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We present direct numerical simulations (DNS) study of confined buoyancy-driven bubbly flows in a Hele-Shaw setup. We investigate the spectral properties of the flow and make comparisons with experiments. The energy spectrum obtained from the gap-averaged velocity field shows E(k) ∼ k for k < kd, E(k) ∼ k−5 for k > kd, and an intermediate scaling range with E(k) ∼ k−3 around k ∼ kd. We perform an energy budget analysis to understand the dominant balances and explain the observed scaling behavior. For k < kd, energy injection balances dissipation due to drag, whereas for k > kd, the net injection balances net dissipation. We also show that the Navier-Stokes equation with a linear drag can be used to approximate large scale flow properties of bubbly Hele-Shaw flow.
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1 INTRODUCTION
Flows generated by dilute bubble suspensions (bubbly flows) are relevant in many natural and industrial processes [1]. As the bubbles rise due to buoyancy and stir the fluid, they generate complex spatiotemporal flow structures “pseudo-turbulence” [2–6]. The underlying physical mechanisms responsible for the flow are the interaction between wakes caused by individual bubbles and the interaction of bubbles with the flow generated by their neighbors [3,5].
Early experiments characterized pseudo-turbulence in bubbly flows at a low-volume fraction by measuring the energy spectrum E(k) ∼ k−3 (where k is the wave number). They argued that the power-law scaling appears due to a balance of energy production with viscous dissipation [2]. Subsequent experimental studies have verified the power-law scaling in the energy spectrum [5,7–9].
Only recent numerical studies have started investigating pseudo-turbulence at experimentally relevant parameter ranges [6,10,11]. A scale-by-scale energy budget analysis has unraveled the details of the energy transfer mechanism. Buoyancy injects energy at scales comparable to the bubble diameter; it is then transferred to smaller scales by non-linear fluxes due to surface tension and kinetic energy, where it gets dissipated by viscosity. Quite remarkably, these studies also reveal that the statistics of the velocity fluctuations do not depend either on the viscosity or density contrast [6,11,12].
How does the physics of bubbly flows altered in the presence of confinement? Earlier studies have investigated this question in a Hele-Shaw setup with bubbles whose unconfined diameter is larger than the confinement width [13–15]. Numerical simulations and experiments [1,16–18] on an isolated rising bubble show that, compared to an unconfined bubble, the wake flow of the confined bubble is severely attenuated. Nevertheless, the experiments on bubbly flows in the Hele-Shaw setup still observe the power-law scaling of pseudo-turbulence between scales comparable to the bubble diameter and twenty times the bubble diameter.
In this paper, we perform a numerical investigation of buoyancy-driven bubbly flow in a Hele-Shaw setup. To make a comparison with experiments, we choose moderate volume fractions ϕ = 5–10%. We investigate the energy spectrum of the gap-averaged velocity field and, consistent with experiments, observe an interediate power-law scaling in the energy spectrum E(k) ∼ k−3. Using a scale-by-scale energy budget analysis, we show that confinement dramatically alters the energy budget compared to the unbounded bubbly flows. The viscous drag due to the confining walls balances energy injected by buoyancy at large scales. Non-linear transfer mechanisms due to surface tension and kinetic energy are negligible. Finally, we show that two-dimensional Navier-Stokes equations with an added drag term can be used as a model to study large scale flow properties.
The rest of the paper is organised as follows. In Section 2, we discuss the governing equations and the details of the numerical method used. In Section 3, we present results for bubbly flows in the Hele-Shaw setup and study the energy budget. We then show that the two-dimensional Navier-Stokes equations with a linear drag is a good model to study large scale properties of bubbly flows under confinement. Finally, in Section 4, we present our conclusion.
2 EQUATIONS AND NUMERICAL METHODS
We study the dynamics of bubbly flows in a vertical Hele-Shaw cell (see Figure 1) by solving the Navier-Stokes equations with surface tension force acting at the interface,
[image: image]
Here, ∇* ≡ (∂x, ∂y, ∂z), C is an indicator function whose value is 0 inside the bubble phase and 1 in the fluid phase, [image: image] is the buoyancy force, ρa = [∫ϱdx]/(L2H) is the average density, U = (Ux, Uy, Uz) is the hydrodynamic velocity, P is the pressure, the local density ϱ(C) ≡ ρ1C + ρ2(1 − C), the local viscosity μ(C) ≡ μ1C + μ2(1 − C), ρ2 (ρ1) is the bubble (fluid) density, μ2 (μ1) is the bubble (fluid) viscosity, and Fσ ≡ σκ∇⋆C is the surface tension force at the interface [19] with σ as the coefficient of surface tension and κ the interface curvature. The bubble volume fraction ϕ ≡ [∫(1 − C)dx]/(L2H), where L is the length along the x − and z − directions, and H is the gap width between the two parallel plates of the Hele-Shaw cell. In what follows, ρ1 (μ1) denotes the density (viscosity) of the liquid phase, and ρ2 (μ2) denotes the density (viscosity) of the bubble phase.
[image: Figure 1]FIGURE 1 | (A) Representative plot showing bubbles of diameter d in a Hele-Shaw setup. The length along x −and z −directions is L, and the gap width in y −direction is H; (B) Top view of a bubble (zoomed view); (C) Front view of the bubble (zoomed view).
The non-dimensional numbers that characterize the flow are the Galilei number [image: image]1, the Bond number Bo ≡ δρgd2/σ, and the Atwood number At ≡ δρ/(ρ1 + ρ2) with δρ = (ρ1 − ρ2). For brevity, in the following sections, we will refer to (1) as NSHS.
2.1 Gap width averaged equations
Experiments often use gap width averaged velocities to study statistical properties of the flow. Following the procedure outlined in [20,21] and assuming density ϱ to be constant along wall-normal direction, and starting from the NSHS equations, we get the following equations for the gap averaged indicator function c and horizontal components of the velocity2:
[image: image]
Here, [image: image] denotes gap averaging, ∇ ≡ (∂x, ∂z), u ≡ (ux(x, z), uz(x, z)) is the gap averaged velocity field with [image: image] and [image: image], U′(x) = (Ux − ux, Uz − uz) are the three-dimensional residual velocity fluctuations, [image: image] is the gap-averaged pressure field, [image: image] is the gap averaged strain-rate tensor, [image: image] is the gap averaged density field, [image: image] is the buoyancy force, and [image: image] is the surface tension force. The viscous dissipation contributes in two parts: (a) small-scale dissipation [image: image], and (b) viscous drag due to walls [image: image]. Previous studies [13,17,18] have argued that the gap-averaged fields appropriately describe the dynamics of bubbly Hele-Shaw flows provided H/d ≤ 1/2. In particular, they model the dynamics of an isolated bubble using two-dimensional Navier-Stokes equations with a linear drag which has similar structure to (2). We will revisit this point later in Section 3.3.
2.2 Numerical method
We use a second-order finite-volume solver PARIS [22] to simulate NSHS (1). For bubble tracking and updating the indicator function PARIS employs a front-tracking method, and the time marching is performed using the first order Euler method.
2.3 Initial conditions and parameters
We consider a cuboid of breadth Ly = H, and with equal length and height (Lx = Lz = L) [see Figure 1]. The simulation domain (Lx, Ly, Lz) is discretized with (Nx, Ny, Nz) equispaced collocation points. We use periodic boundary conditions in the x and z directions, and impose no-slip velocity boundary U = 0 at the walls (y = 0 and y = H) [23]. We place Nb bubbles in random positions and initialize each one as an ellipsoid of volume V = 4.73 × 103 (mono-disperse suspension). The front tracking module of the PARIS solver [22] employs a symmetry boundary condition for the surface tension force at the walls such that the net force at the wall would be tangent to the wall. This ensures a thin layer of fluid (approximately O(0.13)δy, where δy = H/Ny) between the bubble and the wall. Our grid resolution is comparable (or higher) to a previous numerical study on Hele-Shaw with bubbles [23]. The bubbles are allowed to relax in the absence of gravity until they achieve the equilibrium pan-cake-like configuration [23] with diameter d = 2H.
In Table 1 we summarize the parameters used in our simulations. We choose parameters such that the dimensionless numbers (Ga, Bo, H/d, and ϕ) are comparable to experiments [15,17,18]. We simulate low At = 0.08 and high At = 0.9, and verify that the spectral properties are insensitive to density contrast [6,11,12].
TABLE 1 | Parameters used in our simulations. We fix L =512, H = 12, Nx = Nz, and d =24 for all the runs.
[image: Table 1]3 RESULTS
In this section, we present the results of our numerical investigations. We obtain the density ϱ and the velocity U fields by performing the DNS of NSHS Eq. 1, and from them, we get the corresponding gap averaged fields. We monitor the time evolution of the gap averaged energy and investigate the flow properties in a statistically steady state. The plot in Figure 2 shows a typical snapshot of the bubble configuration along with the flow streamlines in the steady-state. Similar to the experiments [15], we observe that the flow disturbances are mostly localized in the bubble vicinity. Furthermore, the horizontal alignment of bubbles is also observed in experiments [15] as well as numerical simulation of stratified bubbly flows in a Hele-Shaw setup [23]. As is conventional in the experiments [14,15], we investigate the spectral properties of the gap-averaged velocity field (2).
[image: Figure 2]FIGURE 2 | Instantaneous bubble configuration superimposed with flow streamlines in the steady-state (run [image: image]). The streamlines are colored according to the z-component of the velocity.
3.1 Time evolution
From (2), we obtain the following balance equation for the gap-averaged kinetic energy E
[image: image]
where ϵμ is the gap-averaged viscous energy dissipation, ϵd is the dissipation due to drag, ϵinj is the gap-averaged energy injected due to buoyancy, ϵσ is the contribution due to the surface tension, and the angular brackets denote spatial averaging.
In Figure 3, we plot the time-evolution of the kinetic energy E and observe that a statistically steady state is achieved for t > 0.8τs. Furthermore, in Table 2 we show that the energy injected by buoyancy is primarily balanced by the dissipation due to drag in the steady state (∂tE ≈ 0).
[image: Figure 3]FIGURE 3 | Time evolution of the kinetic energy E. A steady-state is attained for t ≥0.8τs, where [image: image].
TABLE 2 | Time-averaged values of the energy injection ϵinj, viscous dissipation ϵμ, and dissipation due to drag ϵd in the statistically steady state.
[image: Table 2]3.2 Energy spectra and scale-by-scale energy budget
The energy spectrum and co-spectra for the gap-averaged velocity field are defined as:
[image: image]
Here, [image: image] denotes the Fourier transformed fields.
In Figure 4, we plot the energy spectra E(k) and cospectra Eρu(k) for our simulations [image: image]3. From the plots, we can identify different scaling regimes: (a) For k ≪ kd we observe E(k) ∼ k, where kd is the wavenumber corresponding to the bubble diameter; (b) Around k ∼ kd, we find a short E(k) ∼ k−3 scaling regime followed by a steeper decay of the spectrum E(k) ∼ k−5.
[image: Figure 4]FIGURE 4 | (A) Log-log of the energy spectra [E(k) versus k] for low At runs [image: image] and [image: image]. (B) Log-log plot of the energy spectra (E(k)) and cospectra (Eρu(k)) for high At =0.9 run [image: image] (Ga =274, ϕ =0.05). We overlay the data extracted from Bouche et al. [15] in both the plots for comparison. The experimental data is scaled vertically for clarity. The data is extracted using the Enguage digitizer [25].
The k−3 scaling range observed in our simulaiton is consistent with earlier experiments that also observe an intermediate k−3 scaling subrange for 0.2⪅k/kd⪅1 [15]. We verify this by overlaying the energy spectrum obtained in [15] over our data in Figure 4.
Risso [24] argues that the k−3 scaling could be modelled as a signal consisting of a sum of localized random bursts. Although this explanation is consistent with Figure 2, it does not highlight the underlying mechanisms that generate the observed scaling. Lance and Bataille [2] take an alternate viewpoint and argue that the balance of energy production and viscous dissipation leads to the k−3 scaling.
The scaling of the energy spectrum we observe differs from earlier studies on two-dimensional unbounded flows [10,12] at comparable Ga. They find an inverse energy cascade with E(k) ∼ k−5/3 for k < kd and a E(k) ∼ k−3 scaling for k > kd due to the balance of energy injected by surface tension with viscous dissipation.
In what follows, we present an energy budget analysis to explain the observed scaling of the energy spectrum.
3.2.1 Energy budget
Since the scaling behaviour observed in our simulations [image: image] is identical, we perform the energy budget analysis using our highest horizontal grid-resolution simulation [image: image]. Ignoring inertia and assuming a statistically steady state, from (2) we get the following energy budget equation [26,27]:
[image: image]
where D(k) is the viscous dissipation, [image: image] is the non-linear transfer due to surface tension, [image: image] is the viscous dissipation due to drag, [image: image] is the energy injection due to buoyancy. Here, [image: image] indicates summation over all wave-numbers in a circular shell around wavenumber k.
The plot in Figure 5A shows the different contributions to the budget. Clearly for k < kd, the energy injected by buoyancy is balanced by the drag [image: image] and other contributions are subdominant. This justifies our assumption of ignoring the inertial terms. In Figure 5B, we show that a linear drag approximation Fd(k) ∼ αE(k) (with α = 0.04) is in excellent agreement with [image: image]. Next we approximate the energy injected by buoyancy as [image: image], where [image: image]. Noting that for k ≪ kd, i.e., for scales much larger than bubble size, the density field can be approximated by white noise Eρ(k) ∼ k and by balancing the energy injected by buoyancy with drag, we obtain E(k) ∼ k. This explains the scaling observed in our simulations for k < kd.
[image: Figure 5]FIGURE 5 | (A) Lin-log plot of the different contributions to the spectral energy budget (4) obtained from run [image: image]. (B) Log-log plot showing comparison of the scaled energy spectrum αE(k) and the dissipation due to drag [image: image](k) for k/kd <2.
The situation is more complicated for k > kd. The zoomed-in plot of the energy balance (see Figure 6A) reveals that both buoyancy and the surface tension inject energy that gets dissipated by the viscous forces [image: image], and there is no dominant balance [image: image]. In Figure 6B, we show that the net dissipation [image: image]. Similarly, the net production [image: image] for k > kd (see Figure 6C). Therefore, by balancing the net injection with dissipation we get E(k) ∼ k−5 scaling for k > kd. Note that the oscillations in Tσ appear with period kd. Similar oscillations have been also observed in the energy spectrum of confined [23] bubbly flows.
[image: Figure 6]FIGURE 6 | (A) Zoomed in plot showing contributions to the spectral energy budget for k > kd. (B) Log-log plot showing comparison of the scaled dissipation spectrum ∼ kE(K) and the net dissipation [image: image] for k > kd. (C) Log-log plot showing different scaling regimes in the net energy injection [image: image] for k > kd.
Given the limited cross-over scaling range E(k) ∼ k−3 in Figure 4, we are unable to argue about the underlying mechanisms. Thus the plausible explanation for the −3 scaling is the argument by Risso [24] that we have discussed in the previous section.
3.3 Two-dimensional Navier-Stokes equations with a linear drag (NSD)
In this section we investigate whether two-dimensional Navier-Stokes equations with a linear drag coefficient (5) are able to model the confined bubbly flows In the following, we assume all the fields are two-dimensional and for comparison with the gap-averaged quantities, we choose the same symbols.
[image: image]
Earlier studies [13,17,18,28] have used NSD Eq. 5 to investigate the dynamics of an isolated bubble in a Hele-Shaw setup with H/d ≤ 0.5 and found the results to be consistent with the experiments. In the following, we use NSD equations to study bubbly flows.
We perform direct numerical simulation of NSD equations on a square domain of area L2 and discretize it with 20482 equi-spaced points. The bubbles are initialized as circles of diameter d = 24 and all the parameters of the simulation are identical to our run [image: image] and we fix the drag coefficient α = 0.04. Our choice for the value of α is motivated by Figure 5. We use a front-tracking-pseudo-spectral method to evolve (5). For details of the numerical scheme, we refer the reader to Ramadugu et al. [12]. Below we discuss the statistical properties of the flow in the steady state.
In Figure 7A, we plot the bubble configuration and the flow streamlines. Clearly the large scale flow properties resemble those observed for the NSHS simulation. The flow disturbances are localized in the vicinity of the bubbles and we also observe horizontal alignment of bubbles.
[image: Figure 7]FIGURE 7 | (A) Snapshot of the bubble positions overlaid with flow streamlines. (B) Comparison of the gap-averaged energy spectra for our NSHS run [image: image] with the energy spectra obtained using simulation of the NSD Eq. 5. (Inset) The compensated spectra k3E(k) is drawn to highlight the −3 scaling range observed for [image: image] and NSD simulation.
The plot in Figure 7B shows a comparison of the gap-averaged energy spectrum E(k) obtained from the NSHS equation with that obtained from NSD Eq. 5. We find that the energy spectrum are nearly identical for k < kd, E(k) ∼ k. However, discrepancies are observed for k > kd, in contrast to E(k) ∼ k−5 for the NSHS simulations we find E(k) ∼ k−3 for the NSD simulations. As pointed out in earlier section, the oscillation in the energy spectrum appear with a period kd.
Using (5), and ignoring the inertial contributions, we obtain the following energy balance
[image: image]
In Figure 8, we plot the contribution of different terms in (6) towards energy balance. For k < kd, similar to NSHS, we observe that energy injected by buoyancy is balanced by the linear drag. However, a different balance appears for k > kd. In contrast to NSHS, a dominant balance is observed in the NSD equations. The energy transfer by surface tension to small scales balances viscous dissipation leading to the observed E(k) ∼ k−3 scaling in the energy spectrum. Similar small-scale balance has also been reported in earlier two-dimensional unbounded bubbly flow simulations [12]. Therefore, we conclude that although the NSD model captures the large scale dynamics of the Hele-Shaw flow (NSHS), it is unable to correctly capture the small scale physics.
[image: Figure 8]FIGURE 8 | Different contributions towards the energy budget for (A) k < kd and (B) k > kd obtained from NSD simulation.
4 CONCLUSION
We have investigated the spectral properties of the two-dimensional bubbly flows under confinement in a Hele-Shaw setup for experimentally relevant Ga and ϕ. The flow visualization in the steady state is similar to earlier experimental observations [15]. The energy spectrum obtained from the gap-averaged velocity field shows E(k) ∼ k for k < kd and E(k) ∼ k−5 for k > kd. We also observe an intermediate scaling range with E(k) ∼ k−3 around k ∼ kd. A scale-by-scale energy budget analysis reveals the dominant balances. For k < kd, energy injection balances dissipation due to drag, whereas for k > kd, the net injection balances net dissipation. Finally, we show that the Navier-Stokes equation with a linear drag can be used to approximate large scale flow properties of bubbly Hele-Shaw flow but it fails to correctly capture energy balance at scales smaller than the bubble diameter.
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