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We introduce a general description of localised distortions in active nematics using
the framework of active nematic multipoles. We give the Stokesian flows for
arbitrary multipoles in terms of differentiation of a fundamental flow response and
describe them explicitly up to quadrupole order. We also present the response in
terms of the net active force and torque associated to the multipole. This allows
the identification of the dipolar and quadrupolar distortions that generate self-
propulsion and self-rotation respectively and serves as a guide for the design of
arbitrary flow responses. Our results can be applied to both defect loops in three-
dimensional active nematics and to systems with colloidal inclusions. They reveal
the geometry-dependence of the self-dynamics of defect loops and provide
insights into how colloids might be designed to achieve propulsive or rotational
dynamics, and more generally for the extraction of work from active nematics.
Finally, we extend our analysis also to two dimensions and to systems with chiral
active stresses.
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1 Introduction

Active liquid crystals model a wide range of materials, both biological and synthetic
[1–3], including cell monolayers [4], tissues [5], bacteria in liquid crystalline environments
[6] and bacterial suspensions [7], and synthetic suspensions of microtubules [8]. Nematic
and polar phases have been the focus of attention but smectic [9, 10], cholesteric [11, 12] and
hexatic [13] phases have also been considered. Key features and motifs of the active nematic
state include self-propelled topological defects [14–16], spontaneous flows and vortices, and
how these may be controlled through boundary conditions, confinement [17–19], external
fields, geometry or topology. Active defects, in particular, have been related to processes of
apoptosis in epithelial sheets [5], tissue dynamics, bacterial spreading and biofilm formation,
and morphogenesis in Hydra [20].

In three-dimensional active nematics the fundamental excitations are defect loops and
system-spanning lines [21, 22]. The defect loops actively self-propel [23], and self-orient
[24], in addition to undergoing deformations in shape. Their finite extent means that they
represent localised distortions to the nematic director, on scales larger than their size, and
this facilitates a description through elastic multipoles [24]. It also invites comparison with
colloidal inclusions in passive liquid crystals, which create localised realignments of the
director and act as elastic multipoles [25–27]. These multipole distortions mediate
interactions between colloids and allow for a means of controlling both the colloidal
inclusions and the host material. For instance, they facilitate self-assembly and the
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formation of metamaterials [28, 29], and enable novel control of
topological defects [27, 30, 31]. While there have been studies of
active nematic droplets in a host passive liquid crystal [32, 33],
colloidal inclusions in host active nematics have not been looked at
previously.

The multipole approach to describing colloidal inclusions, and
localised director distortions in general, offers an equally fruitful
paradigm in active nematics. Here, we present a generic analysis of
the active flows generated by multipole director distortions in an
active nematic and predict that the presence of colloids transforms
their behaviour similarly to the passive case. These active multipole
flows represent the responses of the active nematic both to localised
features, such as defect loops, and to colloidal inclusions. This allows
us to identify those distortions which produce directed or rotational
flows and show that such distortions may be naturally induced by
colloids. We also characterise the response in terms of the active
forces and torques that they induce. This general connection can
serve as a guide for using colloidal inclusions as a means to control
active nematics, or how to design them to engineer a desired
response, or extract work. The properties of inclusions have been
studied in scalar active matter [34], as have active droplets in passive
nematics [35], but while there have been specific demonstrations of
propulsive colloids [36, 37] the general responses of inclusions in
active nematics have not previously been considered. Understanding
how such responses relate to local manipulations and molecular
fields in active nematics will bring both fundamental insights and the
potential for control of active metamaterials.

The remainder of this paper is structured as follows. In
Section 2 we briefly review the equations of active
nematohydrodynamics and describe the regime in which our
linear multipole approach applies. In Section 3 we present these
multipoles as complex derivatives acting on 1/r, showing how this
naturally elucidates their symmetries. In Section 4 we show that
the linear active response to a harmonic distortion is generated by
the same complex derivatives acting on fundamental flow and
pressure solutions and highlight certain examples that illustrate
the self-propulsive and rotational dynamics that can arise. We
then show in Section 5 that these phenomenological responses
can be discerned from integrals of the active stress, allowing the
identification of the distortion which produces propulsion along
or rotation about a given axis. Sections 6, 7 contain extensions of
our approach, first to two-dimensional systems and then to those
with chiral active stresses. Section 8 gives a discussion and
summary.

2 Hydrodynamics of active nematics

We summarise the hydrodynamics of active nematics as
described by their director field n and fluid velocity u. The fluid
flow satisfies the continuity ziui = 0 and Stokes zjσij = 0 equations,
with stress tensor [1–3]

σ ij � −pδij + 2μDij + ]
2

nihj + hinj( ) + 1
2

nihj − hinj( ) + σEij − ζninj.

(1)
Here, p is the pressure, μ is the viscosity, Dij � 1

2 (ziuj + zjui) is the
symmetric part of the velocity gradients, ] is the flow alignment

parameter, hi = −δF/δni is the molecular field associated with the
Frank free energy F, σEij is the Ericksen stress, and ζ is the magnitude
of the activity. The active nematic is extensile when ζ > 0 and
contractile when ζ < 0. The director field satisfies the relaxational
equation

ztni + ujzjni + Ωijnj � 1
γ
hi − ] Dijnj − ni njDjknk( )[ ], (2)

where γ is a rotational viscosity and Ωij � 1
2 (ziuj − zjui) is the

antisymmetric part of the velocity gradients. We adopt a one-elastic-
constant approximation for the Frank free energy [38],

F � ∫K

2
zinj( ) zinj( ) dV, (3)

for which the molecular field is hi � K(∇2ni − ninj∇2nj) and the
Ericksen stress is σEij � −Kzink zjnk.

An often-used analytical approximation is to consider the active
flows generated by an equilibrium director field. This approximation
has been used previously in the theoretical description of the active
flows generated by defects in both two [16, 39] and three dimensions
[23], including on curved surfaces [40], and in active turbulence
[41]. It may be thought of in terms of a limit of weak activity,
however, even when the activity is strong enough to generate defects,
their structure may still be close to that of equilibrium defects and
the approximation remain good. The comparison of active defect
motion and flows described in this way with full numerical
simulations suggests that this is at least qualitatively the case.
The equations can then be reduced to h = 0 for the director field
and the Stokes equation

−∇p + μ∇2u � ζ∇ · nn( ) (4)

FIGURE 1
Comparison of the exact director field (red streamlines) and
linearised multipole approximation (blue rods) for the most slowly
decaying monopole distortion. This is produced by uniformly rotating
the director by an angle θ0 within a spherical volume of radius a,
indicated by the grey disc; the alignment inside the sphere is indicated
by the thick red line. The figure shows only the xz-plane in which the
director rotates and in which the comparison is most strict.
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for the active flow. Here we have neglected the Ericksen stress since
for an equilibrium director field it can be balanced by a contribution
to the pressure (representing nematic hydrostatic equilibrium).
Similarly, we are retaining only a single isotropic viscosity μ, so
that all three Miesowicz viscosities are taken equal.

We limit our analysis to director fields that can be linearised
around a (locally) uniformly aligned state, n = ez + δn, with δn ·ez =
0, for which the equations reduce to

∇2δn � 0, (5)
∇ · u � 0, (6)

−∇p + μ∇2u � ζ ez ∇ · δn( ) + zzδn[ ]. (7)
These correspond to elastic multipole states in the director field,
which are often thought of as an asymptotic description, however,
they provide a close approximation even at only moderate distances
outside a “core” region that is the source of the multipole. To
illustrate this we show in Figure 1 a comparison between the exact
director field (red streamlines) and linear multipole approximation
(blue rods) for the most slowly varying monopole distortion created
by uniformly rotating the director by an angle θ0 within a sphere of

radius a. The agreement is close anywhere outside the sphere and
only deviates significantly in the near-field region inside it. This is
relevant to the active system as it is well-known that the uniformly
aligned active nematic state is fundamentally unstable [42] and
active nematics are turbulent on large enough scales. Our solutions
should be interpreted as describing the behaviour on intermediate
scales, larger than the core structure of the source but smaller than
the scale on which turbulence takes over.

3 Multipole director distortions

In this section we describe the multipole director fields satisfying
(5). The far-field orientation ez gives a splitting of directions in space
into those parallel and perpendicular to it. We complexify the
perpendicular plane to give the decomposition as R3 � C ⊕ R

and convert the director deformation δn to the complex form
δn = δnx + iδny. The real and imaginary parts of δn are
harmonic, meaning that at order l they may be expressed as
spherical harmonics 1/rl+1Yl

m or, as we shall do, as l derivatives
of 1/r [43–45]. These order l multipole solutions form a 2(2l + 1)-

FIGURE 2
The multipolar director distortions up to quadrupole order. The director is shown on a planar cross-section as blue rods, along with a topological
skeleton corresponding to the spherical harmonic, where appropriate. Defect loops are coloured according to wedge (blue and red) or twist (green) type
and the charge of point defects is indicated through the use of opposing colour pairs: red (+1) and cyan (−1), yellow (+2) and blue (−2), and green (+3) and
magenta (−3). Their charge is further indicated by a local decoration of the director with an orientation, indicated by black arrows. Each multipole
order is classified into vertical pairs according to the spin of the distortion. For the chiral multipoles, the visualisation instead shows the director along
some of its integral curves (orange).
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real-dimensional vector space. Associated to the C ⊕ R splitting is a
local symmetry group isomorphic to U(1), preserving ez, whose
irreducible representations provide a natural basis for the vector
space of multipoles at each order. We write the complex derivatives
on C as zw � 1

2 (zx − izy) and z �w � 1
2 (zx + izy) in terms of which

the director deformation can be written

δn �∑∞
l�0
∑l
m�−l

qlm al+1 zm�wz
l−m
z

1
r
, (8)

where qlm are complex coefficients and a is a characteristic length
scale of the multipole, as might be set by the radius of a colloid. For
compactness of notation it is to be understood that when m is
negative zm�w represents z|m|

w . The index m denotes the topological
charge of the phase winding of the spherical harmonic. This gives
the spin of the corresponding vector field as 1 −m, where the 1 is due
to a vector (δn or δn) being a spin-1 object. The multipoles at order l
therefore have spins that range from 1 − l to 1 + l. They are illustrated
up to quadrupole order in Figure 2, along with a representation in
terms of topological defects which we shall elaborate upon shortly.
The structure of Figure 2 is such that differentiation maps the
distortions of one order to the next, with zz leaving the distortion in
the same spin class, z �w moving it one column to the left and zw
moving it one column to the right. The operators zw and z �w play the
same role as the raising and lowering operators in quantum
mechanics and the shift by one in the spin values simply results
from the object on which they act being a spin-1 director
deformation as opposed to a spin-0 wavefunction.

The monopole distortions, with l = 0, result from a rotation of
the director by an angle θ0 in a sphere of radius a [46]. They form a
two-real-dimensional vector space for which a basis may be taken to
be the distortions 1

r and i 1
r. These are shown at the top of Figure 2

and can be controllably created in passive nematics using platelet
inclusions [47].

The director distortions of dipole type, with l = 1, form a six-
real-dimensional vector space that splits into two-real-dimensional
subspaces for each value of the spin (0, 1, or 2) as

p0 � z �w
1
r
, i z �w

1
r

{ } ~ − 1
2r3

x ex + y ey,−y ex + x ey{ } ~ 1
r2

Y1
1, i Y

1
1{ },
(9)

p1 � zz
1
r
, i zz

1
r

{ } ~ − 1
r3

z ex, z ey{ } ~ 1
r2

Y0
1, i Y

0
1{ }, (10)

p2 � zw
1
r
, i zw

1
r

{ } ~ − 1
2r3

x ex − y ey, y ex + x ey{ } ~ 1
r2

Y−1
1 , i Y−1

1{ }.
(11)

For comparison, we have presented three representations for the
distortions of each spin class: in terms of complex derivatives of 1/r,
two-component vectors whose coefficients are homogenous
polynomials of degree 1 and complex spherical harmonics. In the
interest of space we have suppressed certain prefactors in the last of
these, but note the difference in sign, and in some cases
normalisation, between our representation as complex derivatives
and the standard form of the harmonic distortions as two-
component vectors [48]. The two basis functions of any spin
class are related by a factor of i, which corresponds to a local
rotation of the transverse director distortion by π

2. For a spin-s
distortion this is equivalent to a global rotation by π

2s, with the pair of

distortions having the same character and simply providing a basis
for all possible orientations. The exception is when s = 0, such
distortions lack an orientation and the local rotation produces two
distinct states that transform independently under rotations as a
scalar and pseudoscalar. In the dipole case the first is the isotropic
distortion recognisable as the UPenn dipole [25] and the second is
an axisymmetric chiral distortion with the far-field character of left-
handed double twist. Separating p0 into its isotropic and chiral
components allows a decomposition of the dipole director
deformations into the basis

p � pI ⊕ pC ⊕ p1 ⊕ p2, (12)
a decomposition which was presented in [49].

Similarly, the quadrupolar distortions (l = 2) form a ten-real-
dimensional vector space that splits into a sum of two-real-
dimensional subspaces for each value of the spin

Q−1 � z2�w
1
r
, i z2�w

1
r

{ } ~
3
4r5

x2 − y2( ) ex + 2xy ey,−2xy ex + x2 − y2( ) ey{ } ~ 1
r3

Y2
2 , i Y

2
2{ },

(13)

Q0 � z2�wz
1
r
, i z2�wz

1
r

{ } ~
3
2r5

xz ex + yz ey,−yz ex + xz ey{ } ~ 1
r3

Y1
2, i Y

1
2{ },
(14)

Q1 � z2z
1
r
, i z2z

1
r

{ } ~
1
r5

2z2 − x2 − y2( ) ex, 2z2 − x2 − y2( ) ey{ } ~ 1
r3

Y0
2 , i Y

0
2{ }, (15)

Q2 � z2wz
1
r
, i z2wz

1
r

{ } ~
3
2r5

xz ex − yz ey, yz ex + xz ey{ } ~ 1
r3

Y−1
2 , i Y−1

2{ },
(16)

Q3 � z2w
1
r
, i z2w

1
r

{ } ~
3
4r5

x2 − y2( ) ex − 2xy ey, 2xy ex + x2 − y2( ) ey{ } ~ 1
r3

Y−2
2 , i Y−2

2{ }.
(17)

Once again the spin-0 distortions can be further partitioned into
those that transform as a scalar and pseudoscalar, these being the
Saturn’s ring distortion [50] and a chiral quadrupole with opposing
chirality in the two hemispheres, respectively. This yields the basis
for the quadrupolar director deformations

Q � Q−1 ⊕ QI ⊕ QC ⊕ Q1 ⊕ Q2 ⊕ Q3. (18)
The well-known multipoles, the UPenn dipole and Saturn ring

quadrupole, are associated to a configuration of topological defects
in the core region and we describe now an extension of this
association to all of the multipoles. In general, such an
association is not unique, for instance, the colloidal “bubblegum”

configuration [51] represents the same far-field quadrupole as the
Saturn ring, however, for each multipole we can construct a
representative arrangement of topological defects which produce
it in the far field on the basis of commensurate symmetries and
defects of a type and location corresponding to the nodal set of the
harmonic. This correspondence allows us to condense the
visualisation of complicated three-dimensional fields into a few
discrete elements, suggests means by which such distortions
might be induced and enables us to build an intuition for their
behaviour in active systems through established results for
defects [23].

We first describe some examples, shown in Figure 3. On the left
is the spherical harmonic that describes the UPenn dipole, with the
form z �w

1
r ~ eiϕ sin θ/r2, visualised on a spherical surface. This has

nodes at the two poles about which the phase has +1 winding and so
we can infer similar winding of the director in the transverse plane.
Supplementing with the far-field alignment along ez yields the
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familiar picture of a pair of oppositely charged hedgehog defects.
Similarly, the Saturn ring quadrupole, described by
z �wz

1
r ~ eiϕ sin 2θ/r3, has zeros at the poles and around the

equator. The winding about the poles is still +1, but the sign
change in the lower hemisphere means that in the transverse
plane around the south pole the vector points inwards, resulting
in both point defects having topological charge +1. With
regards to the equatorial line, since the director is
everywhere radial the winding vector must be tangential to
the defect loop, shown by the red arrows in Figure 3. As the
phase changes by π on passing from one hemisphere to the other
the winding must be ±1 and the far-field alignment allows us to
determine it to be −1. For a general multipole distortion of the
form zm�wz

l−m
z (1/r) the nodal set is the poles along with l − m lines

of latitude. The phase winding of the spherical harmonic
dictates the transverse winding of the director and, when
supplemented with the far-field alignment, allows us to
associate topological point defects with the poles. Similarly,
nodal lines may be connected with defect loops with integer
winding and a winding vector that rotates according to eimϕ. In
Figure 3 we illustrate this for the case z2�wz

3
z(1/r) ~ − Y5

2/r
6.

We now describe briefly the correspondence for our basis of
dipolar and quadrupolar distortions. As already stated, the isotropic
scalar in p0 is the UPenn dipole, its pseudoscalar counterpart a chiral
splay-free twist-bend distortion whose integral curves are shown in
orange in Figure 2. As a twist-bend mode it may be of particular
relevance to extensional systems given their instability to bend
distortions. The two dipoles of p1 are transverse to the far-field
alignment, they are related to those resulting from a defect loop of
wedge-twist type [21]. The distortions of p2 have a hyperbolic
character; they describe the far field of a pair of point defects
both of which have a hyperbolic structure. Such hyperbolic defect
pairs arise in toron configurations in frustrated chiral nematics
[52, 53].

Similarly, Q0 contains the Saturn ring quadrupole as the scalar,
with the pseudoscalar a pure bend chiral distortion. For the latter,
the integral curves of the director possess opposing chirality in the
two hemispheres, which could be generated by an appropriately
coated Janus particle. The director distortion exhibits a helical
perversion in the z = 0 plane and, being a local rotation of the

Saturn ring distortion, may be viewed as resulting from a pair of
vortex point defects along with a pure twist defect loop with integer
winding. This is similar to the bubblegum defect lines [51, 54] that
appear between a colloid diad with normal anchoring, suggesting
that this chiral quadrupole could be formed by two colloids with
opposing chiral tangential anchoring.

The spin-1 quadrupoles consist of pairs of wedge-twist
defect loops. The distortions of Q2 may be associated with a
pair of hyperbolic defects along with a defect ring with the
appropriate symmetry. The harmonics of spin −1 and 3 contain
no z-derivatives and so are associated with pairs of point
defects only.

4 Flows from multipole distortions

In this section we calculate the active flow generated by an
arbitrary director multipole. We present this initially in vectorial
form, converting to the complex representation subsequently. As (7)
is linear the responses due to the two components of δn are
independent and so to simplify the derivation we consider only
distortions in the x-component for now and extend to the general
case afterwards. Within this restriction a generic multipole
distortion at order l may be written as

δnx � al∇v1/∇vl

a

r
, (19)

where v1, . . . , vl are l directions for the differentiation. Substituting
this into (7) gives the Stokes equation in the form

−∇p x( ) + μ∇2u x( ) � al+1ζ∇v1/∇vl ex zz + ez zx[ ] 1
r
, (20)

where the use of the superscript (x) is to emphasise that we are only
treating the response to distortions in the x-component of the
director. Taking the divergence of both sides we have

−∇2p x( ) + μ∇2∇ · u x( ) � al+1ζ∇v1/∇vlz
2
xz

2
r
. (21)

Making use of the continuity equation ∇ · u(x) = 0 in conjunction
with the identity ∇2r � 2

r we arrive at the solution for the pressure

FIGURE 3
The connection between spherical harmonics and nematic topological defects. The coloured spheres indicate the phase of the complex spherical
harmonics with the nodal set shown in white for simplicity. A representative skeleton of the corresponding nematic distortion is shown in black and the
red arrows indicate the winding vector of the director.
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p x( ) � −al+1ζ∇v1/∇vl zxzzr � al+1ζ∇v1/∇vl

xz

r3
. (22)

Substituting this back into the Stokes equation (20) we obtain

μ∇2u x( ) � al+1ζ∇v1/∇vl ex zz
1
r
− zxzxr[ ] − ey zxzyzzr + ez zx

1
r
− zzzzr[ ]{ },

(23)

which can be integrated using the identity ∇2r3 = 12r to find

u x( ) � al+1
ζ

4μ
∇v1/∇vl ex

z

r
+ x2z

r3
[ ] + ey

xyz

r3
+ ez

x

r
+ xz2

r3
[ ]{ }.

(24)
Both the pressure and flow solutions for a generic multipole

distortion are given in terms of derivatives of a fundamental
response to a monopole deformation, namely,

p x( ) � aζ
xz

r3
, (25)

u x( ) � aζ

4μ
ex

z

r
+ x2z

r3
[ ] + ey

xyz

r3
+ ez

x

r
+ xz2

r3
[ ]{ }. (26)

This flow response, shown as the top panel in Figure 4, is primarily
extensional in the xz-plane. Interestingly, the flow solution (26) does not
decay with distance; this reflects the generic hydrodynamic instability of
active nematics [42], providing a real-space local response counterpart to
the usual Fourier mode analysis. However, the active flow produced by
any higher multipole does decay and vanishes at large distances.

The pressure and flow solutions in (25, 26) are complemented by
analogous ones resulting from distortions in the y-component of the
director, obtained by simply interchanging x and y. The linearity of
(7) makes these fundamental responses sufficient to obtain the active
flow induced by an arbitrary multipole distortion through taking
derivatives appropriate to describe the x and y components of the
director, respectively.

We now convert this description to the complex notation used in
Section 3. This is achieved by taking the combinations p = p(x) − ip(y) and
u = u(x) − iu(y). To see this consider the multipole distortion
δn � (Lx + iLy)1/r, where the Li are generic real differential
operators which generate the i-component of the director by acting
on 1/r. This distortion has a conjugate partner given by
i(Lx + iLy)1/r � (−Ly + iLx)1/r. Acting with this same operator
on u(x) − iu(y) we have

FIGURE 4
The active flows due to three-dimensional nematic multipole distortions up to quadrupole order. The flows are grouped according to their spin, in
correspondence with the distortions in Figure 2. Green and red arrows indicate the net active force and torque for the relevant dipoles and quadrupoles
respectively, see Section 5.
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Lx + iLy( ) u x( ) − iu(y)( ) � Lxu
x( ) + Lyu(y)( )

− i −Lyu
x( ) + Lxu(y)( ), (27)

and can see that the flow response for our original distortion forms
the real part and that for its conjugate partner the coefficient of −i
and the same holds for the pressure response. This leads us to a
complex fundamental pressure response

~p � aζ
�wz

r3
, (28)

and, introducing complex basis vectors ew = ex + iey and
e �w � ex − iey, a complex-valued fundamental flow vector

~u � aζ

4μ
ew

�w2z

2r3
+ e �w

z

r
+ w �wz

r3
[ ] + ez

�w

r
1 + z2

r2
( ){ }. (29)

We use a tilde to distinguish these fundamental responses from
those that result due to a generic distortion and which may be
found by appropriate differentiation. This provides a unified
framework in which the active response to a generic nematic
multipole can be calculated through the application of the same
complex derivatives that we have used to describe the director
distortion. The resulting active flows for distortions up to
quadrupole order are shown in Figure 4, with their layout
corresponding to that of the nematic distortions in Figure 2
which induce them. We now describe some examples in more
detail.

4.1 UPenn and chiral dipole

Typically the active responses induced by the two distortions
in a spin class will, like the distortions themselves, be related by a
global rotation such that while both are needed to form a
sufficient basis, the real part essentially serves as a proxy for
the pair. This is not true for the spin-0 distortions, due to their
rotational symmetry, and so we use them in providing an explicit
illustration of the active flow calculation. We begin with the
UPenn dipole [25] and its partner the chiral dipole, for which the
far-field transverse director is

δn ≈ αa z �w
a

r
, (30)

where α is a dimensionless coefficient, and the corresponding
derivative of the fundamental flow solution in (29) gives

αaz �w~u � ζαa2

4μr5
ew z �w 4z2 + w �w( ) − e �w 3zw

2 �w + ez 2 3z4 + z2 + w �w( )2[ ]{ }.
(31)

Taking the real part gives, after somemanipulation, the flow induced
by the UPenn dipole as

u � αaR z �w~u � ζαa2

8μ
ez

1
r
+ z2

r3
( ) + er

z

r2
3z2

r2
− 1( ){ }, (32)

where er is the unit vector in the radial direction. The flow response
to the conjugate distortion, the isotropic chiral dipole, is given by

u � −αaI z �w~u � −ζαa
2

4μ
z

r2
eϕ, (33)

with eϕ the azimuthal unit vector. Both flows decay at large
distances like 1/r and are highlighted in the top row of Figure 5.
The UPenn dipole flow has a striking net flow directed along the
z-axis, reminiscent of that of the Stokeslet flow [55, 56]
associated with a point force along ez. The chiral dipole
generates an axisymmetric flow composed of two counter-
rotating vortices aligned along ez, mirroring the circulating
flows produced by spiral defects in two dimensions [57]. The
1/r decay of these active vortex flows is unusually slow, slower
than the decay of a point torque in Stokesian
hydrodynamics [56].

Despite the similarity between the active flow induced by the
UPenn dipole and a Stokeslet, there is a key difference in their
angular dependence. In a Stokeslet, and all related squirming
swimmer flows [58, 59] that result from derivatives of it, the
terms with higher angular dependence decay more quickly, such
that the lowest order terms dominate the far field. By contrast,
distortions in active nematics produce asymptotic flow fields in
which all terms decay at the same rate regardless of their angular
dependence as they all result from the same derivative of the
fundamental flow. Thus, even if the same angular terms are
present in both systems, the lowest order ones will dominate
in the squirming case while the far field will bear the signature of
the highest order in the active nematics.

A closer point of comparison comes from the flows induced by active
colloids within a passive nematic [35, 60]. Calculation of the relevant
Green’s functions [61] has shown that the anisotropy of themedium leads
to a difference in effective viscosities, such that a Stokeslet aligned along
the director pumps more fluid in this direction. This fits with the
anisotropy displayed in (32), reaffirming the similarity between the
flow induced by the UPenn dipole and the Stokeslet.

Considering the pressure response for these distortions in the
same way we have

αaz �w ~p � ζαa2

2r5
z 2z2 − w �w( ) � ζαa2z

2r3
3z2

r2
− 1( ). (34)

As this expression is purely real it comprises the response due to the
UPenn dipole in its entirety; the vanishing of the imaginary part shows
that the chiral dipole is compatible with a zero-pressure solution. Our
complexified construction allows this property to be read off immediately,
since z �w( �wzm/rn) will be real for anym and n, with this also resulting in
the vanishing z-component of flow for the chiral dipole. Indeed, this
property of pure realness is unchanged by the action of zz, it being real
itself, and so extends to higher order distortions.

4.2 Saturn ring and chiral quadrupole

Proceeding in the same fashion for the spin-0 quadrupoles,
for which δn ≈ αa2z2�wza/r, we find that the complexified flow is

αa2z2�wz~u � −ζαa
3

4μr7
−ew �w w2 �w2 + 8w �wz2 − 8z4( ) + e �w3w

2 �w w �w − 4z2( ){
+ez2z w2 �w2 − 10w �wz2 + 4z2( )}. (35)

Taking the real part gives the flow induced by the Saturn ring
quadrupole as
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u � αa2Rz2�wz~u � −ζαa
3

2μr6
r4 − 12z2r2 + 15z4( )er, (36)

that is a purely radial flow reminiscent of a stresslet along ez, shown
in the bottom left of Figure 5. The purely radial nature is a result of
the divergencelessness of the flow, combined with the 1/r2 decay and
rotational invariance about ez. Working in spherical coordinates we
have

∇ · u � 1
r2
zr r2ur( ) + 1

r sin θ
zθ uθ sin θ( ) + zϕuϕ[ ] � 0. (37)

All active flows induced by quadrupole distortions decay as 1/r2 and
so zr (r2ur) = 0. The distortion is rotationally symmetric and achiral,
meaning uϕ = 0 and the condition of zero divergence reduces to

1
r sin θ

zθ uθ sin θ( ) � 0. (38)

The only non-singular solution is uθ = 0, resulting in ur being the only
non-zero flow component. The corresponding pressure is given by

αa2z2�wz ~p � −3αa
3

2r7
r4 − 12z2r2 + 15z4( ). (39)

Taking the imaginary part of (35) reveals the flow response of
the chiral quadrupole to be

u � −αa2Iz2�wz~u � ζαa3

μr2
3 cos2 θ − 1( )sin θeϕ. (40)

As illustrated in Figure 5 this is a purely azimuthal flow
corresponding to rotation about the z-axis and, as for the
chiral dipole, is compatible with a zero-pressure solution.

The 1/r2 decay of this rotational flow is the same as that
which results from the rotlet [55, 56], but unlike the rotlet
the flow direction is not uniform. Rather, as can be seen in
Figure 5, there is an equatorial band of high-velocity flow
accompanied by two slowly counter-rotating polar regions.
The distribution of flow speeds is such that the net flow is
along −eϕ, consistent with a rotlet along −ez.

4.3 Other multipoles

For the remaining multipoles up to quadrupole order we do
not provide the same explicit calculation but instead highlight the
key features of the active flows they induce. In full we find that
half of the dipole distortions contain directed components in
their active flow responses. Along with the isotropic UPenn
dipole which produces flow along ez the two spin-1 dipoles
produce directed flows transverse to it. These directed flows
indicate that were the source of the distortion free to move it
would exhibit active self-propulsion. The net transverse flows for
the dipoles of p1 is in accordance with the previously established
motile nature of such defect loops [23]. A more complete
description of the active dynamics of defect loops via their
multipole distortions is presented in Section 4.4 and [24].

Along with the chiral dipole, the two additional dipoles which
do not generate directed flows are those with spin 2. These
produce active flows which are extensional with the expected
two-fold rotational symmetry about the z-axis. Direct calculation
shows that the flows resulting from spin-2 distortions have zero
azimuthal component. Once again, this observation is unaffected

FIGURE 5
The active flows induced by spin-0 dipole (A) and quadrupole (B) distortions. The flow is indicated by blue arrows and superposed upon integral
curves of the director, shown in orange. On the left are the UPenn dipole and Saturn ring quadrupole and on the right their chiral counterparts.
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by z-derivatives and so holds true for the higher-order multipoles
of the form znzzw(1/r).

Similarly, there are ten linearly independent quadrupoles,
five of which can be seen from Figure 4 to generate rotational
flows. As expected, it is the four modes of Q±1 that generate
rotations about transverse directions and QC that produces
rotation around ez. For two of these, namely, those in Q1,
the director distortions are planar, suggesting a two-
dimensional analogue and the potential to generate them
with cogs or gears [62]. These distortions may be associated
with a pair of opposingly oriented charge-neutral defect loops
and so the rotational flow generated by these distortions is in
accordance with their antiparallel self-propulsion.

The quadrupoles of Q−1 are composed of pairs of point defects
with topological charge +2. Using z2�w

1
r as an example, the rotation

can be understood by considering the splay distortions in the xz
plane. The splay changes sign for positive and negative x, leading to
antiparallel forces. The active forces are greatest in this plane, as this
is where the transverse distortion is radial, resulting in splay and
bend distortions. Along ey the distortions are of twist type and so do
not contribute to the active force. This results in the rotational flow
shown in Figure 4. The stretching of the flow along ez is as observed
for a rotlet in a nematic environment [61].

Although they lack the rotational symmetry of a stresslet, the
flows produced by the quadrupoles of Q2 are also purely radial. The
argument is largely the same as for the Saturn ring distortion, except
that the vanishing of uϕ is not due to rotational invariance but a
property inherited from the spin-2 dipoles.

The quadrupoles of Q3 produce extensional flows whose
spin-3 behaviour under rotations about ez is commensurate
with that of the distortions. Although they visually resemble the
similarly extensional flows produced by the dipoles of p2, they
do not share the property of a vanishing azimuthal flow
component.

4.4 Defect loops

Of particular relevance to the dynamics of three-dimensional
active nematics are charge-neutral defect loops [21, 23, 24]. For such
defect loops the director field has the planar form

n � cos
ϒ
4
ez + sin

ϒ
4
ex, (41)

where ϒ is the solid angle function for the loop [43, 63], and is a
critical point of the Frank free energy in the one-elastic-constant
approximation [64]. This allows a multipole expansion for the
director at distances larger than the loop size in which the
multipole coefficients are determined explicitly by the loop
geometry [24]

ϒ x( ) � 1
2
∫

K
ϵijk yj dyk zi

1
r
− 1
3
∫

K
ϵikl ylyk dyl zizj

1
r
+ . . . , (42)

where y labels the points of the loop K and r = |x| with the ‘centre of
mass’ of the loop defined to be at x = 0. The dipole moment vector is
the projected area of the loop, while the quadrupole moment is a
traceless and symmetric tensor with an interpretation via the first
moment of area or, in the case of loops weakly perturbed from
circular, the torsion of the curve.

The planar form of the director field (41) corresponds to a
restricted class of director deformations in which δn is purely real.
This disrupts the complex basis we have adopted for the
representation of multipoles, so that another choice is to be
preferred. We may say that the planar director selects a real
structure for the orthogonal plane C, breaking the U(1)
symmetry, and the restricted multipoles should then be
decomposed with respect to this real structure. Accordingly, the
pressure and flow responses may be generated by derivatives of the
fundamental responses for distortions in ex, (25) and (26), with these
derivatives corresponding to the multipole expansion of the solid

FIGURE 6
Additonal flow solutions induced by spin-1 nematic multipoles. The nematic multipoles which induce the flows are shown below them as complex
derivatives of 1/r. The red arrows indicate the net active torque.
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angle shown in (42). The details of this approach along with the
consequences it has for both the self-propulsive and self-rotational
dynamics of active nematic defect loops are given in [24].

4.5 Technical note

We conclude this section with a technical note on the flow solutions
that we have presented. The construction for calculating active flow
responses requires knowledge of the multipole as a specified set of
derivatives of 1/r, as in (19). Since ∇21

r∝ δ(r), different sets of
derivatives—e.g., z2z and −4z2w �w—can produce director fields with the
same far-field structure, differing only by ‘delta-function terms’ that
ultimately arise from the specific near-field structure. However, although
the far-field director is the same, the far-field flows are not since the delta-
function terms will contribute fundamental singularity solutions to the
Stokes flows. As an explicit example, consider the spin-1 quadrupole
shown in Figure 2, which may be written as n � ez + a2z2z

a
r ex. The

corresponding active flow is given by the action of a2z2z on (29) and is
illustrated in Figure 4. However, away from the origin, the same far-field
director can also bewritten as the quadrupolen � ez − 4a2z2w �w

a
r ex, with

an active flow given by the action of −4a2z2w �w on (29), which we show in
Figure 6. The two flows are not the same, differing by a singularity
solution associated to the delta-function difference between the two
multipoles,−4a2z2w �w

a
r � a2z2z

a
r + 4πa3δ(r). As a result, it is important to

know the multipole as an explicit set of derivatives of 1
r and not just

through the far-field form of the director. This explicit set is obtained
from the near-field structure; in particular, whenever an exact solution for
the director is known the appropriate derivatives can be determined, as
demonstrated in Section 4.4 for defect loops [24].

5 Active forces and torques

The directed and rotational active flow components highlighted
above result in viscous stresses whose net effect must be balanced by
their active counterparts, since the net force and torque must be zero.
Consequently, these generic aspects of the response of an active nematic
can be identified by considering the contribution that the active stresses
make to the force and torque

fa � ∫ ζnn · dA ≈∫ ζ ex
z δnx
r

+ ey
z δny
r

+ ez
x δnx + y δny

r
{ }dA,

(43)
τa � ∫ x × ζnn · dA ≈∫ ζ ex

xy δnx
r

+ y2 − z2( )δny
r

[ ]{

+ey z2 − x2( )δnx
r

− xy δny
r

[ ]+ezz −y δnx + x δny( )
r

⎫⎬⎭dA,

(44)
integrating over a large sphere of radius r. These integrals depend on the
surface of integration, as the active stresses are neither divergenceless nor
compactly supported. However, a spherical surface is concordant with the
multipole approach we are taking and the results are then independent of
the radius, as a direct consequence of the orthogonality of spherical
harmonics. From these expressions we can read off themultipole that will
generate any desired active force or torque; dipoles generate forces and

quadrupoles generate torques. When the active torque is non-zero, the
compensating viscous torque will drive a persistent rotation of the
multipole, creating an active ratchet; similarly, a non-zero active force
will generate directed fluid flow. The above integrals therefore provide a
solution to the inverse problem: given a particular non-equilibrium
response, which distortion induces it? Hence they serve as a design
guide for generating out of equilibrium responses in active nematics.

If the multipole is free to move it will self-propel and rotate. The
translational and rotational velocities are related to the viscous
forces and torques by a general mobility matrix [65]. In passive
nematics, experiments [66] and simulations [67, 68] have found that
it is sufficient to take a diagonal form for the mobility (no
translation-rotation coupling) with separate viscosities for motion
parallel, μ‖, and perpendicular, μ⊥, to the director, with typical ratio
of viscosities μ⊥/μ‖ ~ 1.6 [66–68]. This has the consequence that in
general the force and velocity are not colinear

U � −1
6πa

1
μ‖
fa

‖ ez +
1
μ⊥

fa⊥[ ]. (45)

We again use the UPenn dipole as an example. Integrating the active
stresses over a spherical surface of radius r we find an active force

∫ ζnn · dA ≈ − ζαa2

2
∫ ex

xz

r4
+ ey

yz

r4
+ ez

z

r
+ x2 + y2

r4
[ ]{ }dA

� −4πζαa
2

3
ez. (46)

Balancing this against Stokes drag predicts a ‘self-propulsion’
velocity for the active dipole of

U � 2ζαa
9μ‖

ez. (47)

For extensile activity (ζ> 0) the dipolemoves ‘hyperbolic hedgehog first’
and with a speed that increases linearly with the core size a. This self-
propulsion is in accordance with the directed component of the active
flow, as can be seen in Figure 5. The same self-propulsion speed along ex
and ey is found for the transverse dipoles of p1, except that the parallel
viscosity μ‖ should be replaced with μ⊥. Again, this self-propulsion
agrees with the directed flow induced by these distortions, as calculated
through the multipole approach, shown in Figure 4 [24] and also with
the results of both a local flow analysis and simulations [23]. The same
directed motion has been observed in a related system of an active
droplet within a passive nematic [35], with the droplet inducing a
UPenn dipole in the nematic and moving in the direction of the
hedgehog defect at a speed that grew with the droplet radius. The
mechanism at play is different however; the motion results from
directional differences in viscosity resulting from the anisotropic
environment.

To illustrate the rotational behaviour we use a member of Q1,
z2z(1/r), as an example. We find an active torque

∫ ζx × nn · dA ≈ ζαa3 ∫ 1
r6

2z2 − x2 − y2( )
× xyex + z2 − x2( )ey − yzez{ }dA

� 8πζαa3

5
ey. (48)
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Balancing against Stokes drag as was done in the dipole case gives an
angular velocity

Ω � −ζα
5μ

ey. (49)

We note that for this and all other distortions which result in net torques
the angular velocity is independent of the colloid size. In accordance with
the relation z2z + 4z2w �w(1/r) � 0, the torque resulting from z2w �w(1/r) is
of the opposite sign and a quarter the strength. The net active torques due
to harmonics ofQ0 andQ−1 have the directions indicated in Figure 4 and
half the magnitude of (48).

Let us consider the approximate magnitude of the effects we have
described. Beginning with the self-propulsion speed, the fluid viscosity is
roughly 10–2 Pa s [17], although effects due to the elongated form of the
nematogens could increase this by a factor of 30 or so [69, 70]. Both the
activity [16] and the dipole moment constant [48] are of order unity,
meaning the colloid would approximately cover its radius in a second.
Similar approximations for the quadrupole give an angular velocity of
about 2/3 rad s−1. For a colloid of radius 10 μm this has an associated

power of the order of femtowatts, the same as predicted for bacterial
ratchets [71].

6 Two-dimensional systems and
ratchets

As noted above, the planar nature of the rotational distortions in
Q1 suggests the existence of two-dimensional analogues. In part
motivated by this we now discuss the active response of multipolar
distortions in two dimensions, again beginning with the connection
between these multipoles and topological defect configurations.

6.1 Multipoles and topological defects

The categorisation of the harmonic distortions in two dimensions is
much simpler, but we provide it here for completeness. Taking the
asymptotic alignment to be along ey the symmetry of the far-field

FIGURE 7
Representative defect configurations for nematic multipoles in two dimensions. The red and cyan dots indicate the locations of +1/2 and −1/2
defects respectively. The black curves are the integral curves of the corresponding director field and the background colour shows the phase of the
complex function whose imaginary part gives the exact director angle, as in (52). The white lines are the integral curves of the dominant multipole, that is
the leading term of (54). The multipole series converges onto the exact director angle outside a core region, shown as a white disc, and the leading
multipole provides a remarkably good approximation in this region. (A, B) illustrate the vertical and horizontal dipoles respectively, while the achiral and
chiral quadrupoles are shown in (C, D).
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director is now described by the order two group 1, Ry{ }, with Ry
reflection with axis ey, under which the monopole distortion nx ~ A log
(r/a) is antisymmetric. The higher-order distortions are once again
generated via differentiation of the monopole, with zy leaving the
symmetry under Ry unchanged and zx inverting it.

It should be noted that the potential multiplicity of differential
representations of harmonics that arose in three dimensions does
not occur in two dimensions. This is because, under the
assumption of a single elastic constant, the director angle ϕ

may be written as the imaginary part of a meromorphic
function of a single complex variable and this naturally defines
the appropriate set of derivatives. Making z = x + iy our complex
variable we write ϕ � I f(z){ } which, upon performing a Laurent

expansion of f(z) around z = 0 and assuming the existence of a
uniform far-field alignment, gives

ϕ � I ∑0
n�−∞

anz
n

⎧⎨⎩ ⎫⎬⎭ � I a0 +∑∞
n�1

−1( )n−1 an
n − 1( )!z

n
z log z( )⎧⎨⎩ ⎫⎬⎭.

(50)
Hence at every order there is a one parameter family of distortions,
corresponding to the phase of the an. A natural basis at order n is
provided by R znz(log z){ },I znz(log z){ }{ }. This basis consists of a
symmetric and anti-symmetric distortion under the action of Ry, the
roles alternating with order, and of course corresponds to the two
harmonic functions cos nθ/rn and sin nθ/rn.

FIGURE 8
Distortions up to quadrupole order in two-dimensional active nematics. The active flow inwhite is superposed on the pressure field, with the integral
curves of the director shown in black. The panels are labelled according to the appropriate derivative of the nematicmonopole and a representative near-
field configuration of +1/2 (cyan) and −1/2 (red) defects is also shown. (A) The fundamental monopole response is extensional and grows linearly with
distance from the distortion. (B, C) show the flows induced by dipole distortions, with the green arrows indicating the direction of self-propulsion
that would result from net active forces in extensile systems. The vertical and horizontal dipoles are the far-field director responses to normal and
tangential anchoring respectively and their self-propulsion matches that expected for the +1/2 defect. (D, E) show the achiral and chiral quadrupole,
corresponding to normal and \π/4 anchoring respectively. The red arrow shows the direction of self-rotation and again accords with the location and
orientation of the +1/2 defects.
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In two dimensions the connection between defect
configurations and far-field multipole distortions can be
made concrete, and also serves as an illustration of how a
particular set of derivatives is determined. For defects with
topological charges sj at locations zj the angle that the director
makes to ex is given by

ϕ � ϕ0 +∑
j

sjI log
z − zj
a

( ){ } (51)

which, upon performing a series expansion, gives

ϕ � ϕ0 +∑
j

sjI log z/a( ){ } −∑∞
n�1

I ∑jsjz
n
j �z

n{ }
n|z|2n

� ϕ0 +∑
j

sjI log z/a( ){ } +∑∞
n�1

−1( )nI ∑jsjz
n
jz

n
z log z{ }

n!
, (52)

provided the total topological charge is zero thewinding termproportional
to log z vanishes andϕ0 is the far-field alignment. The distortions are given
as a series of harmonics in which the coefficient of the nth harmonic is
determined by a sum of znj weighted by the defect charges.

FIGURE 9
Distortions up to quadrupole order in two-dimensional active nematics with purely chiral stresses. The active flow in white is superposed on the
pressure field, with the integral curves of the director shown in black. The panels are labelled according to the appropriate derivative of the nematic
monopole and a representative near-field configuration of +1/2 (cyan) and −1/2 (red) defects is also shown. (A) The fundamental monopole response is
extensional and grows linearly with distance from the distortion. (B, C) show the flows induced by dipole distortions, with the green arrows indicating
the direction of self-propulsion in systems with positive chiral activity. (D, E) show the flows induced by quadrupole distortions, with the red arrow
indicating the direction of self-rotation.
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We would like to have a basis of representative defect configurations
for each harmonic distortion. However, it can be seen from (52) that the
correspondence between arrangements of topological defects and the
leading order nematic multipole is not one-to-one. Two defect-based
representations of harmonic will prove particularly useful to us. The first,
which we develop here, provides a representation in terms of half-integer
defects on the disc and allows an intuition for the response to multipole
distortions in active nematics through known results for such defects [15,
16]. The second uses the method of images to construct defect
arrangements corresponding to a specific anchoring condition on the
disc, with the same multipoles dominating the nematic distortion in the
far field. This representation naturally lends itself to the control of induced
multipoles through colloidal geometry and is explored fully in [62].
Nonetheless, both of these representations will be of use to us and as
they are equally valid near-field representations for the asymptotic
distortions that we are considering we will pass fairly freely between them.

With this aforementioned half-integer representation in mind, let
us consider sets of 2m defects sitting on the unit circle, with −1/2 defects
at the mth roots of unity and +1/2 defects at the intermediate points. A
useful formula here is the following for the sum of a given power of
these roots of unity, after first rotating them all by a given angle θ

∑m−1

k�0
eiθei

2π
m k( )n � meinθ , if m|n

0, otherwise
{ . (53)

The vanishing of this sum for values of n that are not multiples of
m comes directly from the expression for the geometric sum and
is a consequence of the cyclic group structure of the roots of
unity. It means that the lowest order multipole distortion
induced by such an arrangement of defects is order m and so
allows a desired multipole distortion to be selected as the
dominant far-field contribution. Explicitly, the director angle
is given by

ϕ � ϕ0 + ∑
k odd

I �zmk{ }
k|z|2mk � ϕ0 +

I �zm{ }
|z|2m + O

1
z3m
( ), (54)

with the approximation becoming rapidly better for higher-order
multipoles due to the condition that nmust be an oddmultiple of the
number of defects. Rotating the entire set of defects rigidly by an
angle −π/(2m) generates the conjugate multipole as the dominant
far-field contribution

ϕ � ϕ0 + ∑
k odd

I −i( )k�zmk{ }
k|z|2mk � ϕ0 −

R �zm{ }
|z|2m + O

1
z3m
( ), (55)

with the natural interpolation between these two harmonics as the
defect configuration is rigidly rotated.

Hence we can interchange between a given harmonic distortion and
a defect arrangement which has this harmonic as its dominant far-field
contribution, with the correspondence becoming rapidly more accurate
for higher orders, allowing us to relate the existing results for the
behaviour of active defects [15, 16] to ours and vice versa. This
correspondence is illustrated in Figure 7. The locations of +1/2 and
−1/2 defects are indicated with red and cyan dots respectively and the
background colouring denotes the phase of the complex function∑sj ln
(z − zj), whose imaginary part provides the director angle for the given
defect arrangement. The integral curves of this directorfield are shown in

black and are remarkably wellmatched by those of the leadingmultipole,
shown in white, despite the asymptotic nature of the approximation. In
this context we are able to make precise the notion of a core region of a
singular distortion, outside of which ourmultipole approach applies. The
series in (52) is attained through a Taylor series of terms of the form ln
(1–1/z), which are convergent for |z| > 1. More generally, the greatest
radial displacement of a defect defines a core radius, outside of which the
multipole series converges onto the exact director angle.

6.2 Flows from multipole distortions

We can proceed analogously to our three-dimensional
calculation in generating the active flows from a fundamental
response in two dimensions, provided we are mindful of the
logarithmic form that the monopole now has. A director rotation
by θ0 inside a disc of radius a results in an equilibrium texture
given by

n � cos
θ0 log r/R( )
log a/R( )( )ey + sin

θ0 log r/R( )
log a/R( )( )ex, (56)

which in the far field tends to a monopole distortion
n ≈ ey + θ0 log(r/R)

log(a/R) ex. Due to the logarithmic divergence of the
fundamental harmonic in two dimensions it is necessary to
normalise through a large length R such that a uniformly aligned
far-field director is recovered.

Following our three-dimensional analysis we solve Stokes’
equations to linear order in nematic deformations for a
monopole distortion. We write Stokes’ equations in terms of
complex derivatives as

2z�z −p + iμω( ) � f, (57)
where we have used that 2zzu = ∇ · u + iω, with ω the vorticity. Hence
we seek f as a �z-derivative, implicitly performing a Helmholtz
decomposition with the real and imaginary parts of the
differentiated term corresponding to the scalar and vector potentials
respectively. Expressing the active force in this way we have

2z�z −p + iμω( ) � ζθ0
log a/R( )z�z

i�z

z
( ) (58)

and so

−p + iμω � ζθ0
2 log a/R( )

i�z

z
. (59)

Reading off the pressure and vorticity, solving for the flow and
converting back to Cartesians the fundamental flow response is now
found to be

~u � ζθ0
8μ log a/R( )

x2 − y2

r2
−yex + xey( ) + 2 log

r

R
( ) yex + xey( )[ ],

(60)
~p � − ζθ0

log a/R( )
xy

r2
. (61)

There is a clear similarity between these solutions and their three-
dimensional counterparts, but while the fundamental flow response
is still extensional it now grows linearly with distance from the
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distortion, with this change in scaling inherited by the subsequent
harmonics.

As in the three-dimensional case we can gain general insight into
the active response of a nematic by considering the net contribution
of the active stresses to the force and torque when integrated over a
large circle of radius r

∫ ζnn · erdr ≈∫ ζ
yδnx
r

ex + xδnx
r

ey{ }dr, (62)

∫ x × ζnn · erdr ≈∫ ζ
y2 − x2( )δnx

r
dr. (63)

We see that in two dimensions both dipoles will self-propel if free to
move and there is a single chiral quadrupole which produces
rotations.

The far-field flow solutions for distortions up to dipole order
are illustrated in Figure 8, superposed over the nematic director.
Both dipoles are now motile and as in the three-dimensional
case they set up flows reminiscent of the Stokeslet. Vertical and
horizontal self-propulsive modes may be viewed as resulting
from normal and tangential anchoring respectively of the
nematic on a disc. Interpolating between these orthogonal
modes the angle of motility changes commensurately with
the anchoring angle, such that sufficient control of the
boundary conditions would allow for self-propulsion at an
arbitrary angle with respect to the far-field alignment. This
change in the dipole character can be represented by rigidly
rotating the defect pair around the unit circle and the resulting
motility is as would be expected from the position and
orientation of the +1/2 defect [16, 72, 73]. Determining the
motility induced by these dipolar modes is complicated by the
Stokes paradox and although this can be circumvented by
various means we do not pursue this here. If such dipolar
colloids were fixed within the material they would pump the
ambient fluid and so it should be possible to use them to
produce the concentration, filtering and corralling effects
observed previously by funnelling motile bacteria [74].

In line with our discussion at the beginning of this section, the
basis quadrupoles are given by the real and imaginary parts of z2z,
these being an achiral and chiral mode respectively, which are shown
along with their flows in Figure 8. The flow generated by the achiral
quadrupole in Figure 8D is purely radial and resembles the stresslet
flow, unsurprising as it results from differentiating the vertical dipole
in the same way as the stresslet is related to the Stokeslet. This
quadrupole distortion may be associated with normal anchoring on
the disc—its counterpart with tangential anchoring has all the
charges in its representative defect configuration inverted and a
reversed flow response. Just as for the dipole distortions, the
character of the quadrupole can be smoothly varied through
adapting the boundary condition and the topological defects
which represent the harmonic rotate rigidly in step with the
changing anchoring angle. A generic anchoring angle will
produce a net active torque, maximised for an angle of π/4, as
illustrated for the chiral quadrupole shown in Figure 8E. For
extensile activity this distortion generates clockwise rotation, as
can easily be justified via our representation of the far-field
director structure as arising from a square arrangement of two
+1/2 and two −1/2 defects—the dual mode with the defect charges
interchanged rotates anticlockwise. By choosing boundary
conditions such that the defects are positioned closer to the mid-
line of the colloid the strength of the active torque can be tuned.

7 Chiral active stresses

Chirality is a ubiquitous trait, in living systems and liquid
crystals alike. In active matter it opens a wealth of new
phenomena, including odd viscous [75] and elastic responses
[76, 77], surface waves, rotating crystals [78] and non-reciprocal
interactions [79]. Chiral active stresses induce vortex arrays in
active cholesterics [12] and have also been shown to be important
in nematic cell monolayers where they modify collective motion,
the motility of topological defects and generate edge currents [80,

FIGURE 10
The active flows induced by spin-0 dipole distortions with chiral active stresses. The flow is superposed upon the integral curves of the director,
shown in orange, for the UPenn dipole (A) and chiral dipole (B).
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81]. We now consider the effects of such chiral active stresses on
nematic multipoles, both in two and three dimensions.

7.1 Two dimensions

For chiral stresses in two dimensions, the active stress tensor
has the form σc = χJ (nn − n⊥n⊥)/2, where J is the complex
structure defined by Jn = n⊥ and Jn⊥ = −n. The chiral active
force is

∇ · σc � χJ ∇ · nn( )( ), (64)
and is simply a π/2 rotation of the achiral active force. Accordingly
we can modify (59) to give

−p + iμω � − ζθ0
2 log a/R( )

�z

z
, (65)

and solve as before to find

~u � χθ0
8μ log a/R( )

2xy
r2

−yex + xey( ) + 2 log
r

R
( ) −xex + yey( )[ ],

(66)
~p � χθ0

log a/R( )
x2 − y2

2r2
. (67)

Another way to understand the relation between achiral
and chiral stresses is that, since the monopole active force
field is spin 2, the π/2 local rotation of the active force results
in a global rotation by π/4 of the force field and hence the
fundamental flow responses. The action of this global rotation,
denoted Rπ/4, may be seen by comparing the monopole flow
responses for achiral and chiral stresses, shown in Figures 8A, 9A
respectively. For distortions of order n there are two basis flows,
ur and ui, corresponding to the real and imaginary parts of znz
respectively. The rotation of the monopole response has the
consequence that for achiral and chiral active stresses these
flows are related by

uc
r � Rπ/4 cos

nπ

4
( )ua

r − sin
nπ

4
( )ua

i[ ], (68)

uc
i � Rπ/4 sin

nπ

4
( )ua

r + cos
nπ

4
( )ua

i[ ], (69)

where the superscripts denote the nature of the stresses as achiral or
chiral. Hence flow solutions for chiral and achiral stresses are related
by a clockwise rotation by nπ/4 in the space of solutions followed by
a rigid spatial rotation anticlockwise by π/4, as can be seen in
Figure 9. At dipole order the chiral flow fields are rotated
superpositions of the achiral ones, with the overall effect of
chirality being to rotate the self-propulsion direction
anticlockwise by π/2, interchanging the roles of horizontal and
vertical propulsion. For a generic mixture of achiral and chiral
stresses the direction of self-propulsion is rotated from the achiral
case by an angle arctan(χ/ζ), mirroring the effect such stresses have
on the flow profile of a +1/2 defect [80]. For the quadrupole
distortions we have uci � Rπ/4uar and uci � Rπ/4(−uai ) � uai , again
swapping which distortion produces a chiral or achiral flow
response. It is worth emphasising that the sign of the
macroscopic rotation is not necessarily the same as the sign of

the chiral stresses, rather it is the product of the signs of the activity
and the distortion, just as for achiral stresses.

7.2 Three dimensions

In three dimensions the chiral active force is χ∇ × [∇ · (nn)]
[12] and so, by linearity, the fundamental flow responses are given
by the curl of those derived earlier, namely,

u x( ) � aχ

2μr3
−exxy + ey x2 − z2( ) + ezyz[ ], (70)

u(y) � aχ

2μr3
−ex y2 − z2( ) + eyxy + −ezxz[ ], (71)

for monopole distortions in the x- and y-components respectively.
Just as for achiral active stresses, we can combine these into a single
complex fundamental flow response as u(x) − iu(y), giving

~u � i

r3
− �w2ew + w �w − 2z2( )e �w + 2 �wzez[ ]. (72)

Since the active chiral force is a pure curl the corresponding pressure
is constant.

Owing to the additional derivative the functional behaviour
of the flow responses is shifted up one order of distortion
compared to achiral stresses, meaning dipole distortions
induce rotations, although it should be noted that monopoles
do not produce propulsive flows. The monopole flow responses
are still spin-1, but since the flow response for a monopole
distortion in nx for achiral stresses is primarily in the x − z plane,
the action of curl produces a flow that is dominantly in the y-
direction and similarly the response to a monopole distortion in
ny is mainly along ex. Together these ingredients mean that
heuristically the flow response of a given distortion with chiral
active stresses will resemble the achiral active stress flow
response of the conjugate distortion at one higher order and
with the same spin, that is the distortion reached by the action of
izz. This is illustrated in Figure 10 for the spin-0 dipoles. The
UPenn dipole induces rotation about ez while the chiral dipole
produces a purely radial flow, resembling the achiral flow
responses of the chiral quadrupole and Saturn’s ring
quadrupole respectively.

The phenomenological response can again be captured through
integration of the stress tensor over a large sphere of radius r, just as was
done for achiral active stresses. To enable us to reduce the active torque
to a single boundary integral we use the symmetric form of the chiral
active stress tensor [12], σcij � [∇ × (nn)]ij + [∇ × (nn)]ji, such that
to linear order in director distortions we have

fa � ∫ χσc · dA ≈ 0, (73)

τa � ∫ x × χσc · dA ≈∫ χ ex
xz zxδnx − 2yzzyδnx + y2 − z2( )zzδnx

r
[ ]{

+ey yzzyδny − 2xzzxδny + x2 − z2( )zzδny
r

[ ]
+ez

−2xy zyδnx + zxδny( ) − x2 − y2( ) zxδnx − zyδny( ) + z xzzδnx + yzzδny( )
r

⎫⎬⎭dA.

(74)

From the first of these equations we see that, to linear order, there are
no harmonic distortions which produce net forces in a nematic with
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chiral active stresses. With regard to the net active torques, the x −
and y − components involve only δnx and δny respectively and each
term yields a non-zero integral only for δni ~ zz1/r, hence the two
spin-1 dipoles produce transverse torques. Turning to the z-
component, each term gives a non-zero integral only for δni ~
zi1/r, and as the expression is symmetric under interchange of x and
y we see that only the UPenn dipole produces torques around ez. In
other words, a dipolar director distortion which produces a net
active force along a given direction in an achiral active nematic
produces a net torque around the same direction in a chiral active
nematic. These results of course accord with our earlier statements
regarding the spins of distortions which are capable of producing
torques about given axes. Performing the integrals we find that in
each case the net active torque has magnitude −12πχαa2/5.
Balancing this against Stokes drag gives, using the UPenn dipole
as an example, an angular velocity

Ω � 3χα
10μa

ez. (75)

While the angular velocity in achiral active nematics is independent
of the distortion size, in chiral active nematics it is inversely
proportional to the radius, a direct consequence of the additional
derivative in the active stress tensor. Accordingly, in chiral active
nematics the rotational velocity is largest for smaller colloids.

8 Discussion

We have introduced active nematic multipoles as a novel
framework for understanding the dynamics of active nematics.
Although only formally valid on mesoscopic lengthscales, this
approach produces results for the propulsive dynamics of
defect loops that agree with those of a local analysis [23,
24]. It also provides various testable predictions, for
example, for the axis of self-propulsion or rotation induced
by a distortion or how the corresponding velocities would scale
with the size of a colloid.

More broadly, our results reveal self-propulsion and rotation
as generic non-equilibrium responses that naturally arise due to
colloidal inclusions in active nematics but also provide a
template for the tailored design of particular dynamics. This
provides insight into the issue of harnessing the energy of active
systems to perform useful work, something which has been
demonstrated in bacterial suspensions [71, 82] and is now
receiving greater attention in the nematic context [36, 37, 83,
84]. Specific anchoring conditions on colloids have been
investigated as a means of generating directed motion [36].
Our results suggest that sufficient control of the anchoring
conditions would allow for steerable and targeted colloidal
delivery [85], although there may be routes to a similar
degree of dynamical control through colloidal geometry
alone [62].

The transformative power of colloids in passive nematics was
revealed in their collective behaviour, forming crystalline structures
[28, 86–89] which can serve as photonic metamaterials [90]. While

our predictions for the dynamics of individual colloids have utility in
their own right, there is again considerable interest in the collective
dynamics which might emerge [91]. Although our results are
insufficient to fully address these questions, some basic points
can nonetheless be extracted from the flow solutions. The long-
range nature of the active flows suggests that the hydrodynamic
interactions will be dominant over elastic ones. The leading
contribution to the pair-wise hydrodynamic interactions will be
the advection of each colloid by the flow field generated by the other,
and the even inversion symmetry of dipole flows implies that this
provides a mechanism for pair-wise propulsion, even for colloids
which are not self-propulsive themselves.

To conclude, it has been long-established that the distinct
symmetries of ±1/2 nematic defects can be directly related to the
qualitatively different dynamics they display in active systems [15,
16]. The aim of this paper is to bring the insights of this symmetry-
based approach to generic nematic distortions.
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