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Multi-component molecular machines are ubiquitous in biology. We review
recent progress on describing their thermodynamic properties using
autonomous bipartite Markovian dynamics. The first and second laws can be
split into separate versions applicable to each subsystem of a two-component
system, illustrating that one can not only resolve energy flows between the
subsystems but also information flows quantifying how each subsystem’s
dynamics influence the joint system’s entropy balance. Applying the framework
to molecular-scale sensors allows one to derive tighter bounds on their energy
requirement. Two-component strongly coupled machines can be studied from a
unifying perspective quantifying to what extent they operate conventionally by
transducing power or like an information engine by generating information flow to
rectify thermal fluctuations into output power.
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1 Introduction

Livings things are fundamentally out of thermodynamic equilibrium [1]. Maintaining
this state requires a constant flow of energy into them accompanied by dissipation of heat
into their environment. Quantifying these flows is straightforward for macroscopic systems
but much less so on the small scales of molecular machinery. The advent of ever-more-
refined experimental equipment capable of probing small-scale thermodynamics has led to
the burgeoning field of stochastic thermodynamics [2–5]. Within this theory, energy flows
are deduced from the thermally influenced stochastic dynamics of small-scale systems,
permitting quantification of heat dissipation and energetic requirements of diverse
experimental setups as well as molecular biological machinery.

1.1 Information thermodynamics

Information plays an interesting and, at times, adversarial role in thermodynamics. At
the dawn of statistical mechanics, Maxwell illustrated the counterintuitive role of
information by arguing that an intelligent demon could separate gas molecules according
to their velocity with seemingly no expense of energy, apparently contradicting the second
law [6]. Resolving this paradox plagued physicists for a century [6, 7], leading to well-known
contributions from Szilard [8], Landauer [9], and Bennett [10] ultimately showing that
acquiring, processing, and storing information incurs thermodynamic costs that balance or
exceed any benefit gained from it.

Within the theory of stochastic thermodynamics, information has been incorporated in
various ways, including measurement and feedback [11–17] performed by an experimenter
on a system, and a system interacting with information reservoirs [18–21]; this established
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information as a proper thermodynamic resource [22] that sets
limits on system capabilities similar to work and free energy. Diverse
theoretical works [23–29] and experimental realizations [30–48]
illustrate information-powered engines.

1.2 Autonomous and complex systems
consisting of subsystems

Small-scale information thermodynamics is also relevant for
biological systems such as molecular machines and molecular-scale
sensors [49, 50]. Understanding living systems at small scales and
advancing the design of nanotechnology [51] requires extending
thermodynamics beyond conventional contexts: Instead of the
scripted experimental manipulation of time-dependent control
parameters, living systems are autonomous, driven out of
equilibrium by steady-state nonequilibrium boundary conditions.

Moreover, embracing more of the complexity of biology, we seek
understanding beyond the interactions of a system with weakly
coupled baths, to encompass interactions among strongly coupled
subsystems [52–55]. Lacking a clear separation between a
measurement that collects information about a system and
feedback that acts on this information [56], in autonomous
systems it is more practical to differentiate between subsystems:
An upstream system that generates information for a downstream
system to react to or exploit.

While in the non-autonomous setup apparent second-law
violations result from not correctly accounting for non-
autonomous interventions by an experimenter [12–17, 28], in
autonomous multi-component systems they can be traced back
to thermodynamic accounting that ignores the strong coupling
[56–59].

In its simplest form such an autonomous setup is realized by a
downstream molecular sensor that reacts to an independent
upstream signal [60–65]. More complex interactions are realized
by two-component strongly coupled molecular machines in which
the dynamics of each component is influenced by the other [54, 66,
67] and by assemblies of molecular transport motors that collectively
pull cargo [68, 69].

Here we focus on such autonomous systems, collecting results
that extend information thermodynamics to contexts lacking
explicit external measurement and feedback, and showcase that
bipartite Markovian dynamics and information flow are versatile
tools to understand the thermodynamics and performance limits of
these systems.

1.3 Objectives and organization

Our aims with this review are to:

1. Build on stochastic thermodynamics to give a gentle
introduction to the information-flow formalism, deriving all
necessary equalities and inequalities and relating the different
names and concepts for similar quantities that appear
throughout the literature. Section 2 introduces bipartite
dynamics and establishes the notation. Section 3 and
Section 4 deal with energy and information flows in these

bipartite systems in general, while Section 5.1 compares
various similar information-flow measures.

2. Collect results valid for biomolecular sensors, for which the
information-flow formalism produces a tighter second law.
These are contained in Section 5.

3. Address engine setups and show that the information-flow
formalism advances understanding of autonomous two-
component engines simultaneously as work and information
transducers (Section 6).

1.4 Related reviews

The information-flow formalism is firmly rooted in the theory of
stochastic thermodynamics. Recent reviews include a comprehensive
one by Seifert [2] and reviews by Jarzynski [3] (focusing on non-
equilibrium work relations), Van den Broeck and Esposito [4]
(explicitly dealing with jump processes), and Ciliberto [70] (on
experiments in stochastic thermodynamics). The recent book by
Peliti and Pigolotti [5] also gives a pedagogical introduction to the
field. Information thermodynamics itself has recently been reviewed by
Parrondo et al. [22].

Turning to molecular machinery, the working principles of
Brownian motors have been reviewed by Reimann [71]. General
aspects of molecular motors can be found in the reviews by
Chowdhury [72] and Kolomeisky [73]. Brown and Sivak [74]
focus on the transduction of free energy by nanomachines, while
reviews by Silverstein [75] and Li and Toyabe [76] specifically treat
the efficiencies of molecular motors.

2 Bipartite dynamics

We consider a mesoscopic composite system whose state at time t is
denoted by z(t). Due to thermal fluctuations, its dynamics are described
by aMarkovian stochastic process defined by aMaster equation [77, 78]:

d
dt
pt z( ) � ∑

z′
R z|z′; t( )pt z′( ) − R z′|z; t( )pt z( )[ ], (1)

where pt(z) is the probability to find the composite system in state z
at time t and the transition rates R(z|z′;t) (sometimes also called the
generator) encode the jump rates from state z′ to state z. For
convenience, we assume a discrete state space; however, all
results can easily be translated into continuous state-space
dynamics, as we allude to in Section 2.3. If multiple paths
between states z′ and z are possible, the RHS in Eq. (1) needs to
include a sum over all possible jump paths.

We assume that one can meaningfully divide the state space into
distinct parts, e.g., z = {x, y}, where two subsystems X and Y are
identified as distinct units interacting with each other. The process
z(t) is bipartite if the transition rates can be written as

R z|z′; t( ) � Rxx′
y t( ) δy,y′ + Rx

yy′ t( ) δx,x′, (2)

meaning that transitions cannot happen simultaneously in multiple
subsystems. Note that this does not imply that the processes x(t) and
y(t) are independent of each other; rather their influence on each
other is restricted to modifying the other process’s transition rates.
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When the dynamics of the joint system are not bipartite, the
dissection of energy and information flows presented in the
following is more challenging. Chétrite, et al. have investigated
this case [79]. Moreover, information flows for quantum systems
(without bipartite structure) have also been analyzed [80]. Here, we
exclusively cover classical bipartite systems.

2.1 Paradigmatic examples

Bipartite dynamics should be expected whenever two systems
(that possess their own dynamics) are combined such that each
fluctuation can be decomposed into independent contributions. The
dynamics of systems studied in cellular biology can often be
approximated as bipartite.

Two paradigmatic examples that have been well studied are
molecular motors (such as Fo−F1 ATP synthase) with strongly
coupled interacting sub-components, or cellular sensors that react
to a changing external concentration. The joint dynamics of such
systems can be decomposed into the distinct fluctuations of each
subsystem, each of which is influenced by the other subsystem (in
the case of a strongly coupled molecular machine) or into dynamics
strongly influenced by an independent process (in the case of a
sensor). Figure 1 shows examples and associated simplified state
graphs.

2.2 Notation

To keep the notation concise and unambiguous, we adopt the
following conventions:

1. Random variables are denoted with small letters. Occasionally the
more explicit notation p(Xt = x) is used to avoid ambiguity.

2. The joint probability of two random variables taking values x and
y, respectively, is denoted by p(x, y). The conditional probability
of x given y is denoted by p(x|y).

3. Time arguments are dropped for probabilities and transition
rates unless distinct times appear in a single expression, as in
p(xt, yt′).

4. Total time derivatives are denoted with a dot. The bipartite
assumption ensures that rates of change of various quantities
can be split into separate contributions due to the X and Y
dynamics, respectively. Those individual rates of change are
indicated with a dot and the corresponding superscript,
i.e., _E

X
is the rate of change of energy E due to X-dynamics

and _E � _E
X + _E

Y
[see Eqs (16a)–(16c)].

5. When no argument is given, symbols represent global quantities,
whereas capitalized arguments in square brackets indicate different
subsystem-specific quantities, e.g., S≔ −∑x,yp(x, y) lnp(x, y) is the joint
entropy, while S[X] ≔ − ∑x p(x) lnp(x) and S[X|Y] ≔ − ∑xyp(x, y)
ln p(x|y) are marginal and conditional entropies, respectively
[81, Chap. 2].

2.3 Continuous state spaces

The framework outlined below can also be applied to continuous
state spaces. For continuous diffusion processes described by a
Fokker-Planck equation (82) this has been done in [58].

For diffusion-type dynamics, Eq. (2) corresponds to the
statement that the diffusion matrix must be block-diagonal, such
that the Fokker-Planck equation can be written as

FIGURE 1
Paradigmatic example systems and their simplified state graphs. (A) Simplified model for Fo−F1 ATP synthase. Upstream Fo dynamics are cyclically
driven by a proton gradient while downstream F1 dynamics are driven in the opposite direction by ATP hydrolysis [54, 66, 67]. Through their coupling, the
joint system can transduce work by driving the downstream system against its natural gradient, thereby converting one chemical fuel into another. (B)
Simplified model of a biochemical sensor, e.g., involved in E. coli chemotaxis [60–65]. The upstream signal is the binding state (bound or unbound)
of the receptor which is reflected in the downstream protein conformation by modifying its potential-energy landscape and thereby influencing the
transition rates between configurations.
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zpt x, y( )
zt

� − z

zx
μX x, y; t( ) −DX z

zx
[ ]pt x, y( )

− z

zy
μY x, y; t( ) −DY z

zy
[ ]pt x, y( ), (3)

for respective subsystem drift coefficients μX and μY and subsystem
diffusion coefficients DX and DY. The corresponding coupled
Langevin equations (78) are.

_x � μX x, y; t( ) + 



DX

√
ξX t( ) (4a)

_y � μY x, y; t( ) + 



DY

√
ξY t( ), (4b)

where ξX(t) and ξY(t) are independent Gaussian white-noise terms
for which 〈ξX(t)ξX(t′)〉 � 2δ(t − t′), and similarly for Y, and
〈ξX(t)ξY(t′)〉 � 0. Therefore the two components X and Y are
indeed influenced by independent fluctuations, which is often a
reasonable approximation for most systems studied here, e.g., two-
component molecular machines.

3 Energy flows

As a first step towards a thermodynamic interpretation of the
stochastic dynamics described above, we relate stochastic transitions
to energy exchanges between the two subsystems and between
individual subsystems and the environment as represented by
baths/reservoirs of various kinds. For the systems considered here
it is safe to assume that all processes are isothermal and that their
stochasticity is due to thermal fluctuations.

For systems relaxing to equilibrium the transition rates in Eqs
(1) and (2) are related to thermodynamic potentials through the
detailed-balance relation. This relation follows from demanding
that, in the absence of any driving, the distribution of system
states must relax to the equilibrium distribution with no net flux
along any transition,

0 � Rxx′
yy′peq x′, y′( ) − Rx′x

y′ypeq x, y( ). (5)

The equilibrium distribution is the Boltzmann distribution
peq(x, y) � exp[−(ϵxy − Feq)/kBT], where ϵxy is the potential
energy of the system state (x, y), kB is Boltzmann’s constant, T
the temperature, and Feq the equilibrium free energy. Consequently,
the transition rates are related by

ln
Rxx′
yy′

Rx′x
y′y

� ϵx′y′ − ϵxy
kBT

. (6)

When each system state is a mesostate composed of many
microstates, as is common for modeling small biological systems,
the potential energy ϵxy must be replaced by a mesostate
free energy [83]. The following thermodynamic formalism
remains unchanged, however.

The systems we consider here are driven by chemical
reactions and external loads and do not obey the detailed-
balance relation. Consequently they do not, in general, relax
to equilibrium. Conceptually, we could include the state of the
other reservoirs (chemical and work reservoirs) into the
microstate Z of the system and then describe a non-
equilibrium steady state as a very slow relaxation to global

equilibrium, driving cyclical processes in the system of
interest; however, such a description would be unnecessarily
cumbersome. Assuming that these reservoirs are large compared
to the system of interest and weakly coupled to it, we split the
free energy of the supersystem into contributions from the
reservoirs and the system of interest. Then, energy exchanges
between all reservoirs and the system of interest are treated in
the same way as energy exchanges with a heat bath, giving a local
detailed-balance relation [4, 83–85]:

ln
Rxx′
yy′

Rx′x
y′y

�
ϵx′y′ − ϵxy − ∑] Δμxx′yy′( ) ]( )

+ fX Δxx′ + fY Δyy′

kBT
, (7)

where (Δμxx′yy′)(]) is the free-energy change in the reservoir ] associated
with system transition (x′, y′) → (x, y), f X and f Y are external forces
(here assumed constant) acting on the respective subsystems, and Δxx′
and Δyy′ are the respective lengths the subsystems undertake against
their respective external forces when stepping from (x′, y′) to (x, y). The
RHS of Eq. (7) is sometimes called entropy flow associated with a
transition [4]. Importantly, if multiple paths connect the states {x′, y′}
and {x, y}, local detailed-balance relations hold separately for each of
these paths [86].

3.1 Global energy balance

Armed with the local detailed-balance relation (7), we identify
different energy flows in the system. Below, we state the usual
conventions of stochastic thermodynamics [2, 4] to identify the
different contributions (heat and work) associated with each
transition. The average rate _Q(t) of heat exchanged with the
thermal environment is given by averaging the log-ratio of
transition rates over the net flux for all transitions in the system:

_Q ≔ − kBT ∑
x>x′,y>y′

Rxx′
yy′ p x′, y′( ) − Rx′x

y′y p x, y( )[ ] ln Rxx′
yy′

Rx′x
y′y

, (8)

where we assume that the states x and y are consecutively numbered,
so that the notation x > x′ indicates a sum over transitions between
distinct states, omitting the reverse transitions. Throughout this
review all energy flows into the system are positive by convention.

Two types of work can be identified, _W � _Wchem + _Wmech. These
are the average rate of chemical work associated with the influx of
energy from the chemical reservoirs,

_Wchem ≔ − ∑
x>x′,y>y′

Rxx′
yy′ p x′, y′( ) − Rx′x

y′y p x, y( )[ ] ∑
]

Δμxx′yy′( ) ]( )
,

(9)
and the average rate of mechanical work due to the subsystems’
responses to external forces,

_Wmech ≔ ∑
x>x′,y>y′

Rxx′
yy′ p x′, y′( ) − Rx′x

y′y p x, y( )[ ] fXΔxx′ + fYΔyy′( ).
(10)

Finally, we identify the rate of change of average internal
energy as
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_E ≔ ∑
x>x′,y> y′

Rxx′
yy′ p x′, y′( ) − Rx′x

y′y p x, y( )[ ] ϵxy − ϵx′y′( ). (11)

With Eqs (7)-(10), we verify the global first law, representing the
global energy balance:

_E � _Q + _Wchem + _Wmech, (12)
which retrospectively justifies identifying the log-ratio of transition
rates as heat (8).

3.2 Subsystem-specific energy balances

Due to the bipartite assumption (2), we also find subsystem-
specific versions of this balance equation by splitting all energy flows
into contributions from the respective subsystems: First the
heat flow

_Q � _Q
X + _Q

Y
(13a)

splits into subsystem-specific heat flows

_Q
X
≔ − kBT ∑

x>x′,y
Rxx′
y p x′, y( ) − Rx′x

y p x, y( )[ ] ln Rxx′
y

Rx′x
y

(13b)

_Q
Y
≔ − kBT ∑

x,y>y′
Rx
yy′ p x, y′( ) − Rx

y′y p x, y( )[ ] ln Rx
yy′

Rx
y′y

. (13c)

Similarly, the chemical work

_Wchem � _W
X

chem + _W
Y

chem (14a)
splits into

_W
X

chem ≔ − ∑
x>x′,y

Rxx′
y p x′, y( ) − Rx′x

y p x, y( )[ ] ∑
]

Δμxx′y( ) ]( )
(14b)

_W
Y

chem ≔ − ∑
x,y>y′

Rx
yy′ p x, y′( ) − Rx

y′y p x, y( )[ ] ∑
]

Δμxyy′( ) ]( )
, (14c)

where Δμxx′y is equal to Δμxx′yy′ evaluated for y = y′ and similarly for
Δμxyy′. The bipartite assumption (2) ensures that these two functions
together cover all applicable Δμxx′yy′.

Finally, the mechanical work

_Wmech � _W
X

mech + _W
Y

mech (15a)
splits into

_W
X

mech ≔ ∑
x>x′,y

Rxx′
y pt x′, y( ) − Rx′x

y p x, y( )[ ]fXΔxx′ (15b)

_W
Y

mech ≔ ∑
x,y>y′

Rx
yy′ pt x, y′( ) − Rx

y′y pt x, y( )[ ]fYΔyy′. (15c)

Moreover, we formally split the change in the joint potential
energy

_E � _E
X + _E

Y
(16a)

into contributions due to the respective dynamics of each particular
subsystem,

_E
X ≔ ∑

x>x′,y
Rxx′
y p x′, y( ) − Rx′x

y p x, y( )[ ] ϵxy − ϵx′y( ) (16b)

_E
Y ≔ ∑

x,y>y′
Rx
yy′ p x, y′( ) − Rx

y′y p x, y( )[ ] ϵxy − ϵxy′( ), (16c)

where a positive rate indicates that the joint potential energy
increases due to the respective subsystem’s dynamics.

We obtain the subsystem-specific first laws as the balances of
energy flows into the respective subsystems:

_E
X � _Q

X + _W
X

chem + _W
X

mech (17a)
_E
Y � _Q

Y + _W
Y

chem + _W
Y

mech. (17b)
With Eqs (2), (7)–(11), and (13a)–(16c), we verify that the sum

of the subsystem-specific first laws in Eqs (17a) and (17b) yields the
global first law (12).

3.3 Work done by one subsystem on the
other

The subsystem-specific first laws in Eqs (17a) and (17b) stem
from a formal argument. Ideally, we would like to identify internal
energy flows that the subsystems communicate between each other;
i.e., we would like to identify transduced work in the manner of [55].
However, with no clear prescription on how to split the energy
landscape into X-, Y-, and interaction components,

ϵxy � ϵx + ϵy + ϵintxy, (18)

the identification of energy flowing from one subsystem to the other
remains ambiguous: For example, how much has a change in the X-
coordinate changed the potential energy of the X-subsystem and
how much has it changed the interaction energy? The ambiguity has
already been pointed out in [87], where the authors propose to settle
it through physical arguments by identifying a clear interaction term
in the Hamiltonian and asking that the splitting leaves constant the
average subsystem energy.

We propose a different approach to define an input work into one
subsystem. Conventionally work is defined for interactions between a
work reservoir (e.g., an experimentalist’s external power source) and a
system. Interactions between the work reservoir and the system are
mediated by a control parameter influencing the system’s potential-
energy landscape. Crucially, there is negligible feedback from the
system state to the dynamics of the control parameter. To define work
between subsystems, imagine treating subsystem Y as if it were an
externally manipulated control parameter influencing the potential-
energy landscape ofX. Then, the power done by the control parameter
Y on system X would be supplied externally and equal the rate of
change of internal energy due to the dynamics of the control
parameter:

_W
Y→X ≔ _E

Y
. (19a)

Consequently, we define _W
Y→X

as the transduced work from Y to X,
which is positive when Y increases the potential energy available to
X. Similarly we define
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_W
X→Y ≔ _E

X
(19b)

as the transduced work from X to Y. Thus, an externally
manipulated control parameter could be understood as the
limiting case of a negligible back-action from the downstream
system to the (possibly deterministic) dynamics of the upstream
system. This identification of energy flows communicated
between the systems becomes useful when singling out one
subsystem that is driven (possibly with feedback) by another
one (see Section 6).

Figure 2 summarizes the splitting of the first law presented in
this section and illustrates how energy moves between the
subsystems.

4 Entropy and free-energy balance

As always in thermodynamics, energetics are only half of the
picture. We therefore next consider entropic quantities. Together,
the rate _E of change of global internal energy E (11), and the rate _S of
change of global entropy S (defined in the following) determine the
rate of change of nonequilibrium (or “generalized”) free energy
[88–91],

_F ≔ _E − kBT _S. (20)

4.1 Global entropy balance

Following Ref. [4], we explicitly write the rate of change of
system entropy:

_S � −∑
x,y

d
dt

p x, y( )lnp x, y( ) (21a)

� − ∑
x,x′,y,y′

Rxx′
yy′ p x′, y′( ) − Rx′x

y′y p x, y( )[ ]lnp x, y( ) (21b)

� − ∑
x>x′,y>y′

Rxx′
yy′p x′, y′( ) − Rx′x

y′yp x, y( )[ ]ln p x, y( )
p x′, y′( ) (21c)

� ∑
x>x′,y> y′

Rxx′
yy′p x′, y′( ) − Rx′x

y′yp x, y( )[ ]lnR
xx′
yy′ p x′, y′( )
Rx′x
y′y p x, y( )︸�������������������������︷︷�������������������������︸

≕ _Σ

− ∑
x>x′,y>y′

Rxx′
yy′p x′, y′( ) − Rx′x

y′yp x, y( )[ ]ln Rxx′
yy′

Rx′x
y′y︸���������������������︷︷���������������������︸

�− _Q/kBT

,

(21d)
where we have used the Master equation (1) in Eq. (21b), the fact
that Eq. (21b) sums over every transition twice in Eq. (21c), and the
definition of the heat flow (8) in Eq. (21d).

Rearranging the terms gives the global second law:

_Σ � _S − _Q

kBT
(22a)

� ∑
x>x′,y>y′

Rxx′
yy′p x′, y′( ) − Rx′x

y′yp x, y( )[ ]lnRxx′
yy′ p x′, y′( )
Rx′x
y′y p x, y( ) (22b)

≥ 0, (22c)
where _Σ is the rate of global entropy production, i.e., the rate at
which entropy is produced in the whole system and attached baths.
Its nonnegativity follows from the fact that, in each term of the sum
in Eq. (22b), the two factors are always either both positive or both
negative.

Using the definition of nonequilibrium free energy (20) and the
global first law (12), we rewrite the global second law as

_Wmech + _Wchem − _F≥ 0. (23)

4.1.1 Marginal and hidden entropy production
An interesting digression covers related research on inferring

total entropy production from the dynamics of only one subsystem.
Prominent examples of such systems with hidden degrees of freedom
are molecular transport-motor experiments [73, 92] in which only
trajectories of an attached cargo are observed while the motor

FIGURE 2
Energy flows in autonomous bipartite systems. (A) Global energy flows can be distinguished between work (mechanical and chemical) and heat.
Since at steady state the average global internal energy stays constant, average flows of work and heatmust cancel. (B) The bipartite assumption (2) allows
decomposition of energy flows into contributions from each subsystem. Color and direction of arrows reflect the subsystem-specific first laws (17a) in red
and (17b) in blue.

Frontiers in Physics frontiersin.org06

Ehrich and Sivak 10.3389/fphy.2023.1108357

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1108357


dynamics are hidden. Assessing motor efficiency, however,
necessitates a detailed knowledge of the internal motor dynamics.
Hence thermodynamic inference [83] is required to infer hidden
system properties.

Alongside dynamics on masked Markovian networks [93–102],
bipartite systems have been used to model situations in which one
sub-component of the full system is hidden. One common strategy
consists of mapping the observed dynamics of one subsystem onto a
Markov model, which generally produces a lower bound on the total
entropy production rate [86] that can subsequently be augmented
with any information available about the hidden dynamics [103].
However, the observed process is non-Markovian which results, e.g.,
in modifications of fluctuation theorems [104–106]. Another
approach is to use thermodynamic uncertainty relations
[107–111] to produce a bound on the total entropy production
using observable currents.

Importantly, the formalism laid out here requires full
observability of the dynamics of both subsystems; recent efforts
have explored when one can infer the kind of driving mechanism
from observations of just one degree of freedom, e.g., the dynamics
of probe particles attached to unobserved molecular motors
[92, 112].

4.2 Subsystem-specific entropy balance

In analogy to subsystem-specific versions of the first law (17a),
(17b) which introduce energy flows between the different
subsystems, subsystem-specific versions of the second law
introduce an entropic flow between the systems, called
information flow.

The bipartite assumption (2) splits the global entropy
production (22b) into two nonnegative
contributions, _Σ � _ΣX + _ΣY

:

_ΣX ≔ ∑
x>x′,y

Rxx′
y p x′, y( ) − Rx′x

y p x, y( )[ ]lnRxx′
y p x′, y( )
Rx′x
y p x, y( ) ≥ 0 (24a)

_ΣY ≔ ∑
x,y>y′

Rx
yy′p x, y′( ) − Rx

y′yp x, y( )[ ]lnRx
yy′p x, y′( )
Rx
y′yp x, y( ) ≥ 0. (24b)

To make contact with the form of the global second law (22a),
we identify different contributions to the subsystem-specific entropy
productions _ΣX

and _ΣY
:

_ΣX � _S
X − _Q

X

kBT
(25a)

_ΣY � _S
Y − _Q

Y

kBT
, (25b)

where _Q
X

and _Q
Y
are the heat flows (13b) and (13c) into the

respective subsystems and, in accordance with the identification of
rates of change of energy in Eqs (16b) and (16c), we identify the rates
of change of total entropy due to the individual subsystem dynamics.

_S
X
≔ − ∑

x>x′,y
Rxx′
y p x′, y( ) − Rx′x

y p x, y( )[ ]ln p x, y( )
p x′, y( ) (26a)

_S
Y
≔ − ∑

x,y>y′
Rx
yy′ p x, y′( ) − Rx

y′y p x, y( )[ ]ln p x, y( )
p x, y′( ). (26b)

Importantly, these rates are not the rates of change of marginal
entropies S[X] = −∑ x p(x) ln p(x) and S[Y] = −∑yp(y) ln p(y).
Rewriting the subsystem-specific entropy productions with these
marginal rates leads to the identification of an information flow, as
we show in Section 4.3.

Substituting the subsystem-specific first laws (17a), (17b) gives
subsystem-specific second laws in terms of work and free energy,

_W
X

mech + _W
X

chem − _F
X ≥ 0 (27a)

_W
Y

mech + _W
Y

chem − _F
Y ≥ 0, (27b)

where _F
X � _E

X − kBT _S
X
is the rate of change of nonequilibrium

free energy due to the dynamics of X, and similarly for _F
Y
. Their

sum gives the rate of change _F of the nonequilibrium free
energy.

While formally appealing, the rate of change of nonequilibrium
free energy due to one subsystem’s dynamics has little utility. Often,
one only knows the free energy for one subsystem (e.g., by having
constructed a potential-energy landscape for one of the subsystems
as done in [113] for the F1-component of ATP synthase) or the free
energy of one subsystem is unknown or undefined (e.g., for the
external environment process in a sensing setup). To this end, we
next present other ways of writing (and interpreting) the subsystem-
specific second laws.

4.3 Subsystem-specific second laws with
information flows

We express the rate _S
X
of change of total entropy due to the

dynamics of X (26a) in terms of the rate of change of marginal
entropy,

_S X[ ] � − ∑
x>x′,y

Rxx′
y p x′, y( ) − Rx′x

y p x, y( )[ ]ln p x( )
p x′( ), (28)

and similarly for _S
Y
to rewrite Eqs (25a), (25b) as

0≤ _ΣX � _S X[ ] −
_Q
X

kBT
− _I

X
(29a)

0≤ _ΣY � _S Y[ ] −
_Q
Y

kBT
− _I

Y
. (29b)

Here, we have identified the remaining terms as the information
flows [87],

_I
X ≔ lim

dt→0

I Xt+dt;Yt[ ] − I Xt;Yt[ ]
dt

(30a)

_I
Y ≔ lim

dt→0

I Xt;Yt+dt[ ] − I Xt;Yt[ ]
dt

, (30b)

i.e., the rate of change of mutual information between the
subsystems that is due only to the dynamics of one of them.
Information flow is positive when the dynamics of the
corresponding subsystem increase the mutual information
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between the two subsystems. In Supplementary Appendix S1 we
show that for bipartite Markovian dynamics this definition leads to

_I
X � ∑

x>x′,y
Rxx′
y p x′, y( ) − Rx′x

y p x, y( )[ ]ln p y|x( )
p y|x′( ), (31a)

_I
Y � ∑

x,y>y′
Rx
yy′ p x, y′( ) − Rx

y′y p x, y( )[ ]ln p x|y( )
p x|y′( ), (31b)

i.e., the form used in [57] with which we can verify the equality of
Eq. (25a) and Eq. (29a) and similarly of Eq. (25b) and Eq. (29b).
Equations (29a), (29b) express the same subsystem-specific
entropy productions as Eqs (25a), (25b). The latter contain
subsystem-specific changes _S

X
and _S

Y
of the global (joint)

entropy S. In contrast, the former contain changes of the
marginal entropies S[X] and S[Y]. Joint entropy not only
contains the sum of marginal entropies, but also the mutual
information, S = S[X] + S[Y] − I[X; Y] [81, Chap. 2.3].
Consequently, changes in joint entropy not only contain
contributions from the changes of marginal entropies, but
also the change in mutual information. The information flows
IX and IY distribute this rate of change symmetrically across the
two subsystem-specific entropy productions. Summing (30a)
and (30b) yields the total change in mutual information
between X and Y. For Markovian bipartite dynamics this
reads explicitly.

_I
X + _I

Y � ∑
x>x′,y>y′

Rxx′
yy′p x′, y′( ) − Rx′x

y′yp x, y( )[ ] ln
p y|x( )
p y|x′( ) + ln

p x|y( )
p x|y′( )[ ]

(32a)
� ∑

x>x′,y>y′
Rxx′
yy′p x′, y′( ) − Rx′x

y′yp x, y( )[ ]

× ln
p x, y( )

p x( )p y( )
p x′( )p y′( )
p x′, y′( ) + ln

p x, y( )
p x( )p y( )

p x′( )p y′( )
p x′, y′( )[ ] (32b)

� ∑
x>x′,y> y′

Rxx′
yy′p x′, y′( ) − Rx′x

y′yp x, y( )[ ]ln p x, y( )
p x( )p y( )

p x′( )p y′( )
p x′, y′( ) (32c)

� _I, (32d)

where the bipartite assumption (2) ensures that there is no
contribution from transitions in which x and y change
simultaneously.

The term information flow was first used in the context of non-
equilibrium thermodynamics by Allahverdyan et al. [87] and was
later taken up by Horowitz and Esposito [57]. Section 5.1 compares
information flow with conceptually similar quantities called
nostalgia [114] and learning rate [65].

Notice the appealing structure of the subsystem-specific entropy
productions in Eqs (29a) and (29b): For interacting subsystems, it is
not enough to consider marginal entropy changes and heat flows
into one subsystem, because to obtain a non-negative entropy
production rate, one needs an additional term due to correlations
between the interacting subsystems. Expressed differently: When
one explicitly neglects or is unaware of other subsystems strongly
coupled to the subsystem of interest, erroneous conclusions about
the entropy production are possible, either overestimating it or
perhaps even finding it to be negative, leading to a Maxwell-demon-
like paradox.

We next present two alternative representations of the same
subsystem-specific entropy production that rely on rewriting the

rate of change of global entropy _S
X
due to X dynamics in terms of

the time-derivative of conditional entropy, _S[X|Y], instead of the
time-derivative of marginal entropy, _S[X].

4.3.1 Alternative representation of subsystem-
specific entropy production in terms of conditional
entropy

In addition to the formulation in Eq. (29a), the subsystem-
specific entropy production in Eq. (25a) can also be rewritten in
terms of the rate of change _S[X|Y] � − d

dt∑x,yp(x, y) lnp(x|y) of
conditional entropy, since.

_S
X � − ∑

x>x′,y
Rxx′
y p x′, y( ) − Rx′x

y p x, y( )[ ]ln p x, y( )
p x′, y( ) (33a)

� − ∑
x>x′,y>y′

Rxx′
yy′ p x′, y′( ) − Rx′x

y′y p x, y( )[ ]ln p x, y( )
p x′, y( ) (33b)

� − ∑
x>x′,y> y′

Rxx′
yy′ p x′, y′( ) − Rx′x

y′y p x, y( )[ ]ln p x|y( )
p x′|y′( )

p x′|y′( )
p x′|y( )

(33c)
� _S X|Y[ ] − ∑

x′,y>y′
Rx′
yy′ p x′, y′( ) − Rx′

y′y p x′, y( )[ ]lnp x′|y′( )
p x′|y( )

(33d)
� _S X|Y[ ] + _I

Y
, (33e)

where line (33b) uses the bipartite assumption (2) along with the fact
that, due to the log-ratio in Eq. (33b), all terms y ≠ y′ are zero. Line
(33e) follows from the definition (31b) of _I

Y
. This leads to

0≤ _ΣX � _S X|Y[ ] −
_Q
X

kBT
+ _I

Y
. (34)

Comparing with Eq. (25a), which expresses the same subsystem-
specific entropy production, we observe a difference in
interpretation: If one interprets Y not as a subsystem on equal
footing with X but instead as a stochastic control protocol for system
X, the subsystem-specific second law in Eq. (34) seems more natural.
Such stochastic control protocols arise naturally in the context of
sensors, where a changing environment effectively acts as a
stochastic protocol [114], and in contexts with measurement-
feedback loops where a stochastic measurement of the system
state dictates the statistics of the future control protocol
[11–15, 115].

4.3.2 Subsystem-specific second law with
conditional free energy

In cases where the nonequilibrium free energy of subsystem X is
known, we define a conditional nonequilibrium free energy of system
X given a control parameter Y as the average energy of X given the
particular control-parameter value y less (kBT times) the average
entropy of X given the control-parameter value y, all averaged
over Y.

F X|Y[ ] ≔ 〈〈ϵxy〉p x|y( ) − kBT( −∑
x

p x|y( )lnp x|y( ))〉p y( )
(35a)

� E − kBTS X|Y[ ]. (35b)
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Thus, this free energy is averaged over all stochastic control-
parameter values.

With the splitting of the first law in Eq. (16a), the subsystem-
specific first law in Eq. (17a), and the identification of transduced
work _W

Y→X
in Eq. (19a), we rewrite the subsystem-specific second

law in Eq. (34) as.

0≤ kBT _ΣX � _W
Y→X + _W

X

mech + _W
X

chem − _F X|Y[ ] + kBT _I
Y

(36a)
� _W

→X − _F X|Y[ ] + kBT _I
Y
, (36b)

where _W
→X ≔ _W

Y→X + _W
X
mech + _W

X
chem is the total input work into

subsystem X. Again, compared to the regular second law, there is an
additional information flow modifying the entropy balance.

4.4 Steady-state flows

At steady state, average energy, entropy, and mutual information
are all constant, _E � _S � _S[X] � _S[X|Y] � _I[X;Y] � 0. However, this
does not imply that the subsystem-specific rates of change vanish, too;
but the energy and information flows do simplify, giving

_E
X � _W

X→Y � − _W
Y→X � − _E

Y
(37a)

_I
X � − _IY, (37b)

i.e., if one subsystem’s dynamics increase the average energy or
mutual information, the dynamics of the other must compensate
this change accordingly, to ensure constant energy and mutual
information at steady state. These relations are especially useful
for the dynamics of biological systems which can often be modelled
as at steady state.

4.5 Marginal and conditional entropy
productions

Note that the subsystem-specific entropy productions _ΣX
and

_ΣY
are neither marginal nor conditional entropy productions,

i.e., they do not result from the time-reversal statistics of the
non-Markovian marginal processes obtained by only observing
the X- or Y-dynamics or of the statistics of trajectories of one
subsystem conditioned on the trajectory of the other.

It is possible to define such marginal and conditional entropy
productions for bipartite Markov processes. As shown by Crooks
and Still [116], the total entropy production _Σ is then split into non-
negative marginal and conditional contributions. Similarly to the
subsystem-specific entropy production rates in (29a), (29b), which
contain the information flows _I

X
and _I

Y
, the resulting marginal and

conditional entropy productions contain information-theoretic
exchange terms. Unlike the information-flow formalism
presented here, such a splitting is not symmetric: this may be
natural when there is a clear distinction between the subsystems,
e.g., in the context of a sensor influenced by an external environment
signal (Section 5), but perhaps less so when one has reason to treat
the subsystems on equal footing.

4.6 Tighter second laws and information
engines

Historically, the question of how to incorporate information into a
thermodynamic theory so as to restore the second law’s validity has
attracted much interest. Discussions ranged around the thought
experiment of Maxwell’s demon [6, 7], with well-known contributions
from Szilard [8], Landauer [9], and Bennett [10]. Within stochastic
thermodynamics, Maxwell’s demon has been formalized as a process
with (repeated) feedback [11–15] and interactions with an information
reservoir (often modeled as a tape of bits) [18–21].

The advent of increasingly refined experimental techniques for
microscale manipulation has enhanced the prospect of finding
realizations of Maxwell’s thought experiment in real-world
molecular machinery, stimulating a formalization of the
thermodynamics of information [22]. The bulk of the
experimental realizations demonstrating the possibility of
information engines utilize some kind of time-dependent external
control [32, 34, 37–39, 41, 43–46]. In a recent example, an optically
trapped colloidal particle X is ratcheted against gravity without the
trap Y transducing any workWY→X to it, thus enabling the complete
conversion of heat to actual mechanical output work −WX

mech in the
gravitational potential [27, 47].

The picture of autonomous interacting subsystems does not
naturally allow such a clear distinction between measurement and
feedback, or between system and tape [56]. Instead, continuous
Maxwell demons are identified by current reversals, apparently
making heat flow against the direction indicated by the second
law [35, 59, 117, 118]. In this context the information-flow
formalism produces a bound on apparent second-law violations
in one subsystem using an information-theoretic quantity.

We are now in a position to assess the role of information flows
in the operation of two-component systems and make contact with
Maxwell’s demon.We focus on the specific second law applied to the
X-subsystem. Rearranging (34), we obtain:

_S X|Y[ ] −
_Q
X

kBT
≥ − _I

Y
, (38)

where the LHS is a conventional expression for the entropy
production due to system X (entropy change of the system state
X at fixed Y, minus heat flow _Q

X
into the system) and the RHS is an

information-theoretic quantity measuring an aspect of correlation
between X and another system Y.

Let us distinguish two cases: 1) If _I
Y < 0—naturally arising

whenever there is no feedback from X to Y—(38) represents an
improved lower bound on the traditional expression for entropy
production.

2) If _I
Y > 0, (38) states that the traditional expression for

entropy production can become negative, in apparent
contradiction to the second law. This can reasonably be
interpreted as a Maxwell-demon setup, and in this
continuous-time formalism can immediately be applied to
autonomous Maxwell demons such as [35, 59, 117, 118].

In Section 5 and Section 6 we discuss both cases in detail.
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5 Sensors: External Y-dynamics

The performance limits of biomolecular sensors such as those
found in Escherichia coli have gained attention [119–122]. As
observed by Berg and Purcell [123], the main challenge faced by
sensors tasked with measuring concentrations in the microscopic
world is the stochastic nature of their input signal, i.e., the irregular
arrival and binding of diffusing ligands; different strategies can
improve inference of ligand concentration [124–126].

Sensing has also been studied from an information-
thermodynamics perspective, where the main question revolves
around the minimum thermodynamic cost to achieve a given
sensor accuracy. Maintaining correlation between an internal
downstream signalling network and an external varying
environment is costly [62, 127–131] and involves erasing and
rewriting a memory, analogous to a Maxwell demon [132]. Here,
we focus on a high-level characterization of biomolecular sensing
that uses bipartite Markov processes.

Specifically, in a sensor setup, the stochastic dynamics of one of
the subsystems (the environmental signal) are independent of the
other (the sensor). Figure 1B shows an example of a sensor setup
inspired by the signaling network involved in E. coli chemotaxis. Let
Y be an external process (e.g., whether a ligand is bound to the
receptor) that influences the transition rates of the sensor X, but
whose transition rates are independent of X: Rx

yy′ � Ryy′. This
implies the nonpositivity of the Y-information flow in (31b):

_I
Y � ∑

x,y>y′
Ryy′ p x, y′( ) ln p x|y( )

p x|y′( ) − ∑
x,y>y′

Ry′y p x, y( )ln p x|y( )
p x|y′( )

(39a)
� ∑

x,y′>y
Ry′y p x, y( ) lnp x|y′( )

p x|y( ) − ∑
x,y>y′

Ry′y p x, y( )ln p x|y( )
p x|y′( )

(39b)
� − ∑

y≠y′
Ry′y p y( )∑

x

p x|y( )ln p x|y( )
p x|y′( )︸��������︷︷��������︸

≥ 0

(39c)

≤ 0, (39d)
where in Eq. (39b) we swapped summation indices y↔ y′ in the first
sum, and in Eq. (39c) the term with an underbrace is a relative
entropy and hence is nonnegative [81, Chap. 2.3].

Equation (34) thus implies a stronger second-law inequality:

_S X|Y[ ] −
_Q
X

kBT
≥ − _I

Y ≥ 0. (40)

The LHS represents the sensor’s entropy production, which is lower-
bounded by an information-theoretic quantity that has various
interpretations in the literature. In the following we will build
intuition about this quantity and comment on its relation to the
sensor’s measuring performance.

5.1 Nostalgia and learning rate

The first inequality in Eq. (40) was originally pointed out by
Still, et al. in a discrete-time formalism [114] and for possibly
non-Markovian external processes. In that formalism, − _IY is

interpreted as nostalgia quantifying the share of the mutual
information between X and Y that is not predictive of the
immediate future of Y or, equivalently, the rate at which
information between X and Y becomes irrelevant due to Y
dynamics. A sensor that predicts the future signal worse—in
the sense of storing more information that is useless for
predicting the next signal state—thus produces more entropy
than one that is more predictive, raising the possibility that
evolution selects for sensors that make parsimonious
predictions.

A second related quantity is the learning rate ℓx introduced by
Barato et al. [65]. Originally defined for systems in steady state, it is
exactly the information flow _I

X
in Eq. (31a):

ℓx � _I
X
. (41)

The learning rate quantifies how the uncertainty in an external
signal Y is reduced by the dynamics of X, i.e., how much X learns
about Y:

ℓx � ∑
x>x′,y

Rxx′
y p x′, y( ) − Rx′x

y p x, y( )[ ]ln p y|x( )
p y|x′( ) (42a)

� ∑
x>x′,y>y′

Rxx′
yy′p x′, y( ) − Rx′x

y′yp x, y( )[ ]ln p y|x( )
p y′|x′( )

− ∑
x,y>y′

Rx
yy′p x, y′( ) − Rx

y′yp x, y( )[ ]ln p y|x( )
p y′|x( )

(42b)

� − _S Y|X[ ] + _S
Y
Y|X[ ]. (42c)

Weused the bipartite assumption (2) in the second line. Here _S
Y[Y|X] is

the rate of change of S [Y|X] that is due to the Y-dynamics [65, 133].
In the special case of a steady state ( _S[Y|X] � 0), the information

flows cancel (ℓx � _I
X � − _IY) and inequality (40) reduces to

− _Q
X

kBT
≥ ℓx. (43)

This motivated Barato et al. to define an informational efficiency
[65], η ≔ − kBT ℓx/ _Q

X
, measuring the share of a sensor’s dissipation

that is used to actually track the environmental signal.
The following series of (in-)equalities sums up the relations

between the different measures of information flow:

_I
X � ℓx︸︷︷︸

learning rate

(44a)

� lim
dt→0

I Xt+dt;Yt[ ] − I Xt;Yt[ ]
dt

(30a)[ ] (44b)

� _I − _I
Y (32d)[ ] (44c)

� − _IY︸�︷︷�︸
(rate of ) nostalgia

steady state[ ] (44d)

≥ 0. external Y − dynamics[ ] (44e)

5.2 Other information-theoretic measures
of sensor performance

While information flow bounds sensor dissipation and has
intuitive interpretations in terms of predictive power [114] and
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learning rate [65], other information-theoretic quantities seemmore
natural to measure sensor performance.

For example, Tostevin and ten Wolde [134] have calculated
the rate of mutual information between a sensor’s input and
output; however, Barato et al. [64] have shown that this rate is not
bounded by the thermodynamic entropy production rate. (The
desired inequality requires both the time-forward trajectory
mutual information rate and its time-reversed
counterpart [135].)

Another commonly used quantity to infer causation is the (rate
of) transfer entropy [136], which in turn is a version of directed
information [137, 138] (for a gentle introduction see, e.g. [139],
section 15.2.2). Much like information flow, this rate also bounds the
sensor’s entropy production rate [133]; however, in general, it
represents a looser bound than the information flow. The
transfer-entropy rate measures the growth rate of mutual
information between the current environmental signal and the
sensor’s past trajectory. This motivated Hartich et al. [140] to
define sensory capacity as the ratio of learning rate and transfer-
entropy rate, measuring the share of total information between
environmental signal and the entire sensor’s past that the sensor’s
instantaneous state carries. It is maximal if the sensor is an optimal
Bayesian filter [141, 142].

Finally, a natural quantity to measure a sensor’s
performance is the static mutual information between its
state and the environmental signal. Brittain et al. [143] have
shown that in simple setups, learning rate and mutual
information change in qualitatively similar ways when system
parameters are varied; however, in more complex setups with
structured environmental processes or feedback from the sensor
to the environment, maximizing the learning rate might
produce a suboptimal sensor. They rationalize this result by
noting that the rate at which the sensor must obtain new
information to maintain a given level of static mutual
information does not necessarily coincide with the
magnitude of that static mutual information.

6 Engine setups: Feedback from X to Y

Here, we consider the more general case of an engine setup
in which the two components X and Y cannot be qualitatively
distinguished as an external and an internal process; instead,
both components X and Y form a joint system. On a formal
level, there now is feedback from X to Y, such that (39d) no
longer holds in general and it is not possible to make model-
independent statements about the direction of information
flow. To make contact with analyses of multi-component
molecular machines, we present a few conceptual
differences between external control by an experimenter and
what we call autonomous control by another coupled stochastic
system.

6.1 External vs autonomous control

There is a long history of nonequilibrium statistical mechanics
motivated by single-molecule experiments. A hallmark of these

experiments is dynamical variation by an external apparatus of
control parameters such as the position or force of an optical trap
[144], magnetic trap [145], or atomic-force microscope [146]. This
external control allows an unambiguous identification of work done
on a system as the change in internal energy achieved through the
variation of control parameters, and heat as the complementary change
of internal energy due to the system’s dynamics. Sekimoto [147, 148] has
identified heat and work for diffusive dynamics described by a Langevin
equation; this identification readily carries over to discrete dynamics [2,
4] and even Hamiltonian dynamics [3].

The notion of a deterministic control-parameter trajectory
allows, e.g., the derivation of fluctuation theorems [149–151] and
the study of how to optimize such a trajectory to minimize the
average work done on the system [152–157] or its fluctuations [158,
159]. Feedback can also be included in the analysis by considering
measurements and subsequent modifications to the control-
parameter trajectory that depend on measurement outcome
[11–15].

However, in biological systems, there is generally no
dynamical variation of external control parameters. Instead,
these systems are autonomous, and stochastic
thermodynamics occurs in the context of relatively constant
but out-of-equilibrium “boundary conditions”: a single
temperature and a variety of chemical potentials that are
mutually inconsistent with a single equilibrium system
distribution, thus leading to free-energy transduction [74]
when the coupling is sufficiently strong such that not all
currents flow in the direction of their driving force.
Increasingly, researchers are modeling molecular machines as
multi-component systems with internal flows of energy and
information. Examples are the molecular motor Fo−F1 ATP
synthase [66, 160, 161] that can be modeled using two
strongly coupled subsystems [54, 162–166], or molecular
motor-cargo collective systems where sometimes hundreds of
motors (such as kinesin, dynein [167], and myosin [168]) work
in concert [68, 69], leading to different performance trade-offs
[169–174].

Nonetheless, multi-component systems can be interpreted as if the
dynamics of one component provide a variation of external control
parameters to the other. In this context, it can be useful to identify an
upstream (more strongly driven by nonequilibrium boundary
conditions) system Y and a downstream (more strongly driven by
the coupled upstream system than by the nonequilibrium boundary
conditions) system X, although the identification of these components
may sometimes be ambiguous. This type of autonomous control differs
from external control in two important aspects: 1) It is stochastic since
the dynamics of the upstream system are itself stochastic; 2) There is
feedback from the downstream to the upstream system because the
upstream system’s dynamics obey local detailed balance (7). Both aspects
can lead to counterintuitive results when one naively applies stochastic
energetics to one subsystem that is strongly coupled to others [55].

6.2 Conventional and information engines

Let us more closely examine two-component engines, e.g., the
Fo−F1 ATP synthase sketched in Figure 1A. Such a molecular
machine can be regarded as a kind of chemical-work transducer
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using a stronger upstream chemical gradient to drive a downstream
chemical reaction against its natural direction [49, 175]. Recently,
the coupling characteristics and energy flows in such systems have
received attention [54, 55, 67, 166].

It is natural to consider direct energy flows from an input (chemical)
reservoir (e.g., _W

Y
chem) through the transduced work (e.g., _W

Y→X
)

between subsystems to an output reservoir (e.g., − _W
X
chem), with two

intermediate heat losses (− _Q
Y
and − _Q

X
), see Figure 3A. However, a

completely different mode of operation is also possible where the input
work is not used to transduce energy from Y to X but to rectify thermal
fluctuations of X, hence converting input heat _Q

X
into output work

− _W
X
chem, see Figure 3B. The second setup can be interpreted as an

information engine, a realization of a Maxwell demon [7], where X is the
thermodynamic system controlled by the demon Y. Focusing on the
energy flows into and out of system X alone would lead an observer to
the erroneous conclusion that heat is entirely converted into useful work,
a process forbidden by the second law. However this apparent second-
law violation results from neglecting the other part of the machine (Y),
which, to restore the second law, must dissipate more heat into the
environment than X converts into work. As discussed in Section 4, the
bipartite assumption gives the information flow as a measure to assess
the extent to which a given system acts as an information engine.

6.3 Steady-state transduced capacity

Our discussion indicates that conventional and information engines
can be treated with a common framework, as in [49] where a synthetic
molecular motor was analyzed, identifying distinct flows of information
and energy with which the upstream subsystem drives the downstream
subsystem. For concreteness, let Y be the upstream and X be the
downstream subsystem. As shown in [67, 176], combining the
subsystem-specific second laws at steady state leads to a simultaneous
bound on input and output power in terms of an intermediate quantity,
called transduced capacity in [67]. Substituting the steady-state identities
_S[X] � 0 � _S[Y] and _I

X � _I − _I
Y � − _IY into the subsystem-specific

entropy productions (29a) and (29b) gives

− _Q
X

kBT
+ _I

Y ≥ 0 (45a)

− _Q
Y

kBT
− _I

Y ≥ 0. (45b)

Using the subsystem-specific first laws in Eqs (17a) and (17b) and
identifying the transduced power in Eq. (19a)
gives _E

Y � − _E
X � _W

Y→X
, so that

_W
Y

chem + _W
Y

mech

kBT︸������︷︷������︸
input power

≥
_W
Y→X

kBT
+ _I

Y

︸����︷︷����︸
transduced capacity

≥ − _W
X

chem + _W
X

mech

kBT︸�������︷︷�������︸
output power

. (46)

This relation suggests that the transduced capacity acts as a
bottleneck for the conversion of input to output power. The
capacity of this bottleneck consists of two distinct pathways, a
conventional energetic component _W

Y→X
, with which the

upstream subsystem drives the downstream subsystem by doing
work on it, as well as an information-theoretic component _I

Y
, with

which the upstream subsystem creates information between the two
subsystems that the downstream subsystem can exploit to generate
output power. This hybrid setup is illustrated in Figure 3C.

We expect efficient work transducers to come as close as
possible to saturating both inequalities to minimize dissipative
losses during their operation. It would be interesting to
investigate under which circumstances each of the two
pathways leads to the most efficient work transducers and
whether real-world biomolecular machinery has evolved to
preferentially exploit one over the other.

7 Conclusion, extensions, and outlook

7.1 Summary

In this review we focused on the thermally influenced stochastic
dynamics of two-component autonomous systems which are
commonly found in biological machinery. We assumed that the

FIGURE 3

Different operational modes of a two-component engine converting chemical input power _W
Y
chem to chemical output power − _W

X
chem. Arrow

direction and thickness respectively indicate the net energy flow’s direction andmagnitude. (A) In a conventional engine, input power _W
Y→X

is transduced

from the upstream component to the downstream component to end up as output power, with heat losses − _Q
Y
and − _Q

X
in the process. (B) An

information engine uses the input power into the upstream component to rectify thermal fluctuations in the downstream component into output

power. To achieve this, the upstream componentmust create information flow _I
Y
that the downstream component can exploit. (C) A hybrid engine uses a

mixture of both operation modes. Transduced power and information flow sum to give the transduced capacity.
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dynamics are Markovian and bipartite such that only one subsystem
changes its state at a time.

We collected results that show how the bipartite assumption
enables the first and second laws of thermodynamics to be split into
subsystem-specific versions. The subsystem-specific first laws lead to
energy flows between the individual subsystems and the
environment and to the transduced power—the energy flow
between the subsystems. The subsystem-specific second laws
reveal information flows as specific entropic quantities that
quantify how the dynamics of a single subsystem change the
mutual information shared between the subsystems.

Sensors are a setup to which the formalism applies naturally
because an external signal influences the stochastic dynamics of the
sensor. Within the framework, the sensor’s dissipation (the energy
flow) is bounded by an information-theoretic quantity (the
information flow) measuring aspects of the influence of the
environmental signal on the sensor.

Studying strongly coupled molecular machines within this
framework reveals that the more conventional transduced power
(the energy flow) from one subsystem to the other is accompanied
by the less conventional information flow, which can be interpreted
as a hallmark of information engines. Both flows are capable of
supporting energy transduction through the coupled system such
that conventional and information engines can be studied from the
same perspective.

7.2 More than two subsystems

The question naturally arises whether the information-flow
framework can be extended to systems with more than two
subsystems. For such systems, Horowitz [58] defined an
information flow _I

X;Z−X , i.e., the information flow between X and
all other subsystems Z−X that together compose the global system.
This flow is then further refined by identifying which other
subsystems can directly interact with X, and subsystem-specific
second laws of the form of (25a), (25b) follow.

However, defining unambiguous directed energy flows as
transduced work from one subsystem to another remains
challenging for more than two subsystems. Recall that in Section
3.3 we argued that in a bipartite system the dynamics of one
subsystem at a fixed state of the other can be interpreted as a
control-parameter variation on the fixed subsystem. Hence, any
potential-energy changes can be interpreted as work done on the
fixed subsystem by the dynamic evolution of the other subsystem.
Applying this logic to multipartite systems still permits definition of
how much work one subsystem contributes to changing the global
potential energy, but not the explicit flow between two subsystems.

Working out conditions under which exact transduced energy
flows can be resolved would be an interesting extension and could
lead to useful insights for multipartite systems such as energy flows
in collections of motors transporting cargoes.

7.3 Optimizing coupled work transducers

In Section 6.3 we illustrated that the sum of transduced power
and information flows acts as a kind of bottleneck for the

transduction of work in two-component engines. Optimizing a
given two-component work transducer and studying which of the
two pathways maximize throughput seems like an interesting
extension.

A first step towards this goal was accomplished in [67] for a
specific model capturing aspects of Fo−F1 ATP synthase. It was
found that both transduced power and information flow are
required to maximize output power and that maximal power
tends to lead to equal subsystem entropy productions _ΣX

and _ΣY

(29a, 29b).

7.4 Application to real-world machinery

Finally, it would be interesting to see the information-flow
formalism applied to real-world machinery. This would involve
measuring and modeling the dynamics of two components of a
biomolecular system, e.g., both units of Fo−F1 ATP synthase,
instead of only the dynamics of F1 as is conventionally done in
most single-molecule experiments and theory [53, 113,
177–179]. This can be accomplished, e.g., by observing two
components of a biomolecular system and explicitly
calculating information flow, possibly revealing the ratchet
mechanism of a Maxwell’s demon at work. A first step
towards this is found in [49] where a synthetic chemical
information motor is analyzed: the authors bridge their
information-flow analysis to a chemical-reaction analysis
[180] and identify regimes in which energy or information is
the dominant driving mechanism. Another recent contribution
in this direction is [50] where information flow has been
calculated explicitly for dimeric molecular motors. Finally,
Freitas and Esposito recently suggested [181] a macroscopic
Maxwell demon based on CMOS technology and analyzed the
information flow between its components [182].
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