set, the actual error could be larger.

Frontiers in Physics frontiersin.org06

Kim and Kamrin 10.3389/fphy.2023.1092233

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1092233


μ1. Indeed, multiplying μ2 byΘp2 seems to cancel the non-local spread
and collapse the data more onto a single curve when p2 ≈ 1/6 as shown
in Figure 5B:

μ2Θp2 � f2 I( ) (17)
where f2(I) can be fitted by Iα2 where α2 gradually increases from 0.3 to
0.7 as I increases from 10–3 to 1. For a fixed I, f2(I) would increase with
μp; [45] has similarly shown for homogeneous flows that μ2 increases
with μp. For the FDM simulations in Section 3, we use p2 = 1/6 and
f2(I) = 0.093I0.29 + 0.195I1.2 − 0.035I2 (dashed line in Figure 5B) which
is arbitrarily chosen to represent the collapsed data of the μp = 0.4 case.

As in [25], we plot μ2 vs. Θ at many fixed choices of I to see the
functional dependence more clearly. We choose five panels of data in
0.9I* < I < 1.1I* for I* = {3 × 10–4, 6 × 10–4, 1.2 × 10–3, 2.4 × 10–3, 4.8 ×
10–3}. The dashed lines in Figure 5C illustrate the best-fit lines of a
multivariate linear regression whose slope is measured as −0.154 ±
0.014 which equals −p2. The actual error could be larger than this
standard error measured only from the chosen data. Since p2 seems
not so different from 1/6 which is the exponent of μ1 and the data
collapse is strong with 1/6 in Figure 5B, we assume both μ1 and μ2 scale
with the same 1/6 power ofΘ for the continuum simulations in Section
3. It remains for further research to identify the exponents and the
master curves more accurately.

2.3.4 μ3 measurement
The coefficient of the DW − WD term, μ3, can be calculated as

(σxx − σzz)/(4P) according to Eq. 15. It represents a measure of the
difference between the normal stresses in the flow direction and the
velocity gradient direction; Figure 6A shows that μ3 is near or slightly
above zero for I < 0.1. The only exception is the data from the chute
flow geometries, which go up to 0.02. This behavior is significantly
different from the non-local effect of granular temperature observed in
Figure 4A because the data from the other inhomogeneous flows (the
shear with gravity and the concave flows) follow the same curve as the
homogeneous flow data, which means flows with different Θ can have
the same μ3 for a given I.Θ is not enough to explain this deviation and
there must be other factors that affect the μ3 measurement in the chute

flows. We discuss another possible μ3 calibration to resolve this issue
in the next section. Here, we choose to exclude the problematic chute
flow data in calibrating μ3. Figure 6B shows that, as I increases, μ3
becomes negative and decreases almost linearly:

μ3 � f3 I( ) (18)
where f3(I) ≈ − 0.045I (dashed line) for μp = 0.4. For a fixed I, f3(I)
would decrease (increase in magnitude) with μp as [45] has shown for
homogeneous flows.

2.3.5 Alternative μ3 calibration using temperature
anisotropy

The chute flows’ peculiar μ3 behavior in Figure 6A may be
attributed to the anisotropy of the granular temperature. This
possibility suggests an alternative way to calibrate μ3 which could
be implemented in future work. Let us denote the dimensionless
granular temperature tensor as

Θij � ρsTij

P
. (19)

where Tij is the (i, j)th element of the granular temperature tensor
introduced in Eq. 8. The difference between normal elements in the
flow direction and the vorticity direction, Θxx − Θyy, behaves similarly
to μ3 in that the chute flow data diverge from the other data as I
decreases as shown in Figure 7A. The anisotropy of the granular
temperature tensor may cause the peculiar behavior of μ3, or there is
another unknownmacroscopic variable that affects bothΘxx −Θyy and
μ3 in a similar pattern. In any case, we can calibrate μ3 using this
correlation. For example, adding an arbitrary function
0.4(Θxx − Θyy)1/6 to −μ3 seems to collapse the data more:

−μ3 + 0.4 Θxx − Θyy( )1/6 ≈ f3A I( ) (20)
as shown in Figure 7B. This collapse only shows the correlation
between μ3 and Θxx − Θyy in our DEM data. The actual (more
accurate) expression for μ3 may differ from Eq. 20. More diverse
Θxx − Θyy vs. I curves are needed to clearly verify the data collapse as
our current flow geometries have generated only two different

FIGURE 6
(A) μ3 = (σxx − σzz)/(4P) vs. I plot using a logarithmic scale on the I-axis. μ3 is near zero for I < 0.1 except for chute flow data which go up to 0.02. (B) As I
increases, μ3 becomes negative and decreases almost linearly. Dashed trend lines in both plots indicate f3(I) = −0.045I.
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FIGURE 7
(A)Difference between two diagonal elements of dimensionless granular temperature tensor (Θxx −Θyy). Chute flow data diverge from the other data as I
decreases, which is similar to the μ3 behavior in Figure 6A. (B) Adding 0.4(Θxx − Θyy)1/6 to −μ3 may be an alternative way to calibrate μ3 because it seems to
collapse data into a line.

FIGURE 8
Variation of the first (N1) and second (N2) normal stress differences divided by pressure: The first row is N1/P = (σxx − σzz)/P plotted against (A) I and (B)
|σxz/σzz|.N1/P is close to zero for I < 10–1 and grows negative as I increases above 10–1. The second row isN2/P= (σzz − σyy)/P plotted against (C) I and (D) |σxz/σzz|.
N2 is always negative for a non-zero I

Frontiers in Physics frontiersin.org08

Kim and Kamrin 10.3389/fphy.2023.1092233

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1092233


branches as can be seen in Figure 7A. Also, it is not obvious how to
define Θxx and Θyy in a general flow. Therefore, we leave this problem
for future research and choose to use the simpler μ3 expression, Eq. 18,
for the continuum simulations in Section 3.

2.3.6 Normal stress differences
In this section, we examine the first and second normal stress

differences as they are commonly measured quantities to represent the
normal stress anisotropy of a material, even though we do not utilize
them explicitly in our continuum model. The first normal stress
difference is defined as N1 = σxx − σzz which is the same as 4μ3P
(Eq. 15). Figure 8A shows that N1/P is almost zero for I < 10–1 and
grows negative as I increases above 10–1. It means that, as I increases,
the magnitude of stress in the flow direction |σxx| becomes larger than
that in the gradient direction |σzz|. This is consistent with previous
observations in 2D and 3D granular systems [35, 36, 38–40, 43, 45].
The peculiar chute data do not collapse into a single line even if the
horizontal axis is changed to |σxz/σzz| as can be seen in Figure 8B.

On the other hand, the second normal stress difference N2 = σzz −
σyy represents normal stress anisotropy in the plane formed by the
velocity gradient and the vorticity directions.N2 can be written as −(μ2
+ 2μ3)P (Eq. 15). Figure 8C displays thatN2/P behaves like μ1 and μ2 in
that the inhomogeneous flow data are scattered and the simple shear
data do not converge to zero in the quasi-static regime. However, the
chute flow data are still a bit out of the trend. This peculiarity is more
noticeable when the horizontal axis is |σxz/σzz| as shown in Figure 8D.
All the other N2/P data seem to form a single line while the chute data
with |σxz/σzz| < 0.4 have lower N2/P values. Another important feature
of Figure 8C is that N2 is always negative for a non-zero I, which is in
line with previous observations [37, 43, 45]. It has been known that a

negativeN2 makes the free surface convex up in a channel flow with no
surface tension [29, 54–57]. This convex surface is also observed in our
inclined chute flow simulations in Section 3.

If we look closely at Figures 8B, D where the horizontal axes are
|σxz/σzz|, the chute flow data go higher than the other data in Figure 8B
and lower in Figure 8D. Because the peculiar chute deviations have
opposite signs inN1 andN2, we are intrigued to observe their sumN1 +
N2. This variable is actually another normal stress difference σxx − σyy.
Interestingly, (N1 +N2)/P exhibits a collapsed line when the horizontal
axis is |σxz/σzz| canceling the above deviations as displayed in
Figure 9B. Meanwhile; Figure 9A demonstrates that (N1 + N2)/P
vs. I plot does not form a collapsed line and its pattern is similar to
vertically flipped μ1 vs. I plot (Figure 4A). Therefore, (N1 + N2)/Pmay
depend only on |σxz/σzz| or μ1.

If (N1 + N2)/P is indeed a function of |σxz/σzz| or μ1, we need one
more equation to represent N1 and N2 separately. (N1 − N2)/P may
provide that equation. However, Figures 9C, D show that (N1 − N2)/P
plots whose horizontal axis is I or |σxz/σzz| do not have a well-collected
collapse in contrast to the collapse seen in Figure 9B. (N1 − N2)/P is
almost a constant between 0.1 and 0.15 except for the chute data which
go up to 0.2. It seems as if the peculiarity of the chute data is canceled
in the (N1 +N2)/P plot and pushed into the (N1 −N2)/P plot to become
more conspicuous. Although (N1 − N2)/P cannot be written as a
function of a single dimensionless variable, we can still utilize Θxx −
Θyy in Figure 7A. For example, Figure 9E demonstrates that
subtracting 1.6(Θxx − Θyy)1/6 from (N1 − N2)/P reduces the chute
data peculiarity and collapses the data into a curve that depends
only on I.

Using (N1 + N2)/P and (N1 − N2)/P data collapses, we may solve
for μ2 and μ3 in terms of I, Θ and Θxx − Θyy. However, as mentioned

FIGURE 9
Sum and difference of the first (N1) and second (N2) normal stress differences divided by pressure: (N1 + N2)/P = (σxx − σyy)/P exhibits non-locality when
plotted against I (A), but it forms a collapsed line when plotted against |σxz/σzz| (B). Plotting (N1 − N2)/P = (σxx + σyy −2σzz)/P against (C) I or (D) |σxz/σzz| does not
form a data collapse. (E) Subtracting an arbitrary function 1.6(Θxx − Θyy )1/6 from (N1 − N2)/P seems to collapse the data into a line that depends only on I.
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above, Θxx − Θyy in a more complex flow geometry is not simple to
define. Also, the data collapse in 9E is not yet clear because it is
achieved only for two big branches of (N1 − N2)/P while adding an
arbitrary function with two fitting parameters. Thus, further research
is needed to build a more general rheological model that incorporates
the temperature anisotropy and its impact on (N1 − N2)/P.

3 Model validation: Inclined chute flows

In this section, we show how our second-order non-local model
can be applied to a more complex flow geometry with less symmetry.
For that, we use data from DEM simulations of rough-walled inclined
chute flows (Figure 10A) gathered in [25]. Unlike the planar shear
flows used in calibration where the time-averaged macroscopic
quantities depend only on the height (z), in this inclined chute
geometry, the mean fields depend on two spatial coordinates (y
and z). Moreover, the mean velocity fields have three non-zero
components forming a secondary flow. The expression for stress
becomes more complicated than Eq. 14 because the velocity
gradient tensor now has six non-zero terms (the derivatives with
respect to the downstream coordinate (x) are still negligible due to
symmetry). We demonstrate that our model calibrated from the
simple tests can be applied to this complex case. We run finite
difference method (FDM) simulations of the full partial differential

equation (PDE) system of the model, including Eq. 5 and continuum
momentum balance to compare with DEM results. Unlike [25], the
current model is able to describe the transverse secondary flow which
is perpendicular to the downstream direction and could not be
predicted by the first-order model.

3.1 DEM simulation settings for inclined chute
flows

Using the same granular material used in the planar shear tests, we
run the inclined chute flow simulations for four inclination angles: θ =
tan−1(0.47), tan−1(0.50), tan−1(0.55), and tan−1(0.60). Figure 10A shows
a snapshot of the θ = tan−1(0.60) case. The size of the system is Lx =
120d, Ly = 40d. The simulation domain (green lines) is periodic in the x
and y-directions. A total of 131,566 particles are simulated. For a
rough frictional bottom, the particles whose center height is lower than
z = 3d (colored red in Figure 10A) are frozen; their translational and
rotational velocities are fixed to zero. Except for these fixed particles,
there are 115,619 mobile particles (colored blue in Figure 10A).
Gravity is applied differently in the middle zone (−10d < y < 10d)
and the outer zone (y < − 10d or y > 10d). In the middle zone, gravity is
tilted in the x-direction ( �G � G sin θx̂ − G cos θẑ) and, in the outer
zone, gravity is tilted in the −x-direction ( �G � −G sin θx̂ − G cos θẑ). If
we denote the time-averaged velocity field as �v � (vx, vy, vz), this

FIGURE 10
(A) DEM simulation of inclined chute flow with θ = tan−1(0.60). Green lines are boundaries of the DEM simulation domain which is periodic in x and y
directions. vx is positive in the middle zone (−10d < y <10d) where gravity is �G � G sin θx̂ + G cos θẑ and negative in the rest where gravity is
�G � −G sin θx̂ +G cos θẑ. Red particles are fixed. (B) Inclined chute flows with different inclination angles viewed from the positive x-axis. Only particles in
−10d < y < 10d are shown. Dashed line indicates the maximum height of the surface for tanθ = 0.60. From the gaps between the dashed line and the
surfaces, we can see that the volume of the material increases as the inclination angle increases and the material flows faster. The surface becomes convex
due to normal stress anisotropy.
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setting naturally sets vx and vy to be zero at the effective side
boundaries (y = −10d and 10d) but without unwanted wall effects.
vz should be continuous across the side boundaries but does not need
to be zero. More detailed simulation conditions are in Supplementary
Material.

At steady state, we measure the continuum fields �v, T, σ, ϕ, and �d
(average particle diameter) using Eqs 6–9 at 97 × 97 grid points (yk =
[−12, − 11.75, . . . , 11.75, 12]d and zk = [3, 3.25, . . . , 26.75, 27]d). The
weight of averaging here is chosen to be the overlap length (not area)
between the line of (yk, zk) and each particle. �d is obtained in the same
way as �v. All the continuum variables at each (yk, zk) are then averaged
over time.

Figure 10B illustrates snapshots of the simulations with different
inclination angles viewed from the positive x-axis. It shows that the
maximum height of the material increases as the inclination angle
increases. This volume increase can be explained by the ϕ(μ) relation
found in [25], which claims that the volume density decreases as μ
increases at steady state. As discussed previously, it is also observed
that the shape of the top surface is convex such that the grains in the
middle of the surface keep falling to the side boundaries where the
surface is lower. This convex surface is formed possibly because the
second normal stress difference N2 is negative.

3.2 Continuum simulation methods

In this section, stress and velocity fields in inclined chute flows are
predicted by the second-order non-local model using an explicit FDM
scheme. We compute the stress field σ using Eq. 5 combined with Eqs.
16-18.

To predict the flow, we numerically solve the Cauchy momentum
equation given by

ρ
zv
zt

+ ρ v · ∇( )v � ∇ · σ + ρG (21)

where v � vxx̂ + vyŷ + vzẑ is the velocity field, ρ = ρsϕ is the mass
density, and G � G sin θx̂ − G cos θẑ is gravity. Instead of adding a
continuity equation of mass conservation, we input the density data
from the DEM simulations. The physical domain is chosen from y = 0
to y = 10d in the y-direction and from zmin = 5.49d to zmax = 24.25d in
the z-direction where zmin is 2d above the average z values of the lowest
particles and zmax is the highest grid point with ϕ > 0.2 along the line of
y = 10d. The material is also present above z = zmax forming the convex
surface. Ghost nodes around the physical domain are added to set the
pressure and velocity fields to satisfy the boundary conditions. Since
z = zmax does not exactly match the material surface, we input the
traction σ · ẑ extracted from the DEM simulations as the upper
boundary condition. By the symmetry of the geometry, vy = 0 at
y = 0, and vx = 0 and vy = 0 at y = 10d. The velocity at z = zmin is set to be
zero. A schematic diagram of the FDM simulation grid is illustrated in
Supplementary Material.

We use the projection method which is an efficient algorithm for
solving the time-dependent Navier-Stokes equations in
incompressible flows [58]. It needs to be modified a little from
Chorin’s original projection method because our fluid is not
incompressible. This algorithm allows us to calculate the pressure
field easily by decoupling the pressure and the velocity fields. We
decompose the stress into σ′ = σ + PI and −PI which results in two
differential equations connected by an intermediate velocity v*. The

first step of the projection method algorithm is to update v* from the
current velocity vn through

v* � vn + Δt − vn · ∇( )vn + 1
ρ
∇ · σ′ + G[ ] (22)

where Δt is the FDM time step. The next step of the algorithm is to
correct v* to obtain the velocity in the next step vn+1:

vn+1 � v* − Δt
ρ
∇Pn+1 (23)

where the pressure in the next step Pn+1 can be obtained by solving a
Poisson-type equation. We multiply Eq. 23 by ρ and take the
divergence. We assume ∇ · (ρvn+1) = 0 because we are interested in
steady state where the (Eulerian-frame) density field does not change
in time (zρzt � 0). Keeping the spatial variations in density, the pressure
field should thus satisfy

∇2Pn+1 � 1
Δt∇ · ρv*( ). (24)

The pressure should be symmetrically distributed across the side
boundaries due to the specificity of the geometry. The bottom
pressure should satisfy zP

zz � ρ
Δtvz* from Eq. 23 to ensure �v � 0 at z =

zmin. In DEM, there is actually a tiny non-zero velocity at z = zmin

because zmin is slightly (2d) above the fixed bottom particles, but we
neglect this small velocity in our FDM simulations. The pressure at the
upper boundary is calculated from DEM σzz data and the extrapolated
velocity gradient there. Details of the numerical method to solve Eq. 24
are in Supplementary Material.

Using MATLAB, we numerically solve the decomposed
momentum equations, Eqs 22, 23, on a 20 × 40 stress grid. We use
the local density measured in the DEM simulations. Since we do not
know how to predict Θ, we simply insert the DEM data of Θ into μ1(I,
Θ) and μ2(I,Θ) calibrated as Eqs 16, 17 respectively to obtain the stress
tensor defined in Eq. 5. The granular temperature should follow a
separate PDE, “fluctuation energy balance” in the kinetic theory [21,
22, 59], but its form is still under debate in the dense limit. To predict
Θ, this PDE should be clarified in the future. The general form of the
fluctuation energy balance is in Supplementary Material. We use Eq.
18 for μ3(I). Pressure is obtained from the Poisson equation, Eq. 24.
We input the traction force extracted from the DEM data at the top of
the FDM domain because our FDM grid is rectangular and does not
conform to the bulged shape of the free surface. The velocity is
updated until the system’s average velocity reaches a steady state.

3.3 Analysis of model predictions

We compare the results of the DEM simulations and the
continuum simulations varying the inclination angle from θ =
tan−1(0.47) to tan−1(0.60). Figure 11 illustrates the transverse
velocity fields (vy, vz) from the DEM data (upper row) and the
FDM solutions to the second-order model (lower row). The
predicted transverse velocity fields show remarkable similarity to
the DEM velocity data especially for the faster flows with larger
inclination angles. We can see that the vortex location (center of
the rotational flow) and the magnitude of transverse velocity (length of
the arrows) are successfully predicted. The second-order model’s
ability to predict these transverse flows is a huge improvement
from the first-order model.
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This predictive power mostly comes from μ2 in our geometry. μ3 has
a relatively smaller impact on the results. If we keep μ3 and set μ2 to zero,
the prediction becomes totally different from DEM. However, if we keep
μ2 and set μ3 to zero, the FDM simulation still generates similar secondary
flows even though the results are not as accurate as the full second-order
model’s. These results are shown in Supplementary Material.

The solution of the first-order model must have zero transverse
velocities for a free surface flow (no surface traction).Without μ2 and μ3,
v = (vx(y, z), 0, 0) can satisfy the momentum balance (Eq. 21), which is
discussed in Supplementary Material. If an external traction is applied,
the first-order model can have non-zero vy and vz. In this case, σyz is no
longer zero and transverse velocities are generated to match this stress.
However, we have checked that the first-order models’ FDM solutions
to the transverse velocities are completely different from the DEM data.
The results can be found in Supplementary Material.

Figure 11E indicates that the transverse velocity prediction
slightly mismatches the DEM data for tan θ = 0.47. That is, possibly
because the transverse velocity is too small compared to the error of the
model calibration, or the highest grid points are too close to the material
surface where the packing fraction drops rapidly and the granular

temperature anisotropy is strong. We could not lower the highest grid
points as the vortex location is about 2d below the surface for tan θ =
0.47. This issue may be resolved by a more accurate modeling including
the whole granular temperature tensor and a deformable grid to
effectively exclude areas where ϕ drops rapidly.

The downstream velocity vx is accurately predicted by ourmodel as the
first-order non-local model did in [25]. This is expected because the shear
stress associated with D is determined by a function μ1(I, Θ) which is
almost identical to the previous μ(I,Θ) while the other higher-order terms
have little impact on vx. Figures 12A–D illustrates the contours of vx/

���
Gd

√
from the DEM simulations and the FDM simulations using the second-
ordermodel for four different inclination angles. Themagnitude of velocity
varies greatly from 10−4

���
Gd

√
to 2.5

���
Gd

√
, but the FDM vx contours almost

exactly match the DEM vx contours for all the inclination angles. The
inertial number contours are also well predicted from the quasi-static to
inertial regimes as displayed in Figures 12E–H. The excellent agreement
between the FDM solutions and the DEM data in Figures 12I, J clearly
demonstrates that the second-order model can successfully capture the
exponentially decaying vx and I profiles at the chute’s center plane (y = 0).
Theminormismatches near the bottom (z< 8d) in Figure 12 are due to the

FIGURE 11
Transverse velocity comparison between theDEM simulations (A–D) and the FDM simulations using the second-ordermodel (E–H): (A)DEMwith tan θ=
0.47, (E) FDMwith tan θ = 0.47, (B) DEMwith tan θ = 0.50, (F) FDM with tan θ = 0.50, (C) DEMwith tan θ = 0.55, (G) FDMwith tan θ = 0.55, (D) DEMwith tan θ =
0.60, and (H) FDMwith tan θ=0.60. Arrows indicate (vy, vz) and their length scales are displayed at the bottom of the figures. Packing fraction is shown as color
in the background.
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fact that DEM vx is not exactly zero at the lower boundary while we set it to
zero in the FDMsimulations. This issue can be resolved if the slip condition
at the solid boundary is clarified.

The second-order model’s pressure P is obtained by solving the
Poisson equation, Eq. 24, with the boundary conditions described in

Section 3.2. Figure 13A visualizes the results for tan θ = 0.60. If the
granular material is static and its density is uniform, the pressure
increases linearly in proportion to the depth H − z where H is the
surface height. However, the pressure in the inclined chute flow
slightly deviates from this lithostatic pressure because the surface

FIGURE 12
Comparison of (A–D) vx/

���
Gd

√
and (E–H) log I contours between the DEM simulations (black dashed lines) and the FDM simulations using the second-

order model (red lines) for different inclination angles: (A, E) tan θ = 0.47, (B, F) tan θ = 0.50, (C, G) tan θ = 0.55, and (D, H) tan θ = 0.60. (I) vx/
���
Gd

√
and (J) I

profiles of the DEM simulations (squares) and the FDM predictions (lines) at the center plane (y = 0).
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becomes not flat due to the normal stress anisotropy. To make this
subtle deviation stand out, we subtract a linear function �ρGz(H − z)
from the pressure results. We choose H = 25.4d and �ρ � 0.538ρs to
best fit the DEM |σyy| which has the most linear profile among the
normal stresses. The DEM pressure is lower near the top-right corner
and this gradation is accurately predicted by the second-order model
as can be seen in the similarity between the two heat maps in
Figure 13A. The prediction error is insignificant compared to the
magnitude of pressure. The pressure difference between DEM and
FDM is up to 40 Pa which is only 4% of the bottom pressure of 1.1 Pa ×
103 Pa.

FIGURE 13
Comparison of pressure and normal stress maps between the DEM
simulation (left) and the FDM simulation using the second-order model
(right) with tan θ = 0.60: (A) P − �ρGz(H − z), (B) |σxx | − �ρGz(H − z), (C)
|σyy | − �ρGz(H − z), and (D) |σzz| − �ρGz(H − z) where �ρGz(H − z) is a
reference pressure linearly decreasing from 1.1 Pa × 103 Pa at z = 24.5d
to 54 Pa at z = 7d.

FIGURE 14
Comparison of off-diagonal stress maps between the DEM
simulation (left) and the FDM simulation using the second-order model
(right) with tan θ =0.60: (A) σxy/P, (B) σxz/P, and (C) σyz/P.
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From the pressure, the granular temperature, and the velocity field,
the stress tensor is computed through Eq. 5. Overall, the predictions of
the second-order model on stress are well matched with the DEM
results. Figure 13 illustrates the differences between the normal stresses
and the linear reference pressure for tan θ = 0.60. The second-order
model successfully predicts the large deviations of σxx and σzz from the
linear reference pressure as shown in Figures 13B, D. Figure 13C
demonstrates that σyy is flatter than the other components, which is
also well captured by the FDM simulation. The patterns of σyy seem
different in Figure 13C, but the actual error is insignificant considering
that the colorbar range is narrower than the other plots.

The off-diagonal elements of the stress tensor are also well predicted
by the second-order model. Figure 14 shows that the model predicts the
gradual variations of σxy/P, σxz/P, and σyz/P accurately in the inclined
chute flow with tan θ = 0.60. In particular, it is interesting to see the
model’s ability to estimate σyz in Figure 14C while having accurate
velocity fields because this component is much smaller than the other
stresses and predicted to be zero in the first-ordermodel. The first-order
model may produce similar σxy, σxz and pressure patterns. However, it
cannot predict the normal stress differences and σyz because it predicts
zero transverse velocities and a flat surface, which results in an isotropic
pressure and zero σyz.

4 Conclusion

Combining the μ(I,Θ) model and the second-order fluid model, we
have proposed a second-order temperature-dependent model for three-
dimensional granular flows that can describe both non-local
phenomena (arising from the diffusion implicit in the temperature
field) and broken codirectionality. FromDEMdata of planar shear tests,
we have identified the model parameters μ1, μ2, and μ3 as functions of I
andΘ. As in the μ(I,Θ) model, μ1 multiplied byΘp1 collapses into a sole
function of I where p1 ≈ 1/6. μ2 is always positive even for small I and
exhibits heat-softening effects; μ2 seems to be scaled by a power function
of Θ with an exponent not far from p1 even if its data collapse is
inherently noisier. Excluding anomalous chute flow data, μ3 appears to
be a monotonically decreasing function of I alone, which is almost zero
for small I and grows negative as I increases. We have observed that
Θxx − Θyy behaves similar to μ3, implying that μ3 may be affected by the
granular temperature anisotropy, causing the observed anomaly.

In addition, we have examined the first and second normal stress
differences N1 and N2 in the same geometry. N2/P is negative and
decreases as I increases, exhibiting Θ dependence similar to μ1 and μ2.
By adding N1/P and N2/P together, a clear data collapse has been
achieved forming a function of the shear-to-normal stress ratio. We
have also seen the possibility that (N1 − N2)/P is a function of I and
Θxx − Θyy, but more rigorous verification is needed in the future.

Using the model parameters calibrated from the planar shear flows,
we have validated the second-order model in the rough-walled inclined
chute geometry, which is more complex due to less symmetry. We have
run FDM simulations using the projection method inputting DEM
traction at the upper boundary and DEM Θ for the whole domain. Our
second-order model successfully describes the the flow field including
the transverse secondary flows which the first-order models fail to
capture. The location, size, and shape of the flow vortex in the secondary
flow is well matched by the FDM simulations including how the vortex
changes with the inclination angle. We have also found that μ2 plays a
more important role than μ3 in predicting the transverse velocities even

if μ2 and μ3 together have better predictions. The second-order model,
like the μ(I, Θ) model, has also accurately predicted the downstream
velocity fields including the quasi-static creeping regime. Moreover, the
second-order model has generated almost identical pressure and
normal stress patterns as the DEM data.

Although we have made significant progress towards more accurate
granular rheology by combining the μ(I,Θ) relation and a second-order
fluid model to describe non-locality and broken codirectionality, there
are still puzzles to be solved. For example, the governing equation of the
granular temperature should be precisely identified to complete the
model. While the current model utilizes a scalar temperature, the
aforementioned potential role of temperature tensor anisotropy
suggests a tensorial heat equation may be needed to go beyond the
accuracy level of the model shown herein. Also, the constitutive relation
could be further intertwined with the granular temperature tensor and
the strain rate tensor. Solving these problems will refine our model,
enabling even more accurate and universal prediction of granular flows.
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