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Improving the displacement efficiency of capillary entrapments in porous media by
adding high molecular weight polymers to the invading phase has various industrial
applications, from enhanced oil recovery to soil remediation. Apart from an
increased viscosity contrast compared to regular water flooding, the flow of
viscoelastic polymer solutions exhibits unstable flow behavior even at small
Reynolds numbers, which can lead to an additional displacement mechanism of
the capillary entrapments. In this work, we employ amicrofluidic approach to unravel
the underlying physics andmechanism of this enhanced pore scale displacement. To
this end, we show that the major complex topological flow features in a typical
porous medium can be mimicked by a flow geometry consisting of a single capillary
entrapment connected to two symmetric serpentine channels. This design excludes
the effect of viscous stresses and allows direct focus on displacement processes
driven solely by elastic stresses. We show that the unique viscoelastic fluid features,
such as the significant storage and release of elastic stresses and first normal stress
difference, combined with the flow geometry, lead to purely elastic instability and
secondary flow, which in turn provide the stresses necessary to overcome the
capillary threshold and displace the capillary entrapment.
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1 Introduction

Displacement processes in porous media are ubiquitous in a variety of natural settings and
technical applications Pinder and Gray [1]; Blunt [2]; Singh et al. [3]; Bear and Verruijt [4]. At
low flow rates, i.e., at sufficiently small capillary numbers (ratio of viscous to capillary forces) the
advance of an invading fluid sweeping out an immiscible defending fluid is governed by the
wettability of the porous medium Zhao et al. [5]; Jung et al. [6]; Singh et al. [3]. Thus, these
displacement processes are mainly controlled by geometrical properties, i.e., the pore-throat
size distribution. This typically leads to ramified displacement patterns, where large portions of
the defending fluid remain trapped by capillary forces. For an invading wetting fluid these
entrapments of the defending fluid are preferentially located at the center of pores or throats,
while for intermediate to non-wetting invading fluids the residual defending fluid commonly
remains trapped at narrow gaps and dead ends, or spreads as films Zhang et al. [7]; Emami
Meybodi et al. [8]. A schematic sketch to illustrate the different types of capillary entrapment is
given in Figure 1. Mobilization of these capillary entrapments in porous media is important in
soil remediation Zhong et al. [9]; Smith et al. [10]; Cao et al. [11]; Ghosh et al. [12]; Philippe
et al. [13], cleaning filtration membranes Li et al. [14]; Salama [15], and enhanced oil recovery
Muggeridge et al. [16].
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Regardless of the wettability of the porous medium, an increase
of the viscosity of the invading fluid, i.e., increasing the capillary
number, leads to a suppression of capillary fingers. Therefore, a
more homogeneous flow profile and consequently an improved
sweep efficiency is achieved when increasing the viscosity of the
invading fluid Lenormand et al. [17]. Furthermore, experiments
using inelastic fluids as invading phase reveal that an increased
capillary number results in breakup of large entrapments of the
defending fluid Krummel et al. [18], while entrapments in smaller
pores with large capillary pressure threshold are barely affected
Lacey et al. [19]. However, theoretical and experimental studies
Zhang et al. [7]; Buchgraber et al. [20]; Afsharpoor et al. [21];
Nilsson et al. [22]; Clarke et al. [23]; Mitchell et al. [24]; Parsa et al.
[25] show that the remaining saturation of the defending fluid is
often distinctly lower than expected after invasion by a viscoelastic
polymer solution with high molecular weight compared to inelastic
invading fluids even at the same viscosity and capillary number
Huifen et al. [26]; Qi et al. [27]; Salmo et al. [28]. This implies that,
apart from the increased capillary number, an additional driving
mechanism must be active to reduce the residual saturation caused
by the invasion of viscoelastic fluids. Although it is meanwhile a
consolidated hypothesis that the improvements of the sweep
efficiency by viscoelastic polymer flooding can be attributed to
the elastic properties of such fluids, the underlying fundamental
mechanisms remain obscure Urbissinova et al. [29]; Clarke et al.
[30]; Rock et al. [31]. Various displacement mechanisms were
proposed in the literature including a strip-off of oil films
attached to pore walls caused by an apparent slip length
Beaumont et al. [32]; Wei et al. [33], reducing the effective
permeability of porous media by polymer retention Ekanem
et al. [34]; Zhu et al. [35], mobilization of oil entrapments by an
apparent shear-thickening effect as a consequence of purely elastic
instability Clarke et al. [23]; Mitchell et al. [24]; Xie et al. [36];
Clarke et al. [30]; Kawale et al. [37]; Browne and Datta [38], as well
as breakup, and pulling effects originating from normal stress
differences that remove oil from dead ends Zhang et al. [7];
Lima et al. [39]; Wang et al. [40]; Fan et al. [41]. However,
displacement processes in natural porous media might be
affected by some if not by all the listed mechanisms, yet it
remains an open question which mechanism prevails to (re-)
mobilize capillary entrapments.

Due to the opacity and inherent complexity of porous media
such as soil, rock, or filter membranes, direct observation of the
underlying mechanisms of mobilization of capillary entrapments is
generally challenging. Therefore, it is necessary to develop

simplified model systems that mimic the characteristic features
of the rather complex flow of viscoelastic polymer solutions in
random porous media. To address these issues, microfluidic model
systems raised interest among researchers Galindo-Rosales et al.
[42]; Browne et al. [43]; Kumar et al. [44]. Several experimental and
numerical studies have been focused on basic designs representing
simplified porous media such as straight channels embedded with
single cylinders Hemingway et al. [45]; Qin and Arratia [46]; Qin
et al. [47], uniform or random post arrays Khomami and Moreno
[48]; Ichikawa and Motosuke [49]; Haward et al. [50]; Walkama
et al. [51], a single pore formed by four disks De et al. [52]; Gillissen
[53], and converging-diverging channels Ekanem et al. [54];
Galindo-Rosales et al. [55]; Kumar et al. [56]; Ekanem et al.
[57]. However, even in the simplest designs used so far,
description of viscoelastic flow is still very complex due to a
wide distribution of flow velocity (and consequently shear rate)
caused by the non-constant cross-section of flow pathways in these
geometries. Estimating accurate in-situ shear rates is particularly
important for viscoelastic polymer solutions with concentrations
above their overlap concentration c* because their rheological
properties are strongly shear dependent. Therefore, a reliable
evaluation of their flow characteristics requires the
approximation of an accurate characteristic shear rate. To avoid
this issue, alternative designs such as serpentine channels can be
employed which are still capable of representing essential features
of porous media such as tortuosity. Serpentine channels are
particularly advantageous because their constant cross-section
allows a single characteristic shear rate _γ to be assigned to the
entire geometry, which facilitates the description of viscoelastic
flows.

In this work, we used a microfluidic approach to experimentally
investigate the displacement mechanism for the mobilization of
capillary entrapments by viscoelastic polymer solutions in the
semi-dilute regime, where viscosity and relaxation time are shear
dependent. To tackle this question effectively, we first performed a
series of displacement experiments in a quasi-two-dimensional porous
medium with various Newtonian and non-Newtonian fluids to
separate the effects of viscosity and elasticity. In order to focus on
the influence of elastic stresses and eliminate the influence of viscosity
on the displacement process, we employed a single capillary
entrapment enclosed by two symmetrical serpentine channels and
varied the degree of elasticity by using polymer solutions with different
concentration and molecular weight. To exclude inertial effects, all
experiments were performed at low Reynolds numbers, i.e., Re <
O(100).

FIGURE 1
Sketch of potential types of capillary entrapments for water wet grains (A), intermediate wet grains (B), and oil wet grains (C). The invading water phase is
colored blue, whereas the defending oil phase is colored red. The arrows indicate the path lines of the invading fluid.
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2 Materials and methods

2.1 Microfluidic setup

Two different microfluidic geometries were employed in this study
and are shown in Figure 2. In order to model a porous medium, we
considered a random array of about 1,400 mono-disperse cylinders
and a porosity of ϕ = 0.7 [Figure 2A]. The cylinders had a diameter d ≈
0.032 mm, a height h1 ≈ 0.030 mm and an average center-to-center
distance of (0.027 ± 0.013) mm. The field of view had a width and
length of 1 mm, respectively 3 mm, resulting in a pore-volume (PV) of
6.3 · 10−11 m3. To explore the sole impact of elasticity and to rule out
the effects of viscous forces on the displacement mechanism, a single-
pore geometry was designed which included two identical serpentine
channels with a width wmc = 0.125 mm that were connected by a
perpendicular side channel with a width wsc = 0.050 mm, as sketched
in Figure 2B. The dimensions of the serpentine channels and the side
channel were chosen to ensure entrapment of the defending fluid in
the side channel by capillary forces. The devices for both designs were
made from the UV-curable glue NOA83H (Norland optical adhesive).
They were fabricated using standard soft lithographic methods; details
of device fabrication are described elsewhere Jung et al. [6]; Shakeri
et al. [58].To conduct the microfluidic experiments, both types of
devices were placed on an inverted microscope (MeF3, Reichert-Jung)
equipped with ×2 and ×4 magnification to observe the flow in the
porous medium and single-pore geometry, respectively. The
illumination was done with a LED light source in transmission.
Images were captured using a 16 bit sCMOS camera (PCO Panda
4.2) at a maximum frame rate of 40 fps at full resolution of (2048 ×
2048) pixels. The corresponding pixel resolution with respect to the
applied magnification was 1.5 μm/pixel for the porous medium and
0.7 μm/pixel for the single-pore geometry. All experiments were
conducted at room temperature of (20 ± 1)°C. To enable fluid
injection at a controlled volumetric flow rate, the inlet of the
microfluidic device was connected to a high-precision, pulsation-
free syringe pump (neMESYS, Cetoni GmbH). Both microfluidic
geometries were first fully saturated with dodecane. Then, the
respective invading fluid was injected at a constant flow rate for
the displacement experiments with the random post array. In the
case of the single-pore geometry, the initial condition was established

by slowly injecting the invading fluids, removing all the oil from the
serpentine channel and leaving the oil entrapment in the connecting
side channel. Once this situation was established, the flow rate was
stepwise increased until complete desaturation of the side channel was
achieved. The maximum Reynolds number in all experiments was in
the order of Re ~ O(100) and thus effects of inertia on the flow could
be neglected. Besides, in all experiments, the outlet was connected to a
fluid reservoir located at the same level as the microfluidic device to
avoid back pressure due to gravity. To measure the hydrodynamic
pressure difference along the single-pore geometry, a board-mounted
differential pressure sensor (26PC series, Honeywell) was placed
between the inlet and outlet as sketched in Figure 2B.

2.2 Working fluids

As non-Newtonian working fluids, we used aqueous solutions of
the polyelectrolytes Flopaam 3630 (Mw,3630 ≈ 18.7 MDa, SNF
Floerger), Flopaam 3330 (Mw,3330 ≈ 6.5 MDa, SNF Floerger), and
Xanthan gum (Mw,Xanthan ≈ 15 MDa Holzwarth [59], Sigma Aldrich)
that are industrially used as viscosifier Sorbie [60]; Mahajan et al. [61].
Polymers of the Flopaam series are synthetic, partially hydrolyzed
polyacrylamides (HPAM, 30% hydrolysis) with very flexible polymer
chains, while Xanthan gum is a rather stiff polysaccharide produced
from simple sugars in a fermentation process by adding Xanthomonas
campestris bacteria Sorbie [60]. The sample solutions with different
polymer concentrations were diluted from their respective stock
solutions using 17 mM NaCl-solution following standard protocols
Shakeri et al; [58,62]. The salt concentration was rather in the low-salt
limit and not sufficient to screen all charges of the polyelectrolytes
Dobrynin et al; [63]. By applying the Huggins—Kraemer method
Mezger [64], we determined the overlap concentrations to be
c3630* ≈ 82 ppm, c3330* ≈ 137 ppm, and cXanthan* ≈ 91 ppm,
respectively. The prepared concentrations of 1,000 ppm (0.1w%)
and 2,000 ppm (0.2w%) of Flopaam 3630, 1,300 ppm (0.13w%)
and 2,500 ppm (0.25w%) of Flopaam 3330, and 2,000 ppm (0.2w
%) of Xanthan gum were at least 10 times larger than the respective
overlap concentration c*, to assure that the solutions were in the semi-
dilute entangled regime. As Newtonian reference cases, we used
purified water, as well as 67w% and 85w% aqueous glycerin

FIGURE 2
Sketches of the employed microfluidic geometries: (A) Random arrangement of about 1,400 cylinders with a diameter d ≈ 0.032 mm, and a height h1 ≈
0.030 mm. The array has the lateral dimensions of l = 3.5 mm andw = 1 mm, The red box indicates the field of view; (B) Two symmetric serpentine channels
with a width wmc = 0.125 mm that are connected by a perpendicular side channel with a width of wsc = 0.050 mm and a length of lsc = 1 mm. The inner and
outer radii of curvature of the serpentine channels were ri = 0.125mm and ro = 0.250mm. The height h2 of the microfluidic channels was approximately
0.045 mm.
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(Grüssing GmbH) solutions. A full rheological characterization of the
utilized solutions including steady shear step measurements to
determine the shear viscosity η( _γ) and the first normal stress
difference N1( _γ) as well as small amplitude frequency sweep tests
to determine the storage modulus G′(ω) and the loss modulus G″(ω)
were performed using a rotational rheometer (HAAKE MARS 40,
Thermo Scientific) and the results are shown in Figure 3.

The defending fluid in all experiments, dodecane (Merck), has a
constant dynamic viscosity of ηdodecane = 1.4 mPa·s at room
temperature of (20 ± 1)°C. Dodecane was initially filtered three
times in a column of aluminum oxide powder (Al2O3, Sigma
Aldrich) to remove any potential surface-active contaminants. To
increase the optical contrast of the fluids in the microfluidic device,
0.5w% of the non-surface-active dye oil-red-o (Sigma Aldrich) was
added to the purified dodecane. The properties of the used fluid
combinations are summarized in Table 2.

For visualization of flow path lines, 0.01w% green fluorescent
particles (2 μm, FluoroMax, Thermo Fisher) were added to the
aqueous phase and imaged via fluorescence microscopy (Axiophot,
Zeiss, equipped with a filter cube appropriate for excitation and
emission wavelength of 475/40 nm and 530/50 nm, respectively).
We have confirmed that the addition of the particles did not affect
the physical or rheological properties of the utilized fluids.

2.3 Viscoelastic fluid model and
dimensionless numbers

As presented in Figure 3, the studied polymer solutions exhibited
strong shear-thinning viscosity η( _γ) and a non-quadratic first normal
stress difference N1( _γ). Such fluids can commonly be described by the
constitutive White–Metzner (WM) fluid model Bodiguel et al. [65];
Soulies et al; [66]; Casanellas et al; [67]. In this work, we applied the
WM-model to describe the rheological properties and consequently to
compute the relevant dimensionless numbers. Fundamentals of theWM-
model can be found elsewhereMacosko [68]; Barnes et al; [69]; Burghelea
and Bertola [70]; White and Metzner [71]; Tseng [72]. The supporting
computational fluid dynamics (CFD) simulations in this work were based
on an imaginary shear-thinning fluid having the same fitting parameters
for the shear-thinning viscosity, but no elasticity component, using a
generalized Newtonian fluid model ANSYS [73].

To represent the shear dependent total viscosity η( _γ) of the
polymer solutions, we employed the Carreau–Yasuda model:

η _γ( ) − η∞ � η0 − η∞( ) 1 + Λ _γ( )a[ ]n−1a (1)
Here η0 and η∞ are the zero-shear viscosity and viscosity at infinite
shear rates, respectively, Λ is a characteristic time, n is the power law

FIGURE 3
Full rheological characterization of (A) viscosity η( _γ), (B) first normal stress difference N1( _γ), and (C) storage and loss modulus, G′(ω) and G″(ω) of the
utilized solutions. Lines are fits to the Carreau–Yasudamodel Eq. 1 in (A) and to a power-lawN1( _γ) � A · _γb in (B). The fitting parameters of the Carreau–Yasuda
model are given in Table 1.

TABLE 1 Fitting parameters of Carreau–Yasuda model for viscosity Eq. 1: η0 is the
zero-shear viscosity; Λ is a characteristic time; a is a transition control factor; and
n is the power law exponent associated with the degree of shear-thinning. η∞
was fixed to the solvent viscosity 0.001 Pa·s for all used polymer solutions.

Polymer η0 [Pa·s] Λ [s] a n

0.13 w% Flopaam 3330 0.109 ± 0.001 0.72 ± 0.02 0.87 ± 0.01 0.54 ±
0.01

0.25 w% Flopaam 3330 0.612 ± 0.003 2.37 ± 0.16 0.99 ± 0.04 0.47 ±
0.01

0.10 w% Flopaam 3630 0.287 ± 0.003 6.43 ± 0.25 0.99 ± 0.04 0.50 ±
0.01

0.20 w% Flopaam 3630 1.535 ± 0.011 9.33 ± 0.81 1.07 ± 0.05 0.41 ±
0.02

0.20 w%Xanthan gum 1.863 ± 0.173 13.27 ± 1.53 0.83 ± 0.10 0.38 ±
0.01

TABLE 2 Density () measured by a pycnometer (Blaubrand, Brand GmbH), as well
as interfacial tension (σ) determined by pendant drop method, and advancing
(θadv) and receding contact angle (θrec) of the utilized combinations of invading
fluids and dodecane determined by sessile drop needle-in method using the
contact angle measurement device (OCA 25, DataPhysics). It should be noted
that the addition of HPAM, respectively Xanthan gum (XG) to water did neither
alter the interfacial tension nor the wettability.

Invading fluid ϱ [g/cm3] σ [mN/m] θadv [°] θrec [°]

purified water 1.00 ± 0.01 50 ± 1 125 ± 4 < 20

water with HPAM/XG 1.00 ± 0.01 50 ± 1 125 ± 4 < 20

67 w% glycerin 1.18 ± 0.01 32 ± 1 125 ± 4 < 20

85 w% glycerin 1.22 ± 0.01 29 ± 2 125 ± 4 < 20
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exponent associated with the degree of shear-thinning, and a is a
transition control factor. The shear dependent relaxation time λ( _γ)
was calculated from the shear viscosity, η( _γ), and the first normal
stress difference, N1( _γ):

λ _γ( ) � N1 _γ( )/2 η _γ( ) − η∞[ ] _γ2 (2)

The complex shear modulus G(ω) can be computed from the
generalized Maxwell model G(ω) = G′(ω) + iG″(ω), where G′(ω) and
G″(ω) are given by Eqs 3, 4. The discrete relaxation time spectrum λk
and the corresponding shear moduli Gk were obtained by fitting the
experimentally measured G′(ω) and G″(ω) data in Figure 3C to these
equations with N = 4 elements. In this context, G0 is the largest shear
modulus corresponding to the smallest relaxation time Shakeri
et al. [62].

G′ ω( ) � ∑N
k�1

Gk
λk · ω( )2

1 + λk · ω( )2 (3)

G″ ω( ) � ∑N
k�1

Gk
λk · ω

1 + λk · ω( )2 (4)

To estimate the degree of elasticity during flow of the polymer
solutions, several dimensionless numbers can be calculated within the
framework of the White–Metzner model. The Deborah number De is
defined as the ratio of the polymer relaxation time to a characteristic
residence time in the flow:

De � η _γ( )U
G0 R , (5)

here R is the minimum radius of the curved streamlines and U is the
average velocity. TheWeissenberg numberWi is defined as the ratio of
elastic stresses to the shear stress τ � 2 η( _γ) _γ, and thus given by

Wi � N1 _γ( )
2 η _γ( ) _γ. (6)

Based on these two dimensionless numbers, the stress ratio M can be
calculated by Morozov and van Saarloos [74]; Pakdel and McKinley
[75]; McKinley et al. [76]; Shakeri et al. [62].

M � ������
DeWi

√ �
�������������
η _γ( )U
G0 R

N1 _γ( )
2 η _γ( ) _γ

√
. (7)

The stress ratio M is of particular interest, since exceeding a critical
value Mcrit characterizes the onset of purely elastic instability, i.e., an
unstable flow of viscoelastic fluids at low Reynolds numbers. The value
of Mcrit depends on the particular geometry, the type, and
concentration of the polymer and salt in the solution, as well as on
the type of solvent, and is commonly in the range of 1–6 Morozov and
van Saarloos [74]; Yao et al. [77].

3 Results and Discussion

3.1 Displacement processes in a random post
array

Exploring the impact of viscoelastic fluid properties on
displacement processes in porous media requires to disentangle the
effects of viscosity and elasticity. To this aim, we conducted a series of

experiments employing three Newtonian fluids with different viscosity
(water, 67w% and 85w% glycerin solution), a shear-thinning inelastic
Xanthan gum solution (0.2w%), and a shear-thinning highly elastic
HPAM solution (0.2w% Flopaam 3630) as invading fluids, displacing
dodecane at a constant applied volumetric flow rate. The evolving
displacement patterns, as well as the configuration of the remaining
saturation of the defending fluid after injecting 200 PV and 1,200 PV
of the invading fluid, are shown in Figure 4.

Prior to the experiments presented in this section, we
experimentally determined a critical capillary number Cacrit ≈ 10–4

as an upper threshold for purely capillary dominated displacement for
our specific microfluidic design, and for the advancing contact angle of
θadv = (125 ± 4)° for all used invading fluids. The capillary number was
approximated by Ca � (η( _γ)U)/σ, where η( _γ) is the shear dependent
viscosity and U is the average velocity. The shear rate was
approximated by _γ � U/

���
k ϕ

√
Berg and van Wunnik [78]; Browne

and Datta [38]. Here, the average velocity was calculated by U = Q/(A
ϕ), where Q is the flow rate, A the cross-section of the channel, ϕ the
porosity, and k the absolute permeability. The absolute permeability of
the microfluidic device k = U · η/(−dp/dx) ≈ 1.59 · 10–11 m2 was
calculated from Darcy law. The pressure gradient (dp/dx) was
computed via CFD simulation of water flooding (here it was
assumed that the permeability is constant for a specific porous
medium and does not depend on the type of invading fluid De
et al. [52]). The applied flow rate was set to Q = 4 μL/min in all
experiments, and the capillary number was varied by varying the
viscosity of the invading fluid.

Figure 4A shows the evolution of the displacement pattern for
water displacing dodecane at a capillary number of Cawater ≈ 8 · 10–6.
The observed displacement fronts appeared to be branched and
followed the geometrical most favorable pathways, indicating that
the displacement is fully capillary dominated. Further injection of
200 PV and 1,200 PV of water in Figures 4B, C had no impact on
configuration of the remaining saturation. Experiments using 67w%
glycerin solution as invading fluid and hence increasing the capillary
number to Caglycerin67 ≈ 5 · 10−5, exhibited no significant influence on
the initial evolution of the displacement pattern in Figure 4D
compared to water. This is expected as the applied capillary
number was still below the critical threshold that was determined
to Cacrit ≈ 10–4 for this system. However, injection of 200 PV and
1,200 PV of 67w% glycerin solution in Figures 4E, F led to a reduction
in the maximum size of the entrapments and hence to a lower
remaining saturation of the defending fluid compared to water
invasion. This observation is in line with the fact that by increasing
the capillary number, the maximum size of the entrapments is
controlled by the competition of viscous to capillary forces
Krummel et al. [18]. Further increase of the capillary number
above Cacrit by invasion of 85w% glycerin solution
(Caglycerin85 ≈ 3 · 10−3), viscous forces of the invading fluid gain
importance. As visible in Figure 4G, the formation of capillary
fingers was suppressed and the front advance was more compact.
Injection of 200 PV of 85w% glycerin solution led to a reduction in size
of the entrapments in Figure 4H. However, injection of 1,200 PV of
85w% glycerin solution in Figure 4I had no visible impact on the
configuration of the remaining saturation since the capillary pressure
threshold to mobilize small entrapments is seemingly too large to
overcome. After benchmarking the Ca dependent displacement
behavior in our porous model geometry for Newtonian fluids, we
address now potential deviations of the displacement pattern by
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invasion of non-Newtonian fluids. Invasion of the shear-thinning
inelastic Xanthan gum solution at CaXanthan ≈ 9 · 10–5 led initially to a
branched displacement pattern with large entrapments in Figure 4J.
Compared to invasion by the Newtonian invading fluids in Figures 4A,
D, no impact of the shear-thinning property on the evolution of the
front was detectable for slow invasion processes. Since all experiments
involving non-Newtonian fluids as invading fluids were performed at
very low capillary numbers, a strong influence of the shear-thinning
properties of the polymer solutions on the morphology of the
displacement front is not expected De et al; [79]; Mitchell et al;
[24]. Similar to the displacement experiment with water, injection
of 200 PV and 1,200 PV of Xanthan gum solution in Figures 4K, L had
no significant impact on configuration of the remaining saturation.
This finding is particularly remarkable because the corresponding
capillary number was even slightly larger than in the experiments with
67w% glycerin solution, in which a reduction of entrapments was
observed. This could be explained by the fact that the strong shear-
thinning viscosity of Xanthan gum solution dampens the impact of
viscous forces when the inlet pressure increases during the continuous
injection. Employing the viscoelastic HPAM solution as invading fluid
at CaHPAM ≈ 8 · 10–5, we observed again a branched evolution of the
displacement pattern in Figure 4M. Analogous to the case of Xanthan
gum, invasion of 200 PVHPAM solution did not significantly alter the
configuration of the remaining saturation in Figure 4N. In contrast, a

substantially different displacement pattern was observed after
injecting 1,200 PV of Flopaam 3630 [Figure 4O]. Large
entrapments have been broken up and only small ones at the
smallest throats remain. A zoomed-in view of the displacement
process can be seen in the time series for Xanthan gum and
Flopaam 3630 in Figure 5 and the corresponding movies in the
Supplementary material Video S1. While the fluid–fluid interfaces
of the Xanthan gum/dodecane interfaces were stable throughout the
experiment, the Flopaam/dodecane interfaces began to fluctuate after
a certain time. These fluctuations seemed to cause the large
entrapments to break up and eventually be displaced completely.

To investigate the causes of the observed fluctuations, we
visualized the path lines of the invading fluid by adding fluorescent
particles to the aqueous phase. Figure 6 illustrates the path lines of the
invading 85 w% glycerin solution, panel (a), respectively of the
viscoelastic HPAM solution, panel (b), displacing dodecane [movies
in Supplementary material Video S2]. Despite the similar viscosity of
the invading fluids for both experiments, the path lines appeared to be
distinctly different. Viscoelastic flow in Figure 6B featured crossing
path lines, semi three-dimensional effects, and fluctuations of the
fluid–fluid interfaces of the entrapped oil, which were absent for the
inelastic flow in Figure 6A. A possible explanation for the observed
unstable flow can be the occurrence of purely elastic instability. This
instability is a unique feature in viscoelastic flow at low Reynolds

FIGURE 4
Snapshots of the displacement pattern for (A–C) water (Cawater = 8 · 10–6), (D–F) 67 w% glycerin (Caglycerin67 � 5 · 10−5), (G–I) 85 w% glycerin
(Caglycerin85 � 3 · 10−3), (J–L) 0.20 w% Xanthan gum (CaXanthan = 9 · 10–5), and (M–O) 0.20 w% Flopaam 3630 (CaHPAM = 8 · 10–5). The first column shows a
compiled image of the displacement patterns for about 0.05 PV (dark blue), 0.15 PV (bright blue), 0.30 PV (green), 0.45 PV (orange), and 0.60 PV (red) of the
invading fluid. The second and third column show displacement pattern for 200PV, and 1,200PV of the invading fluid. As indicated by the arrow, themain
flow direction was from left to right.

Frontiers in Physics frontiersin.org06

Jung et al. 10.3389/fphy.2023.1099073

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1099073


numbers, and it is linked to the molecular behavior of the polymers in
solution Shaqfeh [80]; Groisman and Steinberg [81,82]. Such
viscoelastic highly flexible polymers are strongly deformable.
Specially at high shear rates, their deformation during the flow is
strongly anisotropic. This anisotropic deformation causes anisotropic
distribution of elastic stresses in 3D. The difference of the stress
components in the observation plane, i.e., in x- and y-direction, causes
a first normal stress difference N1 acting in the out-of-plane direction.
If the ratio of N1 to the shear stress τ exceeds a critical stress ratio
McKinley et al. [76]; Pakdel and McKinley [75]; Morozov and van
Saarloos [74]; Shakeri et al. [62], the base flow becomes unstable and
strongly fluctuating fluid–fluid interfaces are caused. Since the stress
distribution of Newtonian fluids is isotropic and solutions of the rather
stiff Xanthan gum do not develop a significant first normal stress
differenceN1, the base flow and consequently the fluid–fluid interfaces
remained stable for inelastic fluids.

However, precise quantification of the contribution of elastic and
viscous stresses, e.g., by computing the stress ratio M, Eq. 7, for flow of
semi-dilute polymer solutions in porous media, is challenging for two

major reasons. First, from a rheological point of view, due to the shear-
thinning viscosity and relaxation time of the polymer solution in this
concentration regime, and non-uniform distribution of shear rate in the
porousmedia, defining a characteristic viscosity and relaxation time is not
straightforward. Second, the complex flow geometry makes it difficult to
estimate the radius of curvature of the streamlines R, since a single flow
path curvature can not be assigned to the entire geometry. Besides, the
occurrence of purely elastic instability lead to an increased flow resistance,
i.e., increased apparent viscosity Shaqfeh [80]; Groisman and Steinberg
[81,83]; Kawale et al. [37]; Shakeri et al. [58]; Browne and Datta [38];
Datta et al. [84]. Therefore, a distinct separation of viscosity- and
elasticity-related effects is unfeasible employing a random arrangement
of posts as representative for porous media.

3.2 Flow properties of porous media

It is well known that increasing the viscosity of the invading fluids
leads to an improved displacement efficiency. By comparing the

FIGURE 5
Time series of optical images of a capillary entrapment displaced by 0.20w% Xanthan gum (A–D), and 0.20w% Flopaam 3630 (E–H). As indicated by the
arrow, the main flow direction was from left to right.

FIGURE 6
Path lines obtained by fluorescence microscopy for an invading Newtonian glycerin solution, respectively viscoelastic polymer solution displacing
dodecane. In (A) the Newtonian glycerin solution follows symmetrical the tortuous path lines of the porous medium, whereas the viscoelastic HPAM solution
exhibits asymmetric and even crossing path lines in (B), which represents an unsteady flow.
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displacement pattern resulting from an invasion with Xanthan gum,
respectively Flopaam in the previous section, we observed, that
elasticity driven interfacial fluctuations contribute as well to an
increased displacement. However, since the turbulent flow related
to the observed fluctuations leads also to an increase of an apparent
viscosity, it is per se not possible to differentiate the effects of these
increased apparent viscosity and the fluctuations due to their
interconnected nature. Hence, to decompose these combined
contributions, we needed to design a more simplified model
system, which is still capable to mimic the characteristic flow
features in porous media, such as the mixed distribution of flow
types. Thus, in order to construct such a model system, we must start
by identifying the characteristic flow features in porous media. In fact,
flow in porous media is composed of an interplay of regions of shear
flow in the vicinity of solid walls, as well as of extensional regions of
converging–diverging flows away from the walls and at stagnation
points at the front and rear poles of obstacles in a flow James [85];
Kawale et al. [37]; De et al. [86]; Poole [87]; Mokhtari et al. [88]. De
et al. De et al. [86] performed direct numerical simulations to
determine the flow type distribution for invasion of a viscoelastic
fluid in a randomized porous medium assembled by bi-disperse disks.
In their simulations, the pore structure triggered tortuous flow paths
that enforce the polymers to undergo repetitive contraction and
expansion. De et al. observed a predominance of shear dominated
flow regions for the full range of the considered Deborah numbers,
while the extent of extensional regions was further reduced at higher
degree of elasticity. Moreover, in this numerical study, it was proven
that the largest normal stress differences in a porous medium were
generated in a shear dominated flow region rather than in extensional
regions. The primary importance of shear flow has also been
confirmed in other works, where it has been demonstrated that the
normal stress differences responsible for an increased pressure
gradient are mainly generated in shear dominated regions De et al.
[52]; Ekanem et al. [54], and most of the energy of viscoelastic stresses

is dissipated in these regions De et al. [86]; Gillissen [53]. In summary,
the elastic nature of the polymer fluid is more pronounced when
coupled with the extensional nature of the flow field Kawale et al. [37];
Walkama et al. [51]; Haward et al. [50]; Ichikawa and Motosuke [49],
however extensional flow is not essential to observe elasticity-induced
flow instabilities. In fact, the most important feature is tortuosity,
i.e., curved path lines that cause a sufficiently strong first normal stress
difference of viscoelastic fluids. Thus, serpentine channels with
constant cross-section are suitable model systems for porous
media. Viscoelastic flow in serpentine channels is very well
characterized in the literature and are straightforward to be
described Soulies et al. [66]; Zilz et al. [89]; Shakeri et al. [90];
Poole et al. [91]; Ducloué et al. [92].

3.3 Displacement of single capillary
entrapment

As previously discussed, serpentine channels are well suited to
mimic tortuous flow in porous media, while the perpendicular side
channel connecting the two serpentine channels of our microfluidic
geometry represents the location for capillary entrapment of the
defending fluid [Figure 2B]. The symmetry of the serpentine
channels, in conjunction with a shared inlet and outlet, ensures
equal viscous pressure at both ends of the side channel. Hence, our
microfluidic model system corresponds to a single capillary
entrapment in a porous medium, where the effect of elastic stresses
at the fluid interfaces can be isolated from the effects of viscous
stresses. In the following experiments, we studied the impact of the
degree of elasticity of the invading fluid on the displacement
mechanism of the capillary entrapment. To this aim, we used as
invading fluids four different viscoelastic HPAM solutions (i.e., for
two different molecular weights and two concentrations each), an
inelastic shear-thinning Xanthan gum solution, and a high viscous

FIGURE 7
(A) Remaining oil saturation S in the side channel, and (B) root-mean-square (rms) of δYrms as function of the applied flow rate (top) and corresponding
shear rate (bottom). The insets display an optical image of microfluidic geometry in (A), and the remaining oil saturation S as a function of δYrms in (B). The
dashed line in (B) indicates the strength of fluctuation of δYrms ≈ 3 μm required to trigger the mobilization of the entrapped oil. The symbols in (A) and (B)
represent experimental data for 67w% glycerin (blue star), 0.13w% Flopaam 3330 (orange diamond), 0.25w% Flopaam 3330 (green triangle), 0.10w%
Flopaam 3630 (red circle), 0.20w% Flopaam 3630 (black square), and 0.20w%Xanthan gum (brown star).
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Newtonian glycerin solution. We initially saturated the single-pore
geometry with dodecane, and subsequently stepwise increased the flow
rate of the invading fluid. The experiments were stopped either when a
complete removal of the oil phase from the perpendicular side channel
was observed, or a maximum Reynolds number in the order of 100 was
reached to avoid any contribution from inertia. To study the
interactions between the flow in the serpentine channel and the
entrapment at the side channel, we captured time series of the area
shown in the inset of Figure 7A at each applied flow rate. To ensure
that a fully developed steady-state flowwas established while recording
fluid–fluid interface fluctuations, we used the simultaneously
measured pressure signal as a reference and started recording at
each flow rate after the pressure reached a stable plateau. The
saturation S of the oil in the side channel and the fluctuating
motion of the fluid–fluid interface could be extracted from the
recorded time series. The corresponding results are plotted in
Figure 7 as a function of shear rate, which was approximated by _γ �
4Q/(π r3) with the equivalent radius of r � ��������(WH)/π√

Son [93]. Even
though this approach neglects the slightly non-parabolic flow profile
of shear-thinning fluids and does not account for a possible apparent
wall-slip effect of non-Newtonian fluids, we have previously shown
that this approximation is sufficiently accurate for the employed
serpentine channels Shakeri et al; [62]. The saturation S in

Figure 7A was defined as the area of the oil column at the end of
each recording step, normalized by the area of the oil column in the
first step. Desaturation was initiated once the fluid—fluid interface was
depinned from the edges of the side channel and S < 1. It should be
mentioned that for increasing shear rates, the menisci of the trapped
oil column get more bulged towards the serpentine channel. This effect
led to saturation values which are slightly larger than one. Interfacial
motion was described quantitatively based on the motion of the center
of mass, δY, of the entrapped oil column. To quantify the strength of
the interfacial motion, we calculated the root-mean-square δYrms for
each shear rate and plotted the results in Figure 7B. For δYrms >
0.015 μm (i.e., for δYrms values exceeding the noise level of the
experimental setup), optically visible motion of the fluid–fluid
interface was clearly detectable and increased with the shear rate.
At the lowest applied shear rate of _γ ≈ 72 s−1, the fluid–fluid interface
was stationary for all utilized invading fluids. When solutions of
glycerin or Xanthan gum were employed as the invading phase, the
fluid–fluid interface remained stationary across the full range of
applied shear rates. Accordingly, no oil displacement was observed
from the side channel despite the rather high viscosity of these
solutions [Figure 7A]. However, when a viscoelastic polymer
solution was injected, the fluid–fluid interface began to wobble
above a certain shear rate. The intensity of this wobbling motion
increased monotonically as the shear rate was further increased. The
corresponding shear rates at which wobbling was initially detected
were significantly lower for polymers with higher molecular weight,
while they were rather independent of concentration, cf. Table 3.
Eventually, displacement of the entrapped oil phase from the side
channel was initiated for all utilized HPAM solutions when the
fluid–fluid interface fluctuations were sufficiently intense at δYrms ≈
3 μm [dashed horizontal line in the inset of Figure 7B].

Simultaneously with the optical recordings, we measured the
corresponding pressure drop ΔP(t) = 〈P〉t + ΔP′(t) across the
serpentine channels, where 〈P〉t � �Pin−out is the time averaged
steady-state mean value, and ΔP′(t) is a fluctuating component
of the pressure. For the viscoelastic HPAM solutions, the strength

TABLE 3 Overview of the experimentally preset flow rate Qcrit, the ratio of
polymer concentration to overlap concentration c/c*, the approximate shear rate
_γcrit determined from Figure 9, and critical stress ratioMcrit at the onset of purely
elastic instability computed from Eq. 7.

Polymer c/c* Qcrit [μl/min] _γcrit [s
−1] Mcrit

0.13w% Flopaam 3330 ≈ 10 14.0 ± 0.2 2006 ± 28 5.32 ± 0.27

0.25w% Flopaam 3330 ≈ 18 12.0 ± 0.2 1719 ± 28 4.24 ± 0.21

0.10w% Flopaam 3630 ≈ 12 2.5 ± 0.2 358 ± 28 4.06 ± 0.20

0.20w% Flopaam 3630 ≈ 24 2.0 ± 0.2 286 ± 28 3.99 ± 020

FIGURE 8
(A) The fluctuation intensity δYrms and (B) remaining oil saturation S as functions of themeasured pressure difference �Pin−out. The horizontal dashed line in
(A) indicates δYrms ≈ 3 μm, where we observe the onset of displacement in Figure 7B. The red areas in (A) and (B) refer to the pressure ranges associated with
the onset of displacement. The symbols in (A) and (B) represent experimental data for 67w% glycerin (blue star), 0.13w% Flopaam 3330 (orange diamond),
0.25w% Flopaam 3330 (green triangle), 0.10w% Flopaam 3630 (red circle), 0.20w% Flopaam 3630 (black square), and 0.20w%Xanthan gum (brown
star).
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of fluctuations of the fluid–fluid interface δYrms raised monotonic
with the measured pressure �Pin−out [Figure 8A]. Interestingly, the
required strength of fluctuations δYrms ≈ 3 μm to overcome the
capillary pressure that keeps the entrapment in place was achieved
at a similar pressure �Pin−out ≈ 50 kPa for all HPAM solutions,
independent of polymer type and concentration. However, since
there was no displacement in case of the inelastic invasion of
glycerin and Xanthan gum solutions, during the entire range of
the experiments, it is evident that the magnitude of the pressure,
�Pin−out, cannot drive the displacement. Instead, the displacement
mechanism can be explained with respect to the fluctuating
component of the pressure, ΔP′(t), in the serpentine channels
Shakeri et al. [58].

To examine the underlying mechanism that caused the
fluctuations, we converted �Pin−out to an apparent viscosity
ηapp( _γ) � τ( _γ)/ _γ, where the shear stress in a serpentine channel
was approximated by τ = (ΔP H W)/(2L(W + H)) Machado et al.
[94]. Comparison of the apparent viscosity ηapp( _γ) with the
extrapolated bulk viscosity values η( _γ) from Figure 3 revealed
that, above a critical shear rate _γcrit, the apparent viscosity
ηapp( _γ) deviated from η( _γ). Figure 9A shows the reduced
viscosity ηr( _γ) � ηapp( _γ)/η( _γ) as function of the shear rate _γ for
all studied polymer solutions. We identified the critical shear rate
_γcrit at the onset of instability when the reduced viscosity exceeds
1.15 cf. Table 3. The value of 1.15 was chosen to ensure that the
reduced viscosity ηr clearly exceeds our experimental accuracy. In
general, a reduced viscosity significantly larger than one is a
signature of turbulent flow. Since the maximum Reynolds
number in our experiments was on the order of Re ~ O(100),
potential inertial contributions to the observed increase in flow
resistance could be safely neglected. This is confirmed by the fact
that no increased reduced viscosity was detected for the inelastic
Xanthan gum and glycerin solutions. Hence, the increase of the
reduced viscosity ηr for the four HPAM-solutions was associated
with purely elastic instability at low Reynolds numbers Browne and

Datta [38]; Groisman and Steinberg [81]. Moreover, the occurrence
of purely elastic instability is also reflected by the stress ratio M. In
the utilized serpentine channels, we detected the onset of instability
forM ≳ 4, cf. Figure 9B, in line with reported values in literature for
similar geometries Pakdel and McKinley [75]; McKinley et al. [76];
Shakeri et al. [62]. However, in case of the two Flopaam
3330 solutions, the wobbling motion started already at shear
rates well below _γcrit [Figure 7B]. This suggests that the unstable
base flow due to purely elastic instability is not the only explanation
for the observed fluctuating interfaces.

In fact, the observed interfacial fluctuations prior to the onset of
purely elastic instability were also affected by elastic secondary flows,
i.e., flows in the cross-stream direction that are much weaker than the
flow in the main flow direction Ducloué et al. [92]; Yao et al. [77];
Poole et al. [91]. In this particular geometry, these types of secondary
flows result from the difference between the curvatures of the inner
and outer bends of the serpentine channel, where the gradient of the
first normal stress difference N1 arises Shakeri et al. [58].
Consequently, a so–called “Hoop stress” emerges and drives the
viscoelastic fluid towards the inner bends at the top and bottom of
the serpentine channel, where N1 is the largest. The fluid is then
pushed back to the outer part of the serpentine channel at the center
plane to complete formation of counter-rotating vortices in the out-of-
plane cross-section of the channel. Such elastic secondary flows are
present for all applied shear rates in the case of viscoelastic flow, and
their strength is expected to increase almost linearly with the applied
shear rate for a laminar base flow Zilz et al. [89]. Even though
secondary flows occur in the cross-sectional plane perpendicular to
the plane of observation and therefore cannot be directly observed
with conventional planar microscopy, secondary flow structures can
be indirectly sensed by their influence on the flow paths as previously
done by, e.g., Groisman and Steinberg [83]; Zilz et al. [89]; Machado
et al. [94]; Shakeri et al. [58]. To visualize these secondary flow
structures, we added fluorescent particles to the 0.10 w% Flopaam
3630 solution, as well as to the 0.25 w% Flopaam 3330 solution and

FIGURE 9
(A) Reduced viscosity ηr and (B) stress ratioM as function of shear rate _γ. The symbols in (A) represent data for 67w% glycerin (blue star), 0.13w% Flopaam
3330 (orange diamond), 0.25w% Flopaam 3330 (green triangle), 0.10w% Flopaam 3630 (red circle), 0.20w% Flopaam 3630 (black square), and 0.20w%
Xanthan gum (brown star). The blue area in (A) indicates a laminar base flow where ηr < 1.15. The dashed vertical lines in (A) as well the shaded area in (B)
indicate the onset of purely elastic instability.
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captured the path lines by fluorescence microscopy at shear rates
below and above the critical shear rates _γ0.10 w%,3630 ≈ 358 s−1 and
_γ0.25 w%,3330 ≈ 1719 s−1, cf. Figure 10. At _γ ≈ 143 s−1 in Figure 10A and
Figure 10C, we observed a fully laminar flow, in which the path lines
follow the curvature of the serpentine channels. At _γ ≈ 1146 s−1 in
Figure 10D, still below the critical shear rate for this solution but
corresponding to experiments where we detected already mild
interfacial fluctuations, we observe a slight shift of the path lines
towards the inner bend of the serpentine channel. At and above the
onset of purely elastic instability, at _γ ≈ 1146 s−1 in Figure 10B and
_γ ≈ 1719 s−1 in Figure 10E, we observed crossing path lines, and semi
three-dimensional effects that were very similar to the observed path
lines for highly viscoelastic flow in porous media in Figure 6B.

The contribution of secondary flows to the fluctuations of the
fluid–fluid interface in Figure 7B can be further investigated by
subjecting the recorded position data δY to power spectral density
(PSD) analysis. Figure 11A displays the PSD analysis of δY
extracted from the optical images of 0.25 w% Flopaam 3330. At
the lowest shear rate _γ ≈ 72 s−1, we observed a plateau, indicating
that the fluid–fluid interface remained stationary. At _γ ≈ 716 s−1,
i.e., below _γcrit, the PSD curve exhibited still a plateau-like shape
although interfacial fluctuations were already optically sensed at
this shear rate [Figure 7B]. At further increased shear rates, close to
_γcrit ≈ 1576 s−1 and above, a power-law decay ~ f−β was observed
with two distinct exponents, βL and βH, at lower and higher ranges
of frequencies. At higher frequencies from 2 Hz to 20 Hz, an
exponent βH in the range of 3–4 is valid. This exponent
observed over at least one decade in the frequency domain is
commonly reported for turbulent flows originated from the
purely elastic instability of dilute polymer solutions Groisman
and Steinberg [83], and theoretically derived by Fouxon et al.
Fouxon and Lebedev [95] and later Steinberg et al. Steinberg
[96] for an Oldyod-B fluid. At lower frequencies from 0.2 Hz to
2 Hz, a smaller exponent βL in the range of 1–2 exist.While this

exponent is in a similar range to the Kolmogorov scale 5/3 for
inertia-induced turbulence Kolmogorov et al. [97], we can rule this
out since the experiments were conducted at small Reynolds
numbers. Similar observations were reported for the PSD
analysis of the center-of-mass fluctuations of entrapped oil
droplets, and pressure fluctuations in viscoelastic flow in porous
media, but remained so far unexplained Mitchell et al. [24]; Kawale
et al. [37]. We believe that the two distinct exponents can be
explained in view of the flow structure underlying the turbulent
flow, namely the short-range elastic instability and the elastic
secondary flow. In fact, the high range of frequencies from 2 Hz

FIGURE 10
Path lines obtained by fluorescence microscopy for 0.10 w% Flopaam 3630 at (A) _γ ≈ 143 s−1 and (B) _γ ≈ 1146 s−1, and 0.25 w% Flopaam 3330 at (C)
_γ ≈ 143 s−1, (D) _γ ≈ 1146 s−1 and (E) _γ ≈ 1719 s−1. The red dashed lines indicate the boundary of the serpentine channels. The yellow dashed lines in (C) and (D)
indicate the center line of the channel as a guide to the eye rates to highlight the evolution from laminar to turbulent flow.

FIGURE 11
PSD analysis of vertical fluctuation of the center position δY of
0.25 w% Flopaam3330 for various shear rates above and below the
critical shear rate _γcrit ≈ 1719 s−1 for this solution.
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to 20 Hz, correspond to relatively small-scaled fluctuations,
originating from purely elastic instability. On the other hand,
the lower range of frequencies, from 0.2 Hz to 2 Hz, is
associated with relatively large flow structure of the secondary
flow. This explanation is supported by our previously published
work, which provided a structural analysis of viscoelastic turbulent
flow in serpentine channels Shakeri et al. [90]. Applying the proper
orthogonal decomposition method on velocity fluctuations
obtained by particle image velocimetry of viscoelastic flow in a
serpentine channel, we demonstrated that in fact, secondary flows
are the dominant feature that contribute to the kinetic energy in
viscoelastic flows at high shear rates, but still low Re numbers.
When the flow of viscoelastic fluids becomes turbulent, it is
reasonable to assume that the stretching of polymers intensifies
and hence the evolution of normal stress differences gets amplified.
Therefore, the purely elastic instability has an amplifying effect on
the secondary flow structures. Thus, the combination of these two
elasticity driven phenomena has a synergistic effect on providing
the force required to destabilize the interfaces and mobilize the
capillary entrapments.

4 Conclusion

In this work, we investigated the underlying mechanism that leads
to an improved mobilization of capillary entrapments in porous media
by invasion of viscoelastic polymer solutions. To this aim, we conducted
a series of displacement experiments employing various Newtonian and
non-Newtonian fluids to separate the effects of viscosity and elasticity
on the displacement process. While entrapments in large pores were
mainly affected by an increased viscosity ratio between the invading and
defending fluids, entrapments at small throats with high capillary
pressure remained unaffected as long only the capillary number was
varied. A distinct behavior was observed during the invasion of
viscoelastic polymer solutions, where the fluid–fluid interfaces began
to fluctuate. Moreover, small entrapments were affected and were
eventually displaced by viscoelastic polymer flooding. However, due
to the complexity of flow in porous media, a clear separation of viscosity
and elasticity related effects is not straightforward. To tackle this
problem, we focused on a single entrapment enclosed by two
symmetric serpentine channels that allowed us to study elasticity
driven fluctuations while eliminating the influence of viscous forces.
We have found out that these fluctuations are caused by a synergetic
effect of secondary flows and purely elastic instability generated by a first
normal stress difference N1. The randomness of these fluctuations lead
to a symmetry-breaking of the flow paths and is consequently the
ultimate cause for the observedmobilization of capillary entrapments in
our single-pore geometry. Since in flow in porous media, curved path
lines are as well a dominant feature, a similar mechanism is responsible
for an enhanced displacement process. However, to address how other
features present in the flow in porous media such as elongational flow
contribute to the displacement process is an interesting task for future
research.
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