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This study reviews the history of Newton–Cartan (NC) gravity with an emphasis on
recent developments, including the covariant, off-shell large speed of light
expansion of general relativity. Depending on the matter content, this
expansion leads to either NC geometry with absolute time or NC geometry
with non-relativistic gravitational time dilation effects. The latter shows that
non-relativistic gravity (NRG) includes a strong field regime and goes beyond
Newtonian gravity. We start by reviewing early developments in NC geometry,
including the covariant description of Newtonian gravity, mainly through the
works of Trautman, Dautcourt, Künzle, and Ehlers. We then turn to more
modern developments, such as the gauging of the Bargmann algebra and
describe why the latter cannot be used to find an off-shell covariant
description of Newtonian gravity. We review recent work on the 1/c expansion
of general relativity and show that this leads to an alternative “type II” notion of NC
geometry. Finally, we discuss matter couplings, solutions, and odd powers in 1/c
and conclude with a brief summary of related topics.
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1 Introduction

Although nature is Lorentz-invariant at the fundamental level, there are many instances
where it appears effectively non-relativistic. This can happen in condensed matter or
biological systems, but it can also be true for gravitational phenomena. Indeed,
Newtonian gravity can be obtained as a limit of general relativity. Additionally, general
relativity can often be approximated using non-relativistic descriptions of gravity, such as in
the post-Newtonian approximation. This review of non-relativistic gravity (NRG) is based
on a modern description of non-relativistic approximations in terms of Newton–Cartan
(NC) geometries, their dynamics, and their interaction with matter.

The idea of geometrizing Newton’s law of gravitation dates back to Cartan’s introduction
of NC geometry in 1923 [1, 2]. The deep insight into the heart of that work is that “gravity is
geometry” is true independently regarding whether local observers in inertial frames see the
laws of special relativity or Galilean relativity. Special relativity in inertial frames is a separate
and essential ingredient in the formulation of Einstein’s theory of general relativity.
Conversely, inertial frames with local Galilean relativity lead to NC gravity.

Recent years have witnessed a revival of research on NRG. In particular, two important
novel insights have been obtained. First, we have learned that NRG is much richer than
Newtonian gravity and goes beyond it by allowing for a strong field regime, including
gravitational time dilation. One key ingredient for this was allowing for NC metric-
compatible connections with non-zero torsion. Geometrically, non-zero torsion leads to
spacetime manifolds without absolute time, which goes beyond the historical perspective on
NC geometry, where time is always absolute. Another crucial development came from
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considering the off-shell large speed of light expansions, as opposed
to on-shell expansions or large speed of light limits. These off-shell
expansions naturally led to a notion of NC geometry whose local
symmetries are different from what was previously considered,
which is necessary to provide an action principle for NRG and
Newtonian gravity in particular.

The recent revival of NRG has been spurred on in large part by a
deeper understanding of non-relativistic geometry and its multiple
connections to field theory, holography, and string theory.1 We
highlight, in particular, Andringa et al.’s study [3], which showed
how to obtain torsionless NC geometry by gauging the Bargmann
algebra (the Galilei algebra with a central extension). This provided a
modern understanding of the geometric fields of NC geometry.
Another important advance was the discovery of a torsionful
generalization of NC geometry, which was first observed as the
boundary geometry in the context of non-AdS (Lifshitz) holography
[4–6]. In a remarkable parallel development, Son [7] showed that the
non-relativistic effective field theory describing certain aspects of the
fractional quantum Hall effect naturally couples to NC geometry,
highlighting its relevance for non-relativistic field theories. Finally, a
systematic analysis of the large speed of light expansion of GR,
considering the possibility of torsion in NC geometry, was
performed in [8–11], leading to our present understanding of NRG.

We start this review in Section 2 by presenting an overview of the
most pertinent advances in the historical development of NC
geometry up to the recent revival of NC geometry 10 years ago.
We will not be fully exhaustive, but we have attempted to collect the
main references and milestones into a readable introduction to the
subject of (torsion-free) NC geometry. Further details are provided
in Section 3, where we present the notion of NC geometry that was
developed in the work of Trautman, Dautcourt, Künzle, Ehlers, and
others. In contrast to some of these original works, our discussion is
fully covariant.

Then, in Section 4, we turn to themodern era, which we define as
starting from [3], in which NC gravity with absolute time could be
viewed as the dynamics of a geometry that can be obtained by
gauging the Bargmann algebra. Details of this procedure, including
its extension to non-zero torsion, are discussed in Section 5. This
results in what we refer to as “type I” torsional Newton–Cartan
(TNC) geometry. We obtain the action for a non-relativistic point
particle coupled to this geometry and an action for its gravitational
dynamics. On a technical level, these actions are obtained from two
distinct routes, namely, a large speed of light limit and null
reduction, whose results are equivalent. At the end of this
section, we show that type I TNC is not the correct geometrical
framework to get an off-shell action for Newtonian gravity.

Thus, we turn in Section 6 to the derivation of an action that
encapsulates the Poisson equation of Newtonian gravity as an
equation of motion. In fact, this action describes a more general
notion of NRG, which includes a strong field regime. This action is
obtained by carefully considering the large speed of light expansion

of GR, which naturally leads to a new notion of NC geometry,
referred to as “type II” TNC geometry.

Section 7 briefly discusses various other aspects of NRG from the
perspective of the large speed of light expansion, including the
coupling to matter and the particular case of the strong field
expansion of the Schwarzschild solution of GR, as well as some
other examples of solutions. We also remark on the inclusion of odd
powers of 1/c in the expansion, as the analysis in Section 6 is
restricted to even powers, which form a closed subsector.

Finally, Section 8 discusses various related applications and
appearances of NRG in the fast-growing recent literature on
these and related topics, including many additional references.

2 History

We start by giving an overview of some of the important
historical developments. We will not attempt to be exhaustive,
and our aim is not to present each study’s contents as accurately
as possible. Rather, we want to weave an accessible narrative through
the early developments of the subject. This section and the following
one can also be read as an introduction to NC geometry. We have
attempted to provide clickable links to the relevant studies, which
can be hard to find.

Historically, the subject was introduced by Cartan in [1, 2]; see
[12] for an English translation. However, these studies are not easily
digestible as they are not written in a modern geometrical language,
so it would be difficult to incorporate them accurately into our
narrative. For this reason and with much regret, we will not discuss
these works.

Instead, the earliest historical reference for our current
discussion and one of the pioneering works on the subject of 1/c
expansions of general relativity is [13]. Friedrichs introduced the NC
metric τμτ] and co-metric hμ], which is symmetric, has a signature (0,
1, . . ., 1), and writes Newton’s second law in a covariant form in
terms of an NC metric-compatible connection while realizing that
the latter is not unique. Friedrichs then found these objects from
general relativity (GR) via a 1/c expansion. Similar comments about
NC metrics and their properties can be found in [14].

For an overview of early aspects of NC geometry, we refer to
[15]. The subject has also been covered in [16, 17].

2.1 Trautman, Dautcourt, Künzle, and Ehlers

Despite these important pioneering works, we consider the more
modern notion of NC geometry to begin in earnest with the work2 of
[18–20], which provides an axiomatic definition of Newtonian
gravity.

In all three articles, Trautman gave an axiomatic definition of
NC gravity. The precise set of postulates changes slightly from one

1 In addition to this introduction, many more relevant and important works
will bementioned in the following sections and the final discussion section.
We also refer the reader to the companion reviews on other topics in
applications of non-relativistic (more generally non-Lorentzian) geometry
[78, 129, 130].

2 The works of Trautman can be found at: http://trautman.fuw.edu.pl/
publications/scientific-articles.html. The first reference [15] is in French.
The second reference [16] is a chapter from a book (see in particular
Section 5.3), and it basically reviews the contents of [15] with slightly more
detail. The later paper [17] is essentially an English version of [15].
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article to another. We follow [20], where Trautman introduced the
following postulates:

(1) Spacetime is a four-dimensional differentiable manifold
endowed with a symmetric affine connection Γρμ].

(2) There is a nowhere-vanishing one-form τμ and a nowhere
vanishing co-metric hμ] of signature (0,1,1,1) such that hμ]τμ = 0.

(3) The symmetric affine connection Γρμ] is metric-compatible in the
sense that

∇μτ] � 0, ∇μh
]ρ � 0, (2.1)

where ∇μ is the associated covariant derivative.

(4) The Riemann curvature tensor R σ
μ]ρ associated with the affine

connection obeys the following two conditions:

Rκλ μ[ ρτ]] � 0, R ] σ
μ ρ � R σ ]

ρ μ , (2.2)

where the second index has been raised with hμ], so
R ] σ
μ ρ � h]κR σ

μκρ . See Supplementary Appendix SA for our
conventions for the Riemann tensor.

(5) Particles in free fall follow geodesics of the affine connection,
and gravity is described by an equation of the form (in 3 + 1
dimensions)

Rμ] � 4πGρτμτ], (2.3)
where ρ is the mass density,G is Newton’s constant, and Rμ] � R ρ

μρ]

is the Ricci tensor.
As the connection is symmetric, taking the antisymmetric part

of ∇μτ] = 0 implies that 2z[μτ]] � 0, or equivalently dτ = 0 in form
notation. The first of the two conditions in (2.2) was later dropped in
favor of a boundary condition, as discussed in the following
equations. The second condition in (2.2) is often simply referred
to as the Trautman condition. In various places in the literature, it is
phrased as

hλ[μR ]]
λ ρσ( ) � 0. (2.4)

The latter is equivalent to

R ] σ
μ ρ( ) � R σ ]

μ ρ( ) , (2.5)

which appears to be weaker than the second condition of (2.2).
However, using ∇ρh

μ] = 0, which implies [∇ρ, ∇σ]h
μ] = 0 or

equivalently hκ]R μ
ρσκ + hκμR ]

ρσκ � 0, Eq. 2.4 can be equivalent
to the second condition of (2.2).

Around the time of Trautman’s work, the mathematical
framework underlying NC geometry was put on a firm
foundation in [21] (see also the later work by [22]). We will not
focus on the mathematical development of NC geometry in this
review, so we will not comment further on these works.

Trautman’s work can be viewed as an intrinsic definition of
Newtonian gravity without any reference to 1/c expansions of GR. It
was later improved by [22], who, among other things, worked out
the class of torsion-free metric-compatible connections and realized
that the first Trautman condition (the first equation in (2.2) is
redundant if we assume asymptotic flatness. It was shown by [23, 24]
that an appropriate covariant expansion of GR in powers of 1/c

reproduces Trautman’s formulation of NC gravity, with the caveat
that the first Trautman condition is dropped. We refer to Sections
6Sections 3.8 for more details. The first Trautman condition is
equivalent to the following condition: hρκR σ

μ]ρ � 0 that Dautcourt
in [24] attributed to Dixon3 [25]. Dautcourt wrote that this
condition did not follow from the 1/c expansion of GR.
Conversely, the second equation of (2.2) does follow from the 1/c
expansion of the Riemann tensor of GR. More details will be given in
the following paragraphs.

In [24], Dautcourt only discussed the expansion in terms of even
powers of 1/c. From the outset, the NC connection is considered
symmetric and metric-compatible. As shown previously, this
implies that dτ = 0 so that 4 τ = dT for a time coordinate T.
Therefore, time is absolute in this notion of NC geometry. This is an
important restriction from the 1/c expansion perspective. Dautcourt
knew that the latter could be formulated without this restriction but
did not consider the general case.

Later, Dautcourt [26] included odd powers in 1/c. Dautcourt
more explicitly discussed the option of allowing for a non-trivial
lapse function N in NC geometry so that τ = NdT, which is now
known as twistless torsional NC (TTNC) geometry. It is equivalent
to the Frobenius condition τ ∧ dτ = 0, implying that equal T surfaces
define spatial hypersurfaces.5 In particular, Dautcourt’s concluded
that the 1/c expansion of GR leads to a theory that is more general
than Newtonian gravity (on page 7) but then suggested that this
more general case with N a priori arbitrary is not so interesting
because insisting on global regularity of the NC lapse function N
would reduceN to a constant and thus force time to be absolute. The
argument here is that the NC lapse function is harmonic, and using
Liouville’s theorem, it must be constant to be regular everywhere
without appropriate sources. The current viewpoint is that the
condition of global regularity of the NC lapse function is too
restrictive because this rules out interesting non-relativistic
approximations of GR (given in the following sections) and that
one can find sources leading to singularities in N.

Ehlers [27, 28] developed “frame theory,” which is a geometrical
formulation that treats Lorentzian and Galilean geometry on equal
footing. The frame theory has a parameter λ = c−2 that can be either
zero or positive, leading to Galilean or Lorentzian geometry.
Furthermore, it has a second parameter, Newton’s constant G,
that can also be zero or positive, leading to four different
theories depending on whether λ and G are zero or positive.
Setting G = 0 means that one considers test particles in a fixed
background that obeys some curvature constraints. The motivation
behind frame theory is to put the 1/c expansion on a firmer
mathematical foundation, improving on the work of Dautcourt.
For a review of the frame theory, we refer to [29].

3 In [22], it is shown that Newtonian gravity, as defined under point 5 of
Trautman’s axiomatic definition (plus a cosmological constant), is unique
in that it follows from points 1 to 3, as well as the second equation of (2.2)
and some general assumptions about the structure of the equation and the
matter content.

4 We do not allow for non-contractible closed timelike loops so that τ is
exact when it is closed.

5 As shown in Section 6, the 1/c expansion of Einstein’s equations rules out
the possibility that τ ∧ dτ ≠ 0.
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Ehlers reviewed Trautman’s work and noticed that the condition
in the first equation of (2.2) could be written in other forms. In
particular, it can be shown that the following equations are all
equivalent formulations of this condition:

0 � R ρ
μ]σ R

σ
αβρ h]β, (2.6)

0 � Rμ][σ ρτγ], (2.7)
0 � Rμ]σ

ρ[ hγ]σ . (2.8)

These three conditions are now often referred to as the Ehlers
conditions. The main point of these conditions is to restrict the
geometry such that the NC gravity in Eq. 2.3 only contains the
Newtonian potential (in appropriate coordinates). However, as we
know from Dautcourt’s work (and as was also known to Ehlers),
these conditions are unnecessary, as this restriction can also be
achieved by imposing asymptotic flatness. Ehlers [30] gave a short
review of frame theory and examples of Newtonian limits of the
well-known GR solutions.

2.2 Post-Newtonian corrections

Part of the motivation behind frame theory is the question of
whether solutions to Newtonian gravity are extendable (e.g., in the
sense of post-Newtonian corrections) to full relativistic solutions of
GR. Rendall [31] showed that post-Newtonian corrections are
incompatible with asymptotic flatness. The physical reason
behind this is that these corrections do not correctly describe the
far zone of some non-relativistic matter distribution where
gravitational waves dominate. In other words, the post-
Newtonian regime corresponding to, for example, a perfect fluid
matter source has a finite radius of validity. This effect is noticeable
when one goes beyond the first post-Newtonian correction.
Lottermoser [32, 33] showed that the constraint equations of GR
(in harmonic gauge) admitted a well-defined 1/c expansion (in the
sense of a convergent series).

In the current literature on post-Newtonian corrections,
which will not be reviewed here (e.g., [34, 35] and references
therein), the dominant approach does not consist of expanding
the Einstein equations in powers of 1/c and then solving them
order by order, which is sometimes called the classic approach.
Instead, one formally solves the Einstein equations in harmonic
gauge (using what are known as the relaxed Einstein equations6)
and imposes a boundary condition that leads to an integral
equation using a retarded Green’s function. In the
Blanchet–Damour approach,7 this integral equation is solved
outside the source (i.e., in vacuum) as an expansion in G. In a
region containing the non-relativistic source, the integral
equation is solved as an expansion in 1/c. The G and 1/c

expansions are then matched multipole by multipole in their
overlap region using matched asymptotic expansion.

The recent work on the covariant 1/c expansion of GR can be
viewed as an attempt to revive the classic approach used in the
early days of work on post-Newtonian expansions. It also goes
beyond that because it can cover regimes of strong gravity8 and is
more flexible regarding the gauge choice one uses. In general,
one will have to match the 1/c expansion onto a G expansion
and thus find some hybrid of the classical and more modern
Blanchet–Damour or Will–Wiseman approaches, which is
the aim of the upcoming work [36] (see also [37] for a
covariant approach to the post-Newtonian expansion up to
1PN order).

2.3 Null reduction

Finally, even though it is not the focus of this review article,
we would be remiss not to mention Duval et al.’s work [38]. So
far, we have discussed NC geometry either intrinsically or as
originating from the 1/c expansion of GR. Duval et al. offered a
third perspective by showing that NC geometry can also be
obtained from the null reduction of a Lorentzian geometry
with a null isometry. They [38] (see [39] for further
developments and [40] for a review) considered null reduction
of Lorentzian geometry and null uplifts of NC geometry to
Lorentzian geometry with a null Killing vector. This is related
to the Eisenhart lift [41] of Hamiltonian dynamics as shown in
[42].9 It is also related to the Bargmann algebra [43] because this
algebra is the centralizer of the null isometry in the higher-
dimensional Poincaré algebra [44], as shown in Eq. 5.4.

Duval et al. [38] discussed uplifts of NC geometries for which
dτ = 0 to pp-waves in one dimension higher. This can be generalized
to cases where τ ∧ dτ = 0 [45] and even to cases where τ ∧ dτ ≠ 0 [46].

However, as reviewed in Section 5.5, Eq. 2.3 for NC gravity
coupled to matter cannot be obtained from null reduction. Despite
this shortcoming, it remains useful to adapt this higher-dimensional
perspective for many aspects, such as particle motion in a fixed
background and more geometrical questions.

3 Basics of torsion-free NC geometry

This section provides more details about the covariant
formulation of NC geometry that started with the work of
Trautman. This section does not follow a strict historical path
and uses slightly more modern tools. For example, in contrast to
much of the early literature, we will use a fully covariant approach
and largely refrain from choosing special coordinates.

6 The relaxed Einstein equations are equivalent to Einstein’s equations but
written in terms of a different variable kμ] � ���−g√

gμ] − ημ], where ημ] is the
Minkowski metric. Furthermore, this formulation only works in harmonic
gauge for which zμk

μ] = 0.

7 See [32] and references therein. An alternative approach to solving this
integral equation is the Will–Wiseman approach, see [34] and references
therein.

8 By strong gravity, wemean a regime where the clock one-form τ obeys τ ∧
dτ = 0 but dτ ≠ 0 so that there is a non-trivial NC lapse function (describing
an NC geometry with gravitational time dilation).

9 See, for example, the review paper in [131] for details about the Lorentzian
Eisenhart lift.
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3.1 NC metric data

The main objects of interest are the nowhere-vanishing “clock”
one-form τμ and the nowhere-vanishing “spatial” co-metric hμ] that
has a signature (0, 1, . . ., 1). These objects obey the condition that
τμh

μ] = 0. We take the dimension of the underlying spacetime
manifold to be (d + 1), so that the spatial co-metric has rank d. We
can also define the inverse objects vμ and hμ] by demanding that the
following relations hold:

hμρh
ρ] − τμv

] � δ]μ, v μhμ] � 0, τμv
μ � −1, τμh

μ] � 0.

(3.1)
Another way of phrasing these relations among the various

objects is by saying that τμτ] + hμ] is invertible with inverse v
]vρ + h]ρ.

The positive determinant of τμτ] + hμ] is denoted by e2, and we can
use e as an integrationmeasure. The objects vμ and hμ] are defined up
to a local Galilean boost, which acts as

δvμ � hμ]λ], δhμ] � τμλ] + τ]λμ. (3.2)

Here, we require vμλμ = 0, and λμ transforms under a second
Galilean boost transformation as δλμ = τμh

]ρλ]λρ so that v
μλμ = 0 and

vμhμ] = 0 are boost invariant under a second-order boost
transformation. The exponentiation of the infinitesimal Galilean
boost transformation terminates after the second order in λμ. The
reason why we call these transformations Galilean boosts10 will
become clear in Section 5. We note that the integration measure e is
Galilean boost invariant. Finally, we can introduce frame fields eμa

and eμa for the degenerate spatial metric and co-metric, which
satisfy

hμ] � δabeμ
ae]

b, hμ] � δabeμae
]
b, (3.3)

where a = 1, . . ., d are flat frame indices. The integration measure
e � det(τμ, eμa) is the determinant of this spatial vielbein together
with the clock one-form.

3.2 Class of torsion-free metric-compatible
connections

Consider the case of a symmetric connection that is metric-
compatible in the sense that

∇μτ] � 0, ∇μh
]ρ � 0, (3.4)

such that Γρ[μ]] � 0. We can split such a connection as

Γρμ] � �Γρμ] + Cρ
μ], (3.5)

where Cρ
μ] is symmetric in μ and ] and transforms as a tensor under

coordinate transformations, and furthermore, we define

�Γρμ] � −vρzμτ] + 1
2
hρσ zμh]σ + z]hμσ − zσhμ]( ). (3.6)

As we have assumed Γρ[μ]] � 0 in Trautman’s postulate
3 mentioned previously, it follows that we have dτ = 0.
Demanding metric compatibility leads to

Cρ
μ]τρ � 0, C]

μλh
λρ + Cρ

μλh
]λ � 0. (3.7)

We can solve the first of these conditions by writing Cρ
μ] � hρσYσμ],

where Yσμ] = Yσ]μ. The second condition tells us that

h]σhλρ + hρσh]λ( )Yσμλ � 0. (3.8)

Using completeness on the μ index (i.e., invoking δκμ � −τμvκ +
hμρhρκ following Eq. 3.1), we can write

Yσμ] � −1
2
τμF]σ − 1

2
τ]Fμσ + Lσμ], (3.9)

for some Fμ] and some Lσμ] = Lσ]μ, which is purely spatial (meaning
that all contractions with vρ are zero). The factor of −1/2 is there for
later convenience. From Eq. 3.8, we then get two equations by
contracting with vμ and hμκ:

h]ρhλσ + hρσh]λ( )F]σ � 0, Lσμ] � −L]μσ . (3.10)

Lσμ] must be antisymmetric in its first two indices because

Lσμ] � Lσ]μ � −Lμ]σ � −Lμσ]. (3.11)

Therefore, we have a tensor Lσμ] that is antisymmetric in slots
1 and 2, as well as in slots 1 and 3, and it is symmetric in slots 2 and 3.
Such a tensor is zero, as follows from

Lσμ] � −Lμσ] � L]σμ � L]μσ , (3.12)
which shows that L is symmetric in slots 1 and 3, but that means it
must be zero because it is also antisymmetric in slots 1 and 3. Hence,
we have

Cρ
μ] � −1

2
hρσ τμF]σ + τ]Fμσ( ), (3.13)

where (h]ρhλσ + h]λhρσ)F]σ � 0 so that Fμ] is of the form Fμ] = τμX]

+ τ]Yμ + Xμ], where Xμ] is purely spatial and antisymmetric. As only
hρσF]σ appears in the expression for Cρ

μ], we can, without loss of
generality, set Yμ = −Xμ so that Fμ] is antisymmetric. Therefore, we
see that

Γρμ] � �Γρμ] −
1
2
hρσ τμF]σ + τ]Fμσ( ), (3.14)

where �Γρμ] is given in (3.6). Equation 3.14 is the most general
torsion-free NC metric-compatible connection. Unlike in
Lorentzian geometry, we see here that this connection is not
unique, and its freedom is parametrized by the antisymmetric
tensor Fμ] [21, 22].

We stress that �Γρμ] is not invariant under Galilean boosts, and
therefore, the covariant derivative whose connection coefficients are
given by �Γρμ] does not form a proper affine connection (although the
covariant derivative transforms correctly under general coordinate
transformations). For Γρμ], as defined in (3.14), to be boost-invariant,
Fμ] must transform appropriately under Galilean boost
transformations. This is possible for a symmetric connection, and
we will reach this point in the following paragraphs. With this caveat
in mind, we will still use a covariant derivative �∇μ with connection
coefficients �Γρμ] and define an associated Riemann curvature �Rμ]σ

ρ
in10 They are also sometimes referred to as Milne boosts.
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the usual way. We refer to Supplementary Appendix SA for our
curvature tensor conventions.

3.3 Ehlers conditions

For completeness, we briefly comment on the first Trautman
condition, corresponding to the first equation of (2.2), even though
we will not use it in the following. First, we show that it is equivalent
to the Ehlers conditions:

1) Rμ]σ
ρRλκρ

σh]κ � 0, (3.15)
2) Rμ][σ ρτγ] � 0, (3.16)
3) Rμ]σ

[ρhγ]σ � 0. (3.17)

We will show that 1) is equivalent to 2) and that 2) is
equivalent to 3).

First, we show that 1) implies 2). We project 1) with vμvλ. In
terms of tangent space indices, this means that the condition
becomes R0abcR0abc = 0, where R0abc � −vμe]aeσbeρcRμ]σ

ρ and
where we used Rμ]σ

ρτρ � 0, which follows from the covariant
constancy of τμ. This is a sum of squares and hence R0abc.
Contracting condition 1) with hμλ, we find RabcdRabcd = 0 so that
Rabcd = 0. From R0bcd = 0 and Rabcd = 0, it follows that Rμ]σ

ρhσγ � 0.
The latter equation is equivalent to condition 2). This follows from
0 � Rμ]σ

ρhσγhγκ � Rμ]κ
ρ + Rμ]ρ

σvρτκ, where we used completeness.
The other direction, that 2) implies 1), is more straightforward

as 2) is equivalent to Rμ]σ
ρhσγ � 0, which implies 1). Here, we used

again Rμ]σ
ρτρ � 0. To show that 2) is equivalent to 3), all we need is

Rμ]σ
(ρhγ)σ � 0, which follows from [∇μ, ∇]]h

ργ = 0. This result
implies that Rμ]σ

ρhσγ � Rμ]σ
[ρhγ]σ � 0 from which the result follows.

Therefore, what is the purpose of the first Trautman condition?
To answer this, we look closer at Rμ]σ

ρhσγ � 0. Expressing this in
terms of �Rμ]σ

ρ
and projecting by hμαh]β and v]hμκ, we find

0 � hμαh]β �Rμ]σ
ρ
hσγ, (3.18)

0 � hραhγλhβκ �∇αKλβ − �∇λKαβ + 1
2
�∇βFαλ( ), (3.19)

where Kαβ � −1
2Lvhαβ with Lv, the Lie derivative along vμ. The first

equation states that we must always have a flat geometry on constant
time slices (these are the surfaces to which τ is the normal one-form).
The second equation is a condition on the magnetic part of the field
strength Fμ]. However, these conditions are too strong. It should
only be the equivalent of the Einstein equation that decides what the
allowed spaces are. In addition, the first Trautman condition does
not follow from the 1/c expansion of Lorentzian geometry.

3.4 Trautman condition

The relation between the Riemann tensors associated with two
connections related via (3.5) is given by

Rμ]σ
ρ � �Rμ]σ

ρ − �∇μC
ρ
]σ + �∇]C

ρ
μσ − Cρ

μλC
λ
]σ + Cρ

]λC
λ
μσ , (3.20)

where on the left-hand side, we have the Riemann tensor
associated with ∇μ, and on the right-hand side, we have the

Riemann tensor associated with �∇μ. This gives, for the
Trautman condition (2.4), that

0 � hμ γ[ Rμ ]σ( )ρ] � hμ γ[ �Rμ ]σ( )ρ] + 3
4
hμγhρκ τ] �∇ μ[ Fσκ] + τσ �∇ μ[ F]κ]( ).

(3.21)
It can be shown that hμ[γ �Rμ(]σ)ρ] � 0. The details can be found in
Supplementary Appendix SB. For now, let us see what its
consequences are

0 � hμγhρκ τ] �∇[μFσκ] + τσ �∇ μ[ F]κ]( ). (3.22)

Contracting this equation with v]vσ and v]hσλ, we see that this is true
if and only if we have

0 � �∇[μFσκ] � z[μFσκ], (3.23)
where the torsion is zero. In other words, the Trautman condition
(2.4) leads to a Bianchi identity for Fμ].

We point out that as an alternative to the Trautman condition
(2.4), one could also impose

hρ[κRμ]]σ ρvσ � 0, (3.24)
whenever Γρμ] is symmetric because of the following identity:

hρ[κRμ]]σ ρvσ � −∇[μF]κ] � −z[μF]κ], (3.25)
where we used (3.14).

From Eq. 3.23, we see that the second Trautman condition (2.4)
is obeyed if we take Fμ] = zμm] − z]mμ withmμ defined up to a gauge
transformation of the form δmμ = zμσ. For the connection (3.14) to
be invariant under Galilean boosts, we need mμ to transform as
δmμ = λμ, where we remind the reader that vμλμ = 0. Furthermore, in
contrast to the first Trautman condition, the second Trautman
condition does follow from the 1/c expansion of the following
identity when working with a Lorentzian metric and the
Levi–Civita connection:

gμ[γRμ]ρ
σ] � 0, (3.26)

where in this expression Rμ]ρ
σ is the curvature of the Levi–Civita

connection. The 1/c expansion of (3.26), assuming that dτ = 0, leads
to (2.4), which is equally identically satisfied in NC geometry
because the 1/c expansion also tells us that Fμ] = zμm] − z]mμ

(see further in Section 3.8).

3.5 Field content of torsion-free NC
geometry

From now on, we will always take Fμ] to be given by zμm] − z]
mμ. For this choice of Fμ], we will denote the connection coefficients
by �Γρμ], that is,

�Γρμ] � �Γρμ] −
1
2
hρσ τμF]σ + τ]Fμσ( ), (3.27)

where Fμ] = zμm] − z]mμ. The associated covariant derivatives and
curvatures will be denoted by barred quantities.
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The total field content of NC geometry is given by the gauge
potential mμ, as well as τμ and hμ]. These fields transform under the
gauge transformations as

δτμ � 0, δhμ] � τμλ] + τ]λμ, δmμ � zμσ + λμ, (3.28)
where vμλμ = 0 and where we left out the transformation under
diffeomorphisms. The connection (3.14) is inert under these
transformations. The symmetry of the connection implies that
dτ = 0, and thus, time is absolute.

3.6 NC gravity

So far, we have made no statements about dynamics. We now
review how standard Newtonian gravity can be formulated in the
framework of torsionless NC geometry. Test particles will follow the
geodesics of the connection (3.14). In other words, they are
described by

€xμ + �Γμ]ρ _x] _xρ � €xμ + �Γμ]ρ _x] _xρ − hμσ _xρFρσ � 0, (3.29)

where the dots denote derivatives with respect to λ, the
affine parameter along the geodesic. We set τμ _x

μ � 1,
which implies that the τμ contraction of this equation
is trivially satisfied. This geodesic equation follows from the
action

S � m∫ dλ
hμ] _x

μ _x]

2τρ _x
ρ −mμ _x

μ[ ]. (3.30)

This action has worldline reparametrization invariance δλ =
ξ(λ) and δxμ � ξ(λ) _xμ, which can be used to fix τμ _x

μ � 1. The fact
that m appears as an overall parameter in this particle action, so
that inertial and gravitational masses are equal, manifests the
equivalence principle. The time component of mμ is the
Newtonian potential.

Following Trautman’s postulate 5, the equations corresponding
to Newtonian gravity should take the following covariant form in
terms of the NC geometry:

�Rμ] � 8πG
d − 2
d − 1

ρτμτ], , dτ � 0, (3.31)

where �Rμ] � �Rμσ]
σ is the Ricci curvature associated with (3.27),

where ρ is the mass density of a non-relativistic matter source and
(d + 1) is the total spacetime dimension. This corresponds to the
Poisson equation of Newtonian gravity written in an arbitrary
frame. Eq. 3.31 follows from an action principle obtained from
the 1/c2 expansion of the Einstein–Hilbert (EH) action coupled to
the action of a massive point particle [10], as shown in
Section 5.5.

Rewriting the equations for NC gravity (3.31), which are
expressed in terms of the �Γρμ] connection to a set of equations
that are expressed in terms of the �Γρμ] connection, the equations for
NC gravity can be written as (where we have contracted (3.31) with
vμ and hμ])

hμρh]σ �Rρσ � 0, (3.32)
hμρvσ �Rρσ � −1

2
e−1zλ ehμρhλσFρσ( ), (3.33)

vρvσ �Rρσ � −e−1zρ ev]hρσF]σ( ) − 1
4
hμ]hρσFμρF]σ + 8πG

d − 2
d − 1

ρ.

(3.34)
In NC gravity, this should be supplemented with the condition

dτ = 0. The left-hand side is pure geometric data, and the right-hand
side depends entirely on the “electric” and “magnetic” field strength
components of Fμ]. We will see in the following sections that the
divergence of the electric field strength in the third equation, that is,
e−1zρ(ev]hρσF]σ), is what gives rise to Newton’s law of gravity. To
arrive at Newtonian gravity, we need to somehow get rid of the
magnetic field strength term, hμ]hρσFμρF]σ, in Eq. 3.34. This is the
rationale behind the first Trautman condition. However, it was later
realized that this condition is not necessary as one can argue that the
magnetic field strength has to be zero as a result of a boundary
condition that states that hμ]hρσFμρ has to vanish at infinity. This
latter condition follows from the 1/c expansion of an asymptotically
flat metric. Therefore, this is a more minimal approach to recovering
Newtonian gravity.

3.7 Gauge fixing

In order to recover Newtonian gravity in its usual form, it is
unavoidable to talk about gauge fixing the NC gauge symmetries
(3.28) and diffeomorphisms. A covariant definition of a locally
flat NC geometry could be to simply require �Rμ]σ

ρ � 0. This
condition is invariant under the Galilean boost and σ-gauge
transformations of Eq. 3.28. However, in practice, only τμ and
hμ] are often treated as geometric fields, whereasmμ is interpreted
as a force field. This is not a covariant distinction and largely
results from historical bias. For example, one can always use
(3.28) to gauge away mμ entirely, as shown in [47]; see [48] for
some examples.

A common gauge fixing that can always be made when dτ = 0
is as follows: first, we partially fix diffeomorphisms so that τ = dt,
where t is our time coordinate. In this class of coordinate systems,
the boosts act as δhti = λi, where the latter is an arbitrary one-form
in d spatial dimensions. We can thus completely fix the Galilean
boost symmetry by demanding that hti = 0 in these coordinates.
We then find from vμhμ] = 0 and vμτμ = −1 that vt = −1 and htt = 0
and that vi = 0, where hij is invertible with inverse hij. Using
τμh

μ] = 0, we find htt = 0 = hti. To summarize, we can always go to a
gauge in which

τ � dt, hμ]dx
μdx] � hijdx

idxj, v � −zt,
hμ]zμz] � hijzizj, (3.35)

and where mμ is completely arbitrary. This gauge choice still has
residual gauge transformations acting on it. Demanding that the
geometry on constant time slices is flat leads to the condition
that hαμhβ]hγσ �Rμ]σ

ρ � 0 (which is invariant under Galilean
boosts). In our partially fixed gauge (3.35), this amounts to
demanding that the Riemann tensor of the Riemannian metric
hij is zero. We can fix diffeomorphisms further so that locally
hij = a2(t)δij for some function a(t). This function plays an
important role in Newtonian cosmology. We can perform a
coordinate transformation of the form x′i = a(t)xi and t′ = t
followed by a finite Galilean boost so that in the primed
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coordinate system hμ]′ dx′μdx′] � δijdx′idx′j and τ = dt′. This
transformation will affect the mμ connection, but the point here
is to fix τμ and hμ] as much as possible. Thus, without loss of
generality, we can set a(t) = 1. Hence, we will continue by
working with

τ � dt, hμ]dx
μdx] � δijdx

idxj, v � −zt,
hμ]zμz] � δijzizj. (3.36)

In this case, all the non-trivial information about the NC
geometry is in mμ, which remains fully arbitrary at this point. In
this gauge and with these choices, Eqs (3.32)–(3.34) reduce to

0 � ziFij, (3.37)
0 � ziFti − 1

4
FijFij + 8πG

d − 2
d − 1

ρ. (3.38)

The first of these two equations is solved by Fij = εijkzkF. The Bianchi
identity z[iFjk] � 0 (which follows from the Trautman condition)
then tells us that F is harmonic on flat space (without any sources).
By using Liouville’s theorem, this function must be constant to be
regular everywhere (including infinity); hence, we conclude that Fij =
0. We can gauge fix mi = 0, using the freedom to transform mμ as
δmμ = zμσ. Now, the NC gravity equations simplify to the well-
known Poisson equation:

∇2ΦN � 8πG
d − 2
d − 1

ρ, (3.39)

where we defined mt = ΦN, the Newtonian potential. Therefore, we
see that the covariant Eq. 3.31 reproduces the usual form of
Newtonian gravity in an appropriate coordinate system.

3.8 Large speed of light expansion of GR

We very briefly review how Trautman’s definition of NC gravity
follows from the 1/c expansion of GR. We will have much more to say
about the 1/c expansion in Section 6, so we will keep it brief. The
following is essentially Dautcourt’s work [23, 24]. We will only consider
even powers of 1/c2 and assume analyticity in 1/c2. Themetric expands as

gμ] � −c2τμτ] + hμ] − τμm] − τ]mμ +O c−2( ), (3.40)
where hμ] has signature (0, 1, . . ., 1) and τμτ] + hμ] is invertible. The
Christoffel connection expands as

Γρμ] � �Γρμ] +O c−2( ), (3.41)

where �Γρμ] is given in Eq. 3.27, but only provided we set dτ = 0 by
hand. If we also expand the diffeomorphisms parameter
Ξμ � ξμ + c−2ζμ +O(c−4), then mμ transforms as δmμ = zμσ with
σ = τμζ

μ under the subleading diffeomorphisms with parameter ζμ,
again only provided that dτ = 0. Finally, the combination hμ] −
τμm] − τ]mμ is invariant under the Galilean boost transformation
with parameter λμ discussed previously. We recover the NC fields
and their gauge properties as discussed previously but only under
the assumption that dτ = 0. The 1/c expansion of matter will be
discussed in later sections, but an important observation is that one
can only obtain the NC geodesic Equation 3.29 from a 1/c expansion
if dτ = 0. Then, the 1/c expansion of the Einstein equations coupled

to the energy-momentum tensor of a massive point particle leads to
(3.31). If gμ] is asymptotically flat, it follows thatmμ (in the limit r→
∞) is at most pure gauge at spatial infinity. This is why, in (3.38), Fij
is non-singular at infinity.

4 Recent history: Revival and new
developments

The last decade has seen a surge of interest in the topic of
non-Lorentzian geometries, particularly NC geometry. To
separate this new development from the older work reviewed
previously, we treat [3] as the beginning of this new development.
This work played an important role in later developments. It
showed that for dτ = 0, it is possible to view NC gravity as the
dynamics of a geometry that can be obtained by gauging the
Bargmann algebra subject to appropriate curvature constraints.
We will review this approach further in the following paragraphs.
This approach made conditions such as the Trautman condition
(2.4) obsolete, as the latter now follows trivially from a Bianchi
identity associated with the field strength that appears in the
gauging procedure.

Another major step forward was [8], where it was realized that
the 1/c expansion of GR can be performed in full generality without
imposing by hand (or via boundary conditions and assumptions
about sources) the requirement that dτ = 0. This led to the
realization that a non-relativistic approximation can describe
gravitational fields that are, for example, strong on the scale of
the Schwarzschild radius.

Textbook non-relativistic approximations of GR often
assume a weak field limit. In this case, GR time dilation
effects are (in part) described by the Newtonian potential. In
the case of a strong field non-relativistic regime, GR time dilation
is (in part) described by an NC lapse functionN such that τ = NdT
for scalars N and T. In other words, gravitational time dilation
could be incorporated into the framework of NC geometry by
allowing for dτ ≠ 0, which corresponds to non-zero torsion in the
NC connection. Not all torsion is allowed, and at least on the
shell, we still need to impose the requirement that τ ∧ dτ = 0,
which guarantees that spacetime can be consistently decomposed
into spatial submanifolds.

It seemed natural that to describe NC geometry with dτ ≠ 0, all
one had to carry out was to extend the gauging methods of [3] to
this more general case with non-zero torsion. However, it turned
out that this was not the right thing to do. One cannot
consistently couple NC geometry with local Bargmann
symmetry to matter sources without turning on torsion, which
is incompatible with the usual description of Newtonian gravity,
as discussed in Section 3. Furthermore, the resulting torsion even
violates the condition τ ∧ dτ = 0, as we demonstrate explicitly in
Section 5.5. Instead, the relevant algebra is different, and its
gauging leads to the correct extension of NC geometry when
the torsion is non-zero. To distinguish this new framework of
torsional NC geometry from the one obtained by gauging the
Bargmann algebra, we refer to the latter as type I (gauging of
Bargmann) and the former as type II TNC geometry (1/c2

expansion). These notions of geometry coincide if the torsion
vanishes.
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We now focus on reviewing type I TNC geometry, its relation to
the gauging of the Bargmann algebra, and its gravitational action in
Section 5. Once we have seen the incompatibility of the latter with
the standard formulation of Newtonian gravity, we introduce type II
TNC geometry in Section 6.

5 Type I TNC geometry

As is well known, one can obtain Lorentzian geometry through a
gauging of the Poincaré algebra. After quickly reviewing this
construction, we show how one can obtain type I TNC geometry
from a gauging of the Bargmann algebra. We subsequently discuss
how a (d + 1)-dimensional TNC geometry can be obtained from the
following two constructions:

• A null reduction of a (d + 2)-dimensional Lorentzian
geometry.

• A large speed of light limit of a (d + 1)-dimensional Lorentzian
geometry with an electromagnetic background field.

Next, we show how the action equivalent of these
constructions allows one to find the action of a non-
relativistic particle probe and the dynamics of type I TNC
spacetime itself. We then demonstrate that the resulting
gravity actions for dynamical type I TNC geometry lead to
non-zero torsion in the presence of mass sources. In this
sense, type I TNC geometry is not appropriate to describe the
zero-torsion limit corresponding to Newtonian gravity in the
presence of matter. Finally, we show that the same arguments still
apply if one only works on the shell by null-reducing Einstein’s
equations.

5.1 The Bargmann algebra

As we will review momentarily, one can obtain Lorentzian
geometry by applying a gauging procedure to the Poincaré
algebra. Similarly, type I TNC geometry can be obtained from a
gauging of the Bargmann algebra, which encodes its local
symmetries. In this section, we first show how the Bargmann
algebra can be obtained from a contraction and a null reduction
of the Poincaré algebra. These two derivations will be mirrored at the
level of the point particle and gravity actions later.

First, we consider an İnönü–Wigner contraction of the Poincaré
algebra trivially extended with a U(1) generator that commutes with
the entire Poincaré algebra, which we denote by Q. As shown in the
following, this generator is associated with electromagnetic
coupling. We work in (d + 1) spacetime dimensions and use the
following conventions for the Poincaré algebra:

MAB,MCD[ ] � ηACMBD − ηBCMAD + ηBDMAC − ηADMBC, (5.1a)
MAB, PC[ ] � ηACPB − ηBCPA. (5.1b)

Here, PA are translation generators and MAB = −MAB are the
Lorentz and rotation generators. Now, we consider a spacetime split
of the (d + 1)-dimensional algebra indicesA = (0, a), where a = 1, . . .,
d is a spatial index, and we define the generators

H � cP0 + Q, N � 1
c
P0, Ga � 1

c
M0a, Jab � Mab. (5.2)

So far, this is just a change of basis. However, if we now take the
limit c → ∞, we end up with an inequivalent algebra whose non-
zero commutation relations are

Jab, Jcd[ ] � δacJbd − δbcJad + δbdJac − δadJbc, (5.3a)
Jab, Pc[ ] � δacPb − δbcPa, Jab, Gc[ ] � δacGb − δbcGa, (5.3b)

Ga,H[ ] � −Pa, Ga, Pb[ ] � −δabN. (5.3c)
This is the Bargmann algebra. For N = 0, we recover the Galilei

algebra, which contains time translations H, spatial translations Pa,
and rotations Jab, as well as the Galilean boosts Ga. For N ≠ 0, we
obtain the centrally extended Galilei algebra known as the
Bargmann algebra. The central extension N, as shown later,
corresponds to the gauge potential mμ that was introduced
previously.

Another way to obtain the algebra (5.3) is via a null reduction of
the Poincaré algebra in (d + 2) dimensions [43]. If we consider all
generators of this algebra that commute with the null translation
generator N � P+ � (P0 + Pd+1)/

�
2

√
, we get

Pa, H � P− � P0 − Pd+1( )/ �
2

√
,

Jab � Mab, Ga � M+a � M0a +M d+1( )a( )/ �
2

√
,

(5.4)

which forms a subalgebra corresponding to the Bargmann algebra
(5.3a). Note that the higher-dimensional Lorentz boosts M−a and M+−

do not commute with H and therefore do not enter this subalgebra.

5.2 Type I TNC geometry

As was first realized in [3], type I TNC geometry can be obtained
by gauging the Bargmann algebra (5.3b). This section reviews this
gauging construction, including its generalization to non-zero
torsion [49].11 Before that, we briefly review the well-known
procedure for obtaining Lorentzian geometry from a gauging of
the Poincaré algebra. Finally, we also show how type I TNC
geometry can be obtained from a null reduction of higher-
dimensional Lorentzian geometry.

5.2.1 Gauging Poincaré
The gauging procedure starts from a connection valued in the

algebra in question,12

Aμ � Eμ
APA + 1

2
Ωμ

ABMAB, (5.5)

whereA, B = 0, 1, . . ., d and whose coefficients Eμ
A andΩ A

μ B can be
interpreted as frame fields or vielbein and a “spin” connection for
the frames. Indices are raised and lowered using the Minkowski
metric ηAB on the frame bundle. The curvature of the total
connection A is then

11 Type I Newton–Cartan geometry with torsion can also be derived from
the Noether procedure [132].

12 See also the recent reviews in [67] for more background on non-
Lorentzian geometries, in general, and [133] for a more mathematical
perspective on the gauging procedure.

Frontiers in Physics frontiersin.org09

Hartong et al. 10.3389/fphy.2023.1116888

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1116888


F μ] � zμA] − z]Aμ + Aμ,A][ ]
� R(P)μ]APA + 1

2
R(M)μ]ABMAB,

(5.6)

whose components correspond to the torsion and curvature of the
frame connection. The connection Aμ transforms in the adjoint of
the Poincaré algebra:

δAμ � zμΛ + Aμ,Λ[ ], (5.7)

where the transformation parameter Λ can likewise be decomposed
in PA and MAB components. However, given a vector field ξμ on the
base manifold, it is useful to parametrize Λ using

Λ � ξμAμ + Σ, Σ � 1
2
ΛABMAB, (5.8)

which can be carried out without loss of generality. We can then
define a distinct transformation �δ acting on Aμ as follows:

�δAμ � δAμ − ξ]F μ] � LξAμ + zμΣ + Aμ,Σ[ ]. (5.9)

At this point, we recover the Lie derivative Lξ along ξ
μ, and we have

effectively exchanged the gauge transformations along PA for
diffeomorphisms.13

Studies on gauging spacetime symmetry groups often suggested
that diffeomorphisms can only be obtained once specific curvature
constraints are imposed.14 We emphasize that the transformation
�δAμ can be considered for any value of the total curvature F μ],
including non-zero torsion R(P)μ]A. Although this extension is
often not of immediate interest in Lorentzian geometry, it is
crucial in non-Lorentzian geometry.

Expanding (5.9) in components, we obtain the transformation
rules.

�δEμ
A � LξEμ

A + ΛA
BEμ

B, (5.10a)
�δΩ A

μ B � LξΩ A
μ B + zμΛA

B + ΛA
CΩ C

μ B − ΛC
BΩ A

μ C, (5.10b)

corresponding to diffeomorphisms and local Lorentz
transformations. Then, we can introduce a set of inverse vielbeins
Eμ

A such that

Eμ
AEμ

B � δAB , Eμ
AE]

A � δ]μ. (5.11)

Using these properties, the vielbein transformations (5.10a)
imply

�δEμ
A � LξE

μ
A − ΛB

AE
μ
B. (5.12)

Then, we can construct the Lorentzian metric and its inverse:

gμ] � ηABEμ
AE]

B, gμ] � ηABEμ
AE

]
B, (5.13)

which are invariant under local Lorentz transformations.

Finally, we can translate between the connection Ω A
μ B in the

frame bundle and the affine connection Γρμ] using the vielbein
postulate:

zμE]
A +Ω A

μ BE]
B − Γρμ]Eρ

A � 0. (5.14)

As Ωμ
AB is antisymmetric in its frame indices AB due to its

definition in (5.5), the covariant derivative ∇μ of the corresponding
affine connection is always compatible with the Lorentzian metric
(5.13). However, since the torsion 2Γρ[μ]] � Eρ

AR(P)μ]A is not
necessarily zero, this connection is not necessarily equal to the
usual Levi–Civita connection. In the following, we will mainly work
directly with affine connections instead of the frame bundle
connections. However, for the metric variables, the gauging
procedure outlined previously is a useful method for obtaining
the transformations of geometric quantities under local
symmetries, even in the presence of torsion.

5.2.2 Gauging Bargmann
Now, we repeat the gauging procedure for the Bargmann algebra

(5.3c) and show that this leads to type I TNC geometry with torsion.
Our starting point is now

Aμ � Hτμ + eμ
aPa + GaΩμ

a + 1
2
Ωμ

abJab +Nmμ, (5.15)

where we use δab to raise and lower spatial indices and τμ is the clock
one-form. eaμ are spatial vielbein Ωμ

a, Ω a
μ b are frame connections,

and mμ is the Bargmann gauge potential associated with the central
element N. Following (5.8), we parametrize the total gauge
parameter as

Λ � ξμAμ + Σ, Σ � Gaλ
a + 1

2
Jabλ

ab +Nσ. (5.16)

Then, the �δ transformations defined in (5.9) lead to

�δτμ � Lξτμ, (5.17a)
�δeμ

a � Lξeμ
a + λabeμ

b + λaτμ, (5.17b)
�δΩμ

a � LξΩμ
a + zμλ

a + λabΩμ
b + λbΩμb

a, (5.17c)
�δΩμ

ab � LξΩμ
ab + zμλ

ab + 2λ a[
c Ωμ

c|b| ], (5.17d)
�δmμ � Lξmμ + zμσ + eμ

aλa, (5.17e)
where λa, λab, and σ are the parameters of the local Galilean boosts,
local rotations, and local U(1) Bargmann transformations,
respectively. Likewise, following (5.11), we can define a set of
inverse vielbeins (τμ, eμa) that satisfy
vμτμ � −1, vμeμ

a � 0, eμaτμ � 0, eμaeμ
b � δba. (5.18)

Using 5.17a and 5.17b, their transformations are

�δvμ � Lξv
μ − λaeμa, �δeμa � Lξe

μ
a − λbae

μ
b . (5.19)

Accordingly, we can define the rotation-invariant spatial
tensors as

hμ] � δabe
a
μe

b
] , hμ] � δabeμae

]
b, (5.20)

which satisfy the orthonormality relations:

vμτμ � −1, vμhμ] � 0, hμ]τ] � 0, hμρhρ] � δμ] + vμτ].

(5.21)

13 Strictly speaking, once we work with the �δ transformations, we are no
longer gauging the Poincaré algebra, but we are passing to the Cartan
geometry modeled on the Klein pair consisting of the Poincaré algebra
and the Lorentz algebra generated by MAB. See [133] for more details.

14 This is because setting to zero some of the curvatures in Fμ] identifies �δ
with δ in (5.9) for those fields that are not fixed by the curvature
constraints. There is no need for the δ and �δ transformations to coincide.
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Hence, we obtain the full field content of type I TNC geometry,
which consists of a timelike one-form τμ, a spatial symmetric tensor
hμ] of signature (0, 1, . . ., 1), and a U(1) gauge field mμ associated
with the central Bargmann mass generator N. All these objects are
spacetime tensors, as they transform by a Lie derivative under
diffeomorphisms ξμ. In addition, they transform as

�δτμ � 0, �δhμ] � λμτ] + λ]τμ, �δmμ � zμσ + λμ, (5.22)
under local Galilean boosts λμ � eaμλ

a and U(1) gauge
transformations σ. Thus, we recover the transformations (3.28)
given before. Similarly, the transformations of the inverse
timelike vielbein and spatial co-metric are

�δvμ � hμ]λ], �δhμ] � 0. (5.23)
Hence, both τμ and hμ] are invariant under Galilean boost.
Additionally, using the U(1) gauge field mμ, we can construct the
following boost-invariant combinations:

v̂μ � vμ − hμ]m], (5.24a)
�hμ] � hμ] − τμm] − τ]mμ, (5.24b)
Φ̂ � −vμmμ + 1

2
hμ]mμm]. (5.24c)

Given an appropriate gauge choice, we will see later that the first
term in Φ̂ essentially plays the role of the Newtonian gravitational
potential.

5.2.3 Affine connection, torsion, and curvature
Given the metric variables for type I TNC geometry and their

transformations obtained from the aforementioned gauging
procedure, we would like to construct the closest analog of the
Levi–Civita connection for NC geometry.15 Our starting point is the
TNC analog of metric compatibility:

∇μτ] � 0, ∇μh
]ρ � 0. (5.25)

These conditions do not uniquely specify the connection in
terms of geometry. Following Eq. 3.5, the general solution takes the
form

Γρμ] � �Γρμ] + Cρ
μ], (5.26)

�Γρμ] � −vρzμτ] + 1
2
hρσ zμh]σ + z]hμσ − zσhμ]( ), (5.27)

Cρ
μ] � 1

2
hρσ τμKσ] + τ]Kσμ + Lσμ]( ). (5.28)

where Kμ] and Lσμ] satisfy additional constraints (see [49]).
First, we no longer require the connection to be torsionless. As a

result, dτ is no longer necessarily zero, as we can see, for example,
from the torsion of the connection �Γρμ] in (5.27), that

2�Γρ μ][ ] � −vρ zμτ] − z]τμ( ). (5.29)

Following [4, 5, 50], we distinguish three cases:

(1) Zero torsion z[μτ]] � 0 corresponds to “regular” NC geometry,
which is the case considered in Section 3.

(2) “Twistless” torsion is defined by

τ μ[ z]τρ] � 0 5 hμρh]σ zρτσ − zστρ( ) � 0, (5.30)

which implies that τμ can be used to define spatial hypersurfaces of
the co-dimension one, where hμ] pulls back to a non-degenerate
Riemannian metric. The corresponding geometry is known as
twistless torsional Newton–Cartan (TTNC) geometry, which will
be our main focus.

(3) No constraint exists on z[μτ]] and general TNC geometry.

The notion of TTNC geometry goes back to [45]. However, Julia
and Nicolai performed a conformal rescaling to create a frame of no
torsion. The benefit of adding torsion to formalism, including the
general TNC case, was first considered in [4, 5]. One can also obtain
TTNC geometries by gauging the Schrödinger algebra [51, 52].

In the case of TTNC geometry, we have the following useful
identities:

hμρh]σ zρaσ − zσaρ( ) � hμρh]σ ∇ρaσ − ∇σaρ( ) � 0, (5.31)
zμτ] − z]τμ � aμτ] − a]τμ, (5.32)

in terms of the “acceleration” vector aμ � Lvτμ of the foliation. The
second identity tells us that hμ]aμ describes the TTNC torsion. That
is why the latter is sometimes known as the torsion vector. Equation
5.31 shows that the twist tensor vanishes. That is why we refer to the
geometry as twistless torsional NC geometry.

Additionally, recall that the connection �Γρμ] is not invariant
under Galilean boosts. Using the Bargmann U(1) field mμ, we
can choose Kμ] and Lμ]ρ such that the affine connection is
invariant under Galilean boosts: δGΓρμ] � 0,

Kμ] � zμm] − z]mμ, (5.33)
Lσμ] � mσ zμτ] − z]τμ( ) −mμ z]τσ − zστ]( ) −m] zμτσ − zστμ( ).

(5.34)
The resulting connection takes the form

�Γρμ] � −v̂ρzμτ] + 1
2
hρσ zμ�h]σ + z]�hμσ − zσ �hμ]( ). (5.35)

which is the generalization of connection (3.27) to non-zero
torsion. This is not the unique boost-invariant connection, but
it is one of the more natural choices and is commonly used in
the literature. However, connection (5.35) is no longer invariant
under U(1) transformations in the presence of torsion.16With
torsion, one can show that it is no longer possible to build a
connection that is invariant under U(1) transformations and
Galilean boosts.

15 We refer the reader to Sections 2–7 in [45] for further details relevant to
this subsection.

16 As before, the connection (5.35) is not invariant under all local
symmetries, so it is strictly speaking not an affine connection in the
regular sense. In particular, not all of its curvature tensors will be invariant
under local symmetries. However, this potential problem is circumvented
by explicitly checking that all actions we consider are invariant under
non-manifest gauge symmetries. Often, this is guaranteed by their origin
as a limit or reduction of a Lorentz-invariant action.
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Finally, following Supplementary Appendix SA, we can define
the Riemann curvature tensor associated with, for example, the TNC
connection (5.27) that is not invariant under boosts (but is invariant
under U(1) gauge transformations) or the TNC connection (5.35),
which is boost-invariant (but not invariant under U(1) gauge
transformations) through

�Rμ]σ
ρ � −zμ�Γρ]σ + z]�Γ

ρ

μσ − �Γρμλ�Γ
λ

]σ + �Γρ]λ�Γ
λ

μσ , (5.36)
�Rμ]σ

ρ � −zμ�Γρ]σ + z]�Γρμσ − �Γρμλ�Γ
λ
]σ + �Γρ]λ�Γ

λ
μσ , (5.37)

from which one can compute the Ricci tensor and curvature scalars
in the usual way.

5.2.4 Type I TNC geometry from null reduction
Another way to obtain (d + 1)-dimensional type I TNC

geometry is through null reduction of a (d + 2)-dimensional
Lorentzian geometry (see also Section 2.3). Choosing coordinates
(u, xμ) such that the null isometry is generated by zu, we can
parametrize such a metric as

ds2 � gMNdx
MdxN � 2τμ du −mμdx

μ( ) + hμ]dx
μdx], (5.38)

where none of the metric components depend on u. xμ are (d + 1)-
dimensional coordinates. The splitting of the gμ] components into (τμ,
hμ], mμ) is ambiguous, which is the origin of the local Galilean boost
transformation of hμ] andmμ in (5.22). Alternatively, the metric and its
inverse can be naturally decomposed in terms of the boost-invariant
quantities defined in (5.20), (5.24a), (5.24b), and (5.24c):

gMN � 0 τ]
τμ �hμ]

( ), gMN � 2Φ̂ −v̂]
−v̂] hμ]

( ). (5.39)

Furthermore, as there is no restriction on τμ, the resulting
geometry will generically be torsionful. The fact that the
null reduction of a Lorentzian geometry leads to type I TNC
geometry with local Bargmann symmetries can be understood
because the Bargmann algebra can be obtained from a null
reduction of the Poincaré algebra, as mentioned in Eq. 5.4.

5.3 Particle action with type I TNC
background

We have obtained type I TNC geometry from a gauging of the
Bargmann algebra and from null reduction. We will then consider a
third way of obtaining it, from a limit procedure. In the process, we will
construct the TNC analog of the Lorentzian point particle action:

S � −mc∫ dλ
��������
−gμ] _x

μ _x]
√

+ q∫Aμ _x
μ. (5.40)

First, we will consider the analog of the İnönü–Wigner-type
contraction (5.2) using a background Maxwell potential, following
[53–55]. Then, we will obtain the same TNC action from a null
reduction of a massless particle coupled to a Lorentzian background
with a null isometry.

5.3.1 From a contraction with Maxwell background
In terms of the Poincaré algebra trivially extended with a U(1)

generator Q, connection (5.5) becomes

Aμ � Eμ
APA + 1

2
Ωμ

ABMAB + AμQ

� τμH + eaμPa + Ωμ
aGa + 1

2
Ωμ

abJab +mμN,
(5.41)

where we used redefinition (5.2) to obtain the second line and where
we have defined

Eμ
0 � cτμ + 1

c
mμ, Eμ

a � eμ
a, Aμ � τμ. (5.42)

The second line of (5.41) corresponds to the Bargmann
connection (5.15) upon taking the c → ∞ contraction.

Recalling that gμ] � −Eμ
0E]

0 + δabEμ
aE]

B and subsequently
applying the aforementioned parametrization to the Lorentzian
action (5.40), we get

S � q −mc2( )∫ dλτμ _x
μ + m

2
∫ dλ

�hμ] _x
μ _x]

τρ _x
ρ +O 1/c2( ), (5.43)

where �hμ] is defined in (5.24b), and we recall that
hμ] � δabeμaE]

B. We can cancel the leading-order term by
setting q = mc2, corresponding to an extremal charge. In the
limit c → ∞, the remaining action describes the coupling
of a point particle of mass m to type I TNC geometry.
By construction, it is invariant under the
Bargmann transformations (5.17a), as can also be
checked explicitly. Additionally, it agrees with the action
given in (3.30).

5.3.2 From null reduction
Finally, we can obtain the same action from a null reduction of

the Lorentzian action for a massless particle without the Maxwell
coupling. By using the parametrization in (5.38) for a (d + 2)-
dimensional Lorentzian metric gMN with a null isometry, the action
for a massless particle is given by

S � ∫ 1
2e
gMN

_X
M _X

N
dλ � ∫ 1

e
_uτμ _X

μ + 1
2e
�hμ] _X

μ _X
]( )dλ. (5.44)

The momentum associated with the null direction pu � zL/z _u �
τμ _X

μ
/e is conserved due to the isometry, which allows us to solve for

the worldline “einbein” e � τμ _X
μ
/pu. After setting pu = m, action

(5.44) reproduces

S � m

2
∫ �hμ] _X

μ _X
]

τρ _X
ρ dλ, (5.45)

which is the same action we obtained from (5.43) after canceling the
leading-order term.

5.4 Gravity action for type I TNC geometry

Similar to the point particle action, we can construct a gravitational
action for dynamical type I TNC geometry in two ways. First, we will
consider an İnönü–Wigner-type contraction of Einstein gravity
coupled to a Maxwell action. Then, we will perform the null
reduction of the EH action on a Lorentzian background with a null
isometry, which also gives an action that is invariant under Bargmann
symmetries. Afterward, we show that the two actions obtained in this
way are, in fact, equal. As far as we know, this relation has not been
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explicitly identified yet in the literature in this form, although a similar
discussion appears in frame language in [56].

5.4.1 From a contraction of Einstein–Maxwell
In our first approach to constructing an action for dynamical

type I TNC geometry, we start from the Einstein–Maxwell gravity,
whose Lagrangian is17

LEM � c3

16πG
���−g√

R − 1
4c k2

���−g√
gμρg]σFμ]Fρσ . (5.46)

As we will explain in more detail in Section 6.4, the Lorentzian
metric gμ] and the Levi–Civita Ricci scalar R can be
covariantly expanded in powers of c2. In particular, we will
see that the leading-order term in the expansion of R is not
related to the curvature of an NC connection, but instead, it
depends on

τμ] � 2z μ[ τ]], (5.47)
which parametrizes the torsion of such a connection. Specifically,
we get

LEM � ehμρh]σ
c6

64πG
τμ]τρσ − 1

4k2
Fμ]Fρσ( ) +O c4( ), (5.48)

where e � det(τμ, eμa) is the NC vielbein determinant. In
analogy with the expansion of the point particle action in
(5.43), we see that we can cancel this leading-order term by
setting

1
k2

� c6

16πG
, Aμ � τμ. (5.49)

Once the leading-order terms are canceled, the c → ∞ limit yields

L � e

16πG
hμ] �Rμ] + 1

2
hμ]aμa] + 1

2
hμρh]στμ]mρσ( ), (5.50)

where we have defined

mμ] � 2z μ[ m]], (5.51)

and where �Rμ] is the Ricci tensor associated with the connection �Γρμ]
in (5.27), and we have rescaled G → Gc4.

5.4.2 From the null reduction of EH
Conversely, we can obtain an action for type I TNC gravity using

a null reduction of the EH action. Rewriting the (d + 2)-dimensional
Levi–Civita connection denoted by Γ̂RMN using decomposition (5.39)
of the metric, we find Γ̂uuu � Γ̂ρuu � 0 and

Γ̂uμu �
1
2
âμ, (5.52a)

Γ̂uμ] � −2τ(μz])Φ̂ − �Kμ], (5.52b)
Γ̂ρμu �

1
2
τμλh

λρ, (5.52c)

Γ̂ρμ] � −v̂ρz(μτ]) + 1
2
hρλ zμ�h]λ + z]�hλ] − zλ�hμ][ ] � �Γρ

μ]( ). (5.52d)

Here, the boost-invariant objects âμ and �Kμ] are

âμ � Lv̂τμ � v̂ρτρμ, �Kμ] � −1
2
Lv̂

�hμ], (5.53)

and �Γρμ] is the boost-invariant connection defined in (5.35).
Similarly, we can decompose the Ricci tensor R̂MN into lower-
dimensional components. For example, we get

R̂uu � 1
4
hμρh]στμ]τρσ , (5.54)

which we will use later. Using the decomposition of the (d + 2)-
dimensional Ricci scalar, the EH action becomes

L � Ê

16πĜ
gMNRMN

� e

16πG
hμ] �Rμ] + 1

2
hμ]âμâ] − 1

2
Φ̂hμρh]στμρτ]σ( ). (5.55)

As all of its components are independent of u, we can interpret this
as an action for (d + 1)-dimensional type I TNC geometry. Indeed,
one can check that it is also invariant under Bargmann
transformations.

This action is not the same as the action (5.50) we obtained
from a limit. However, as in the case of the point particle, the two
actions are, in fact, equal. To see this, one can use relation (3.20) to
rewrite

hμ] �Rμ] � hμ] �Rμ] − 1
2
Φ̂hμρhμρh]στμ]τρσ − 1

2
mμh

μ]τ]ρh
ρστσαh

αβmβ,

−1
2
hμρh]στμ]mρσ + hμ]aρτρμm], (5.56a)

1
2
hμ]aμa] � 1

2
hμ]âμâ] − hμ]aρτρμm] + 1

2
mμh

μ]τ]ρh
ρστσαh

αβmβ,

(5.56b)
which means

hμ] �Rμ] + 1
2
hμ]aμa] + 1

2
hμρh]στμ]mρσ

� hμ] �Rμ] + 1
2
hμ]âμâ] − 1

2
Φ̂hμρh]στμ]τρσ . (5.57)

This identity equates the action (5.55) obtained from the null
reduction of EH to the action (5.50) obtained from a contraction of
the Einstein–Maxwell action.

Finally, note that we could also have performed the null
reduction at the level of the (d + 2)-dimensional Einstein equations:

ĜMN � 8πĜ T̂MN, (5.58)
where ĜMN and T̂MN are the higher-dimensional Einstein tensor
and Lorentzian energy-momentum tensor, respectively. In this
case, we would obtain one additional equation of motion that
does not follow from the variations of the null-reduced
action (5.55):

Ĝ
uu � 8πĜ Tuu. (5.59)

This is because guu = 0 was fixed off-shell to obtain the action (5.45).
However, the fact that this equation ismissing does notmake the reduction
inconsistent because it turns out that the remaining equations of motion
agree with the null reduction of the higher-dimensional Einstein equation.
They form a closed set under Bargmann transformations [57]. Therefore,

17 The powers of c follow from the fact that in our c-expansion, we have���−g√ � ce(1 +O(c−2)).
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we can add themissing equation ofmotion (5.59) by hand to the equations
obtained by null reduction of the action.

5.5 No mass coupling to torsionless type I
TNC gravity

We now demonstrate that the type I TNC gravity actions we
constructed previously cannot be coupled to mass sources without
turning on torsion. This leads us to conclude that type I Bargmann
symmetry is inappropriate for reproducing Newtonian gravity,
which contains mass coupling but requires vanishing torsion to
ensure that time is absolute.

First, let us consider the formulation of the action in (5.50), which
contains theNC variables (τμ, hμ]) and theU(1) Bargmann potentialmμ

as dynamical fields. We define the following energy-momentum and
mass currents from the coupling of a matter Lagrangian:

δLmat � e Tμ
τ δτμ +

1
2
Tμ]
h δhμ] + Tμ

mδmμ( ), (5.60)

where Tμ
τ is the energy current, T

μ]
h is the mass-momentum tensor,18

and Tμ
m is the mass current. We will show that having a non-zero

mass density ρ � −τμTμ
m is incompatible with the Newtonian

requirement of vanishing torsion. Consider the variation of the
type I gravity action in (5.50) with respect to mμ:

δmL � − e

8πG
Gμ

mδmμ 0 Gμ
m � 1

2e
z] eh]ρhμστρσ( ). (5.61)

We can rewrite the contraction of this vacuum equation of motion
with τμ as follows:

eτμG
μ
m � −e

2
z]τμ( )h]ρhμστρσ � −e

4
hμρh]στμ]τρσ . (5.62)

As a result, we see that the τμ projection of the mμ equation of
motion for type I TNC gravity yields

τμG
μ
m � −1

4
hμρh]στμ]τρσ � 8πGτμT

μ
m � −8πG ρ. (5.63)

This implies that the Newtonian zero torsion requirement dτ = 0 is
incompatible with non-zero mass density ρ ≠ 0. In fact, the situation
remains worse: having non-zero mass density breaks the twistless
torsion condition and no longer allows defining spatial hypersurfaces.

The same result can be obtained from the null reduction at the
level of the equations of motion (5.58). From the reduction of the
energy-momentum tensor T̂MN, we can identify the type I TNC
mass current as follows:

Tμ
m � −T̂μ

u, (5.64)
following, for example, Supplementary Appendix SA2 of [58]. After
null reduction, we get

τμĜ
μ
u � Ĝuu � R̂uu � 1

4
hμρh]στμ]τρσ � τμT̂

μ
u � −ρ, (5.65)

where we used Eq. 5.54. This reproduces (5.63).

Either way, we conclude that a different notion of dynamical NC
geometry is necessary to reproduce Newtonian gravity. We address
this problem in the following section.

6 Non-relativistic expansion of general
relativity

Wewill now derive an action whose equations of motion contain
the Poisson equation of Newtonian gravity. This construction
requires a new notion of TNC geometry based on an underlying
symmetry algebra that differs from the usual Bargmann algebra.
This geometry naturally arises in a covariant 1/c expansion of
general relativity, with c being the speed of light. The truncation
of this expansion at subleading order provides the fields and
transformation rules of “type II” TNC geometry. The
corresponding action and equations of motion include the
Poisson equation when sourced with the non-relativistic matter.
Generally, they go beyond Newtonian gravity as they allow for the
effect of gravitational time dilation due to strong gravitational fields.
The following is mainly based on [10, 59], built on earlier work by
Dautcourt [26] and crucially on the recent work by Van den
Bleeken [8].

6.1 Pre-non-relativistic form of general
relativity

In Lorentzian geometry, the slope of the light cone is 1/c, with c
denoting the speed of light. The distinguishing feature of non-
relativistic geometry is that this light cone is flattened out
completely. This means that we need to perform an expansion
around c = ∞ to relate Lorentzian geometry to non-relativistic
geometry.

The constant c is dimensionful, but if we assume analyticity in
1/c of an appropriate set of variables, then there must exist some
other characteristic velocity that is small compared to c.
However, the nature of this velocity is context-dependent and
can only be identified on the shell for a specific problem.
Nevertheless, it is possible to formulate the general theory of
the 1/c expansion without knowing the dimensionless ratio(s) in
which we expand the Einstein equation. In this section, we focus
on expanding in even powers of 1/c, but we briefly discuss some
features of the full expansion, including odd powers in
Section 7.3.

A convenient starting point for this expansion is the pre-
non-relativistic (PNR) rewriting of GR, where we make the way
in which the speed of light enters in a Lorentzian metric
manifest:

gμ] � −c2TμT] + Πμ], gμ] � − 1
c2
VμV] + Πμ]. (6.1)

In this parametrization, the Lorentzian metric and its inverse are split
into a component involving a “timelike” one-form or vectorsTμ andV

μ,
respectively, and the “spatial” symmetric tensor Πμ] or Πμ]. The latter
two can be written in terms of space-like vielbein as Πμ] � δabEμ

aE]
b

and Πμ] � δabEμ
aEb

] , where a, b = 1. . .d are spacelike indices in the
tangent space, and the total spacetime dimension is d + 1.

18 This is defined up to terms proportional to vμv] because vμv]δhμ] = 0 as a
result of vμhμ] = 0.
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These PNR variables satisfy the following orthonormality
relations:

TμV
μ � −1, TμΠμ] � 0, Πμ]V

] � 0, δμ] � −VμT] + ΠμρΠρ].

(6.2)
One can view the PNR parametrization as a split of the tangent

bundle in “temporal” and “spatial” components, which also makes
the factors of c2 that appear in the Lorentzian metric explicit. Then,
the new PNR tensor variables can be expanded uniformly in σ = 1/c2,
with the leading components being order one.

The following step is to obtain the form of the EH Lagrangian in
terms of the PNR variables. After some algebra, this (up to total
derivatives) takes the form 19

LEH � c6

16πG
E

1
4
Πμ]ΠρσTμρT]σ + σΠμ] R

(C)
μ] − σ2VμV] R

(C)
μ][ ], (6.3)

where Tμ] � 2z[μT]] and E � det(Tμ, Eμ
a). The Ricci tensor R

(C)
μ] is

defined in the usual way from the Riemann tensor R
(C)

μ]ρ
σ; see

Appendix A for our conventions. However, the latter is now

constructed from a PNR covariant derivative ∇
(C)
μ corresponding to

a PNR connection Cρ
μ], instead of the usual Levi–Civita connection.

The PNR connection is given by

Cρ
μ] � −VρzμT] + 1

2
Πρσ zμΠ]σ + z]Πμσ − zσΠμ]( ). (6.4)

This connection satisfies ∇
(C)

μT] � 0 and ∇
(C)

μΠ]ρ � 0, which are the
PNR analogs of NC metric compatibility conditions (3.4). In
addition, it satisfies

∇
(C)

μT
] � 1

2
Π]ρLVΠρμ, ∇

(C)
μΠ]ρ � T ]( LVΠρ)μ, (6.5)

where LV is the Lie derivative with respect to Vμ. This new
connection is, in general, torsionful because Cρ

[μ]] � −Vρz[μT]] is
not necessarily zero.

From a Lorentzian point of view, the parametrization (6.3) of the
EH Lagrangian may seem odd, even though it remains invariant under
local Lorentz symmetry. Instead, we have written it in terms of variables
adapted to the local Galilei symmetry that arises in the large speed of
light expansion.20 For more details on this, we refer the reader to [60],
where a novel Palatini-type formulation of GR is obtained, which
provides a natural starting point for a first-order non-relativistic
expansion. This involves a reformulation of the Lorentzian Palatini
action in terms of moving frames that exhibit local Galilean covariance
in a large speed of light expansion. A comparison between Lorentzian
and NC metric compatibility gives another explanation of the generic
appearance of torsion in the non-relativistic expansion.

We now wish to consider the large speed of light expansion of
the EH action. Therefore, it is useful to first consider the expansion
of a general Lagrangian.

6.2 Large speed of light expansion of general
Lagrangians

Consider a Lagrangian L � L(σ, ϕI, zμϕI) that is a function of
some set of field ϕI(x; σ) and its derivatives, where we also allow for
an explicit dependence on the speed of light. The starting
assumption is that, up to an overall power of c, which will be
factored out, any field ϕI(x; σ) is analytic in σ such that it admits a
Taylor expansion around σ = 0:

ϕI x; σ( ) � ϕI
0( ) x( ) + σϕI

2( ) x( ) + σ2ϕI
4( ) x( ) +O(σ3), (6.6)

where ϕI(n)(x) is used to denote the coefficient of c−n in the
expansion and I a shorthand for any spacetime and/or internal
indices. We confine ourselves here to the case of even powers in c
only. Given this expansion of the fields, we want to expand the
Lagrangian in powers of σ. The σ dependence can come from the
expansion of the background metric or matter fields and from
the parameters in the kinetic or potential terms. The result [9, 10,
59] is that

L c2,ϕ, zμϕ( ) � cN L
(−N)

LO + cN−2 L
(2−N)

NLO + cN−4 L
(4−N)

NNLO +O(cN−6),
(6.7)

where we have taken the overall power of the Lagrangian to be
σ−N/2 = cN for some N.

Restricting for simplicity to the structure of the expanded
Lagrangian for a single field, one finds the following LO and
NLO terms:

L
(−N)

LO � ~L 0( ) � L
(−N)

LO ϕ 0( ), zμϕ 0( )( ), (6.8)

L
(2−N)

NLO � ~L′ 0( ) � z ~L
zσ

∣∣∣∣∣∣∣∣∣σ�0 + ϕ 2( )
z L

(−N)
LO

zϕ 0( )
+ zμϕ 2( )

z L
(−N)

LO

zzμϕ 0( )

� z ~L
zσ

∣∣∣∣∣∣∣∣∣σ�0 + ϕ 2( )
δ L

(−N)
LO

δϕ 0( )
. (6.9)

The variation of the NLO action with respect to the NLO field
yields the equations of motion of the LO field in the LO action. A
similar property holds at any order. The corresponding
expression for the NNLO action can be found in [10, 59].
Following the general principle discussed previously, its EOM
satisfies the relations

δ L
(4−N)

NNLO

δϕ 2( )
� δ L

(2−N)
NLO

δϕ 0( )
,

δ L
(4−N)

NNLO

δϕ 4( )
� δ L

(2−N)
NLO

δϕ 2( )
� δ L

(−N)
LO

δϕ 0( )
.

(6.10)
This general expansion can be applied to the spacetime fields of

Lorentzian gravity and other types of (bosonic) Lorentzian fields
that couple to Lorentzian geometry.

6.3 Type II TNC geometry

We now show how this general procedure can expand the fields
describing a (d + 1)-dimensional Lorentzian manifold. We focus on
the metric description and will briefly comment on the vielbein

19 The overall factor of c6 arises from a combination of a factor of c2 from
the rewriting of the Levi–Civita Ricci scalar to the PNR Ricci scalar and a
factor of c4 from the dimensional prefactors of the action and the square
root of the metric determinant.

20 Similarly, a variant of this rewriting of the EH actionwith a slightly different
adapted connection [134, 135] can be used to perform a small speed of
light expansion [75], leading to Carroll or ultra-local gravity.
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description. By assumption, the PNR fields Tμ and Πμ] in the
parametrization (6.1) of the Lorentzian metric are considered
analytic in σ, and thus, they admit a Taylor expansion. This
means we can write them as follows:

Tμ � τμ + c−2mμ + c−4Bμ +O(c−6), (6.11a)
Πμ] � hμ] + c−2Φμ] + c−4ψμ] +O(c−4), (6.11b)

and similarly for the inverse fields

Vμ � vμ + c−2 vμvρmρ − hμρvσΦρσ( ) +O(c−4), (6.12a)
Πμ] � hμ] + c−2 2hρ μ( v])mρ − hμρh]σΦρσ( ) +O(c−4). (6.12b)

The various tensors in this expansion satisfy orthonormality
conditions that follow from expanding (6.2), which can be found in
[10]. In particular, we can use these relations to solve for the subleading
fields in (6.11) in terms of the fields in (6.12).

Up to next-to-leading order, the expansion features the
following fields:

LO fields: τμ, hμ], NLO fields: mμ,Φμ], (6.13)

along with their inverses. As we will show momentarily, the LO
fields precisely exhibit the Galilean transformation rules of the
corresponding fields with the same names in type I TNC
geometry. In a slight abuse of notation, we have also used the
same name mμ as in type I for one of the NLO fields, but this field
will generally transform differently in the current notion of TNC
geometry. Finally, we now have an extra field Φμ] at NLO.

Along with their transformations, the collection of these four
fields defines type II TNC geometry. As shown in the following
equations, this NLO geometric structure allows us to describe the
NLO and NNLO actions and equations of motion of NRG owing to
the simple form of the LO contributions.

We can find the transformation rules of the expanded fields by
performing a similar large c expansion in the transformations of the
Lorentzian metric and vielbein under diffeomorphisms and local
Lorentz transformations. This leads to the following
transformations of the LO and NLO fields:

�δτμ � Lξτμ, (6.14a)
δhμ] � Lξhμ] + τμλ] + τ]λμ, (6.14b)

�δmμ � Lξmμ + λμ + zμΛ − Λaμ + hρσζσ zρτμ − zμτρ( ), (6.14c)
�δΦμ] � LξΦμ] + 2λa τ μ( πa

]) +m μ( ea])( ) + 2ηae
a
μ( τ]) + 2ΛKμ]

+2�∇ μ( ζ]), (6.14d)

where λμ � eaμλa is the Galilean boost parameter that obeys
vμλμ = 0 and the parameter ηa arises from subleading boost.
Additionally, the notation �δ foreshadows a link to the
transformations (5.9) in the gauging procedure, and the fields
eμa and πμa are the leading and subleading terms in the expansion
of the spatial vielbein Eμ

a, respectively. We similarly expanded the
diffeomorphisms so that ξμ is the LO part, whereas the subleading
diffeomorphisms are ζμ, which we have decomposed previously as

ζμ � −Λvμ + hμ]ζ]. (6.15)
In these expressions, we used the acceleration and extrinsic
curvature tensors:

aμ � Lvτμ � v]τμ], Kμ] � −1
2
Lvhμ], (6.16)

which will appear in the expanded EH action. It can be easily
checked that the transformations of the three fields τμ, hμ], andmμ in
(6.14) reduce to those of the corresponding type I TNC fields in
(5.22) when τμ is closed.

To write the expanded EH action, we should introduce a
connection on type II TNC geometry. At leading order in the
expansion of Cρ

μ] in (6.4), we recover the torsionful connection
�Γρμ] from (5.27):

�Γρμ] � Cρ
μ]

∣∣∣∣∣σ�0 � −vρzμτ] + 1
2
hρσ zμh]σ + z]hμσ − zσhμ]( ). (6.17)

This combination is, in some sense, the minimal collection of
terms that transforms as an affine connection under
diffeomorphisms. Moreover, it follows from the metric
compatibility conditions on the PNR connection Cρ

μ] that �Γρμ] is
an NC metric-compatible connection satisfying the properties
∇μτ] = 0 and ∇μh

]ρ = 0. It transforms under local Galilei boosts;
therefore, the corresponding curvature tensors will also generically
transform under boosts. However, if we start from an action that is
invariant under Lorentz boosts, such as the EH action, the expansion
will only produce scalar combinations that are invariant under
Galilean boosts.

6.3.1 Type II TNC symmetry algebra and Lie algebra
expansion

In Section 5.2.2, we derived the transformation properties
(5.17a) of the type I TNC fields from the gauging of the
Bargmann algebra. It turns out that the transformations (6.14d)
of the type II TNC fields can likewise be obtained from the gauging
of an algebra. The corresponding symmetry algebra follows from an
expansion of the Poincaré algebra using the general method of Lie
algebra expansions.21

Applying the PNR decomposition to the Poincaré-valued Cartan
connection (5.5), we obtain

Aμ � HTμ + PaE
a
μ + BaΩμ

a + 1
2
JabΩμ

ab, (6.18)

which contains the relativistic vielbein Tμ and Ea
μ along with the

boost connection Ωμ
a and the rotation connection Ωμ

ab. If we
schematically write this Cartan connection as Aμ � TIAI

μ and

expand its components as AI
μ � ∑∞

n�0σ
n A
(2n)

I
μ , we will obtain the

new generators T(n)
I � TI ⊗ σn, where n ≥ 0 will be referred to as

the level.
Using this expansion of the generators T(n)

I , one obtains an
algebra whose non-zero commutation relations are [61]

H m( ), B n( )
a[ ] � P m+n( )

a , P m( )
a , B n( )

b[ ] � δabH
m+n+1( ),

B m( )
a , B n( )

b[ ] � −J m+n+1( )
ab , J m( )

ab , P n( )
c[ ] � δacP

m+n( )
b − δbcP

m+n( )
a ,

21 This method has been considered in, for example, [136–138] and was
applied to the 1/c2 expansion of the Poincaré algebra in [10, 61] and
[139–142].
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J m( )
ab , B n( )

c[ ] � δacB
m+n( )

b − δbcB
m+n( )
a ,

J m( )
ab , J n( )

cd[ ] � δacJ
m+n( )
bd − δbcJ

m+n( )
ad − δadJ

m+n( )
bc + δbdJ

m+n( )
ac . (6.19)

We can quotient out all generators with level n > L for some L,
which amounts to truncating the 1/c2 expansion. At the lowest level
L = 0, the algebra is isomorphic to the Galilei algebra, and the
gauging of the algebra can be shown to generate the transformation
rules of τμ and hμ]. At the following level L = 1, the number of
generators doubles, and we get a novel algebra that can be shown to
lead to the full set of symmetries in (6.14), which now acts on all of
the LO and NLO fields.

The L = 1 truncation of the algebra (6.19) does not have the
Bargmann algebra as a subalgebra because the would-be Bargmann
extension H(1) is not central as it has non-zero commutator with the
Galilean boosts B(1)

a . We can obtain the Bargmann algebra as a
quotient of the L = 1 algebra by the ideal spanned by J(1)ab , B

(1)
a , P(1)

a .
Although the Bargmann algebra encodes the local symmetries of
type I TNC geometry, this algebra can be considered the “type II
Bargmann algebra” associated with type II TNC geometry. As
discussed in (6.14c), the corresponding transformations agree on
torsionless geometries, but they are generically distinct.

6.4 Expanding the EH action

We now have all ingredients in place to find the LO, NLO, and
NNLO terms in the expansion of the EH action following the
methods outlined in Section 6.2. Following the PNR
parametrization (6.1) and the expansion (6.11), we obtain a
theory that is expressed in terms of the LO and NLO fields:

ϕI
0( ) � τμ, hμ]{ }, ϕI

2( ) � mμ, Φμ]{ }. (6.20)

The NNLO fields ϕI(4) � {Bμ, ψμ]} also enter in the NNLO EH
action, but as shown in the following sections, they only play a
limited role, implementing a particular constraint.

Following the general form (6.7), the 1/c2 expansion of the EH
Lagrangian reads

LEH � c6 L
(−6)

LO + σ L
(−4)

NLO + σ2 L
(−2)

NNLO +O σ3( )( ). (6.21)

To compute the first terms in this expansion, we use the PNR form
(6.3) of the EH action, the large c expansions of the metric variables in
(6.11), and the choice of connection in (6.17).We review themain results
in the following paragraphs, referring to [10] for more detail.

The LO action is

L
(−6)

LO
� e

64πG
hμ]h ρστμρτ]σ , (6.22)

where e � det(τμ, eaμ) and τμ] = zμτ] − z]τμ as usual. This LO action is
manifestly invariant under Galilean boosts. Its variation takes the
following form:

δ L
(−6)

LO
� − 1

8πG
e G

(−6)
α
τ δτα + 1

2
G
(−6)

αβ
h δhαβ( ), (6.23)

where the leading order equations of motion are

G
(−6)

αβ
h � −1

8
hμ]hρστμρτ]σh

αβ + 1
2
hμαh]βhρστμρτ]σ , (6.24a)

G
(−6)

α
τ � 1

8
hμ]hρστμρτ]σv

α + 1
2
aμh

μ]hρατ]ρ + 1
2
e−1zμ ehμ]hρατ]ρ( ).

(6.24b)
These equations imply hμ]hρστμρτ]σ = 0. As the latter is a sum of

squares, it implies hμ]hρστμρ = 0 or equivalently τ ∧ dτ = 0, which is
the TTNC condition discussed in Section 5.2.3. Hence, the on-shell
geometry arising from the expansion is a TTNC geometry [4]. The
LO equations of motion (6.24) vanish identically once the TTNC
condition is imposed.

The NLO Lagrangian then takes the form

L
(−4)

NLO
� − e

8πG
−1
2
hμ] �Rμ] + G

(−6)μ
τ mμ + 1

2
G
(−6)

μ]
h Φμ]( ), (6.25)

where G
(−6)

μ
τ and G

(−6)
μ]
h are the LO EOMs given in (6.24). As the latter is

equivalent to the TTNC condition, we can write the NLO action as
the first term in (6.25) together with a Lagrange multiplier term χρσ
hρμhσ]τμ], enforcing the TTNC condition.22 The resulting NLO
Lagrangian also has Galilean symmetries, and we will refer to its
dynamics as Galilean gravity. This theory was also studied in [62]
using first-order formalism. Equation 6.25 can be related to the
Lagrangian appearing in that work by a specific choice of the
undetermined Lagrange multipliers.

Following the general observation around Eq. 6.9, the leading
order equations of motion are included in the NLO Lagrangian as
the equations of motion of the NLO fields mμ and Φμ]. The NLO
equations of motion of the LO fields τμ and hμ] are

G
(−4)]

τ �
1
2

2 hμρh]σ − hμ]hρσ( )�∇μKρσ + v]hρσ �Rρσ + �∇μ + 2aμ( )hμρh]σFρσ[ ]
+/, (6.26a)

G
(−4)ρσ

h � hμρh]σ �Rμ] − 1
2
hμ]h

κλ �Rκλ − �∇μ + aμ( )a] + hμ]h
κλ �∇κ + aκ( )aλ( )

+/ , (6.26b)
where the dots denote terms that vanish on the shell upon using the
mμ and Φμ] equations of motion or equivalently upon imposing the
TTNC condition.

Finally, the NNLO Lagrangian requires considerably further
algebra. Its form is the simplest when we add a Lagrange multiplier
to enforce the TTNC condition.23 We refer to the result as the NRG
Lagrangian:

LNRG ≡ L
(−2)

NNLO

∣∣∣∣∣∣∣∣τ∧dτ�0 + e

16πG
1
2
ζρσh

μρh]σ zμτ] − z]τμ( )
� e

16πG
hμρh]σKμ]Kρσ − hμ]Kμ]( )2 − 2m] hμρh]σ − hμ]hρσ( )�∇μKρσ[

+Φhμ] �Rμ] + 1
4
hμρh]σFμ]Fρσ + 1

2
ζρσh

μρh]σ zμτ] − z]τμ( )
−Φρσh

μρh]σ �Rμ] − �∇μa] − aμa] − 1
2
hμ]h

κλ �Rκλ + hμ]e
−1zκ ehκλaλ( )( )],

(6.27)

22 Equivalently, one can obtain the resulting action by rewriting the first
term in the PNR form of the EH action in terms of an auxiliary field χμ],
with appropriate quadratic and linear terms, and then taking the large c
limit in the same way that the magnetic Carroll limit of GR was obtained
in [75].

23 The full result at NNLOwithout the TTNC condition can be found in [118].
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where Φ ≡ − vμmμ is the Newtonian potential. The resulting EOMs
can be found in [10].

We remark that the NRG Lagrangian can also be obtained via
another method. This alternative route employs the type II TNC
gauge symmetries and constructs the unique (up to a cosmological
constant) two-derivative action respecting this symmetry, starting
with the correct kinetic term required for Newton’s law of
gravitation and then completing the full action. This was first
carried out in [9] and elaborated on in [10], and we refer to
these studies for details, including the form of the EOMs. As
expected, the two Lagrangians are identical. The main difference
in their appearances arises from the slightly different geometric
variables used in each because the gauging construction naturally
leads to manifestly Galilean boost invariant quantities. Depending
on taste and type of application, one can work with either one
of them.

6.5 Newton’s Poisson equation

We will now show how the NRG action (6.27) yields the Poisson
equation of Newtonian gravity when it is coupled to a massive non-
relativistic particle. In this way, we show that type II TNC geometry,
particularly action (6.27), provides an off-shell formulation of
Newtonian gravity.

We start by considering the large c expansion of the Lorentzian
particle Lagrangian:

L � −mc −gμ] _X
μ _X

]( )1/2, (6.28)

where Xμ(λ) are embedding scalars and λ is the geodesic parameter.
We expand the metric according to (6.1) and (6.11a), as performed
previously. In addition, we now need to expand the embedding
scalars according to the general expression (6.6), which gives

Xμ � xμ + 1
c2
yμ +O(c−4). (6.29)

This is necessary because the equations of motion for Xμ would,
otherwise, be overconstrained. Then, the resulting LO Lagrangian is just

L
(−2)

LO � −mτμ _x
μ, (6.30)

whereas the NLO Lagrangian becomes (up to a boundary term)

L
(0)

NLO � m z]τμ − zμτ]( ) _x]yμ + 1
2

�hμ] _x
μ _x]

τρ _x
ρ( ). (6.31)

The latter is the Lagrangian of a particle on a type II TNC
geometry. Again, it can be checked that the LO EOM is correctly
reproduced by the EOMs of yμ in the subleading Lagrangian.

On a fixed torsionless NC background, the action (6.31) is the
same as the standard point particle action (5.45) on a torsionless
type I TNC geometry [3, 54, 63]. We also emphasize that the LO
term in the expansion of the particle action (6.28) is of order c2 so
that it couples to the NNLO gravity action. Likewise, the NLO
particle action only couples to the N3LO gravity action, where it will
source NNLO fields. This means we can solve the geodesic equation
at a given order in 1/c2 on a background whose fields were
determined at the previous order. For example, at order c2 of the

geodesic equation, the equation of motion of xμ, shows that dτ = 0.

The coupling of L
(−2)

LO to NRG leads to the equation of NC gravity as
originally formulated by Trautman. We solve this equation for the
NC variables. Then, at the following order c0, we solve for the
embedding scalars in the geodesic equation (Newton’s law) obtained

by varying L
(0)

NLO with respect to xμ. Then, this solution sources the
Einstein equations at order c0.

Thus, we consider the NRG Lagrangian (6.27) coupled to the
LO point particle Lagrangian (6.30). The xμ equation enforces
absolute time dτ = 0. In general, the equations of motion of the
NRG part of the Lagrangian can be shown [10] as follows:

�Rμ] � 8πG
d − 1

− d − 2( )τρT ρ
τ + hρσT ρσ

h( )τμτ], (6.32)

where T τ and T h are proportional to the responses of varying the
matter action with respect to τμ and hμ], respectively, as reviewed in
more detail in Section 7.1.

In the case at hand, the sources that follow from the LO particle
action are

T μ
τ � −m∫dλ

δ x − x λ( )( )
e

_xμ, (6.33)

and T μ]
h � 0. The equations of motion of the NRG action (6.27) are

coupled to the point particle action (6.30)and then reproduce the
covariant form of the Newtonian Poisson equation:

�Rμ] � 8πG
d − 2
d − 1

ρ τμτ], (6.34)

with ρ =m∫dλδ(x − x(λ))/e (in the gauge τμ _x
μ � 1). In addition to

these NC equations of motion, there are additional decoupled
equations of motion for the fieldΦμ] and the Lagrange multiplier.
It is also important to stress that ρ in (6.34) is not a Bargmann
mass density but rather the leading contribution to the energy
density. Overall, we see that the NRG action (6.27) for type II
TNC geometry provides a complete off-shell description of NC
gravity with a point particle source.

7 Other aspects of NRG

This section discusses further properties of the large speed of
light expansion of general relativity. This discussion is non-
exhaustive, and we will comment on other aspects and directions
in Section 8.

7.1 Expansion of matter sources

We already discussed the non-relativistic particle coupling
to NRG in Section 6.5. Here, we present some highlights of the
large speed of light expansion of more general matter couplings.
These expansions can be obtained by applying the same
methods used for the EH Lagrangian to a generic matter
Lagrangian. The matter actions that we obtain in this way
act as sources for gravity in the 1/c2 expansion, particularly
for the NRG Lagrangian (6.27).
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The expansion of a generic matter Lagrangian takes the
following form:

Lmat c
2,ϕ,zμϕ( )� cN ~Lmat σ( )

� cN L
(−N)

mat, LO + cN−2 L
(2−N)

mat,NLO + cN−4 L
(4−N)

mat,NNLO

+O(cN−6).
(7.1)

At each order n ∈ Z≥0, we define matter currents as responses to
variations of the geometric fields. For example,

T
(2n−N)

αβ
h ≡ 2e−1

δ L
(2n−N)

mat,NnLO

δhαβ
, T

(2n−N)
α
τ ≡ e−1

δ L
(2n−N)

mat,NnLO

δτα
. (7.2)

In this way, one can get the EOMs of the sourced gravity coupled to
matter at any order in the large c expansion [10]. In particular, if we
define the EOMs from the variations of the NnLO gravity Lagrangian
with respect to hαβ and τα for n ∈ Z≥0 as

1
16πG

G
(2n−6)

αβ
h ≡ − e−1

δ L
(2n−6)

NnLO

δhαβ
,

1
8πG

G
(2n−6)

α
τ ≡ − e−1

δ L
(2n−6)

NnLO

δτα
, (7.3)

we get the following sourced EOMs at any order 2m ≥−6:

G
(2m)

αβ
h � 8πG T

(2m)
αβ
h , G

(2m)
α
τ � 8πG T

(2m)α
τ . (7.4)

The equations of motion and currents for the higher-order fields are
defined analogously. Relatedly, one can derive theWard identities resulting
from various gauge invariances, see [10] for details. Amongst other things,
theseWard identities provide the non-relativistic analog of the conservation
of the relativistic energy-momentum tensor.

A few remarks are in order. Recall that the LO EOMs G
(−6)

αβ
h and

G
(−6)

α
τ are equivalent to τ ∧ dτ = 0. To avoid spacetimes, which violate

the twistless torsion condition τ ∧ dτ = 0, we must have matter
actions such that the overall scaling N in (7.1) is at most equal to

four, so that T
(−6)αβ

h � T
(−6)α

τ � 0 and no violation of the twistless

torsion condition is sourced. Hansen et al. [10] showed that N ≤ 4

for all examples considered, including the large c expansion of a real or

complex scalar field, the Maxwell field, and fluids. The non-relativistic

point particle case discussed in Section 6.5 corresponds to N = 2.
Thus, the matter sector determines whether the geometry has

torsion or not. This is seen, for example, in the expansion of perfect
fluids, for which different regimes depend on how we expand the
energy and pressure as a function of 1/c2. Furthermore, Hansen
et al. [10] discussed the resulting actions for various field theory
examples, a complex and real scalar field, and electrodynamics. In
particular, the expansion of a complex scalar field coupled to GR
leads to the Lagrangian for the Schrödinger–Newton equation.
This off-shell description of the Schrödinger–Newton system
includes fields whose equations of motion inform us that the
clock one-form must be closed. Furthermore, in the case of
Maxwell’s theory, there are two limits (a magnetic and an
electric limit, see [64–67]) depending on how we expand the
gauge connection. One can obtain the Lagrangian descriptions
for both using this procedure.

7.2 Strong gravity expansion of the
Schwarzschild metric

One way to generate solutions of NRG is by considering the 1/c2

expansion of solutions of GR. To illustrate this, we now discuss the 1/c2

expansion of the Schwarzschild solution. Interestingly, this can
be performed in two interesting ways: through a weak field
expansion related to the post-Newtonian expansion or
through a strong field expansion that leads to an exact
torsionful solution of NRG. Although the precise physical
interpretation of this latter expansion remains under
construction, the fact that NRG includes solutions with
torsion (so that time is no longer absolute) shows that it is
richer than just Newtonian gravity.

Consider the Schwarzschild metric, including factors of c:

ds2 � −c2 1 − 2Gm
c2r

( )dt2 + 1 − 2Gm
c2r

( )−1
dr2 + r2dΩ2

2. (7.5)

As first noticed in [8], we can perform two different
expansions, both physically relevant, depending on how we
treat the mass parameterm as a function of c2. The first option is
to consider m constant in c2 as we expand. Using (6.1) and
(6.11), we see that the resulting types II TNC fields are as
follows:

τμdx
μ � dt, (7.6a)

mμdx
μ � −Gm

r
dt � Φdt, (7.6b)

hμ]dx
μdx] � dr2 + r2dΩ2

2, (7.6c)
Φμ]dx

μdx] � 2Gm
r

dr2 � −2Φdr2. (7.6d)

This is a flat torsionless NC spacetime with non-zero
subleading fields mμ and Φμ]. It can be verified that this is a
vacuum solution of the NRG equations of motion. The solution
has zero torsion and is expressed in terms of the Newtonian
potential Φ = −vμmμ = −Gm/r. This geometry receives non-trivial
corrections in subleading order.

In the second approach, we take the mass to be of order c2, so
that M = m/c2 is constant in c2, as in [8]. This provides an
approximation of GR that is distinct from the post-Newtonian
expansion. In this case, the expansion terminates at NLO, and the
resulting geometry is described by the following type II TNC
fields:

τμdx
μ �

��������
1 − 2GM

r

√
dt, (7.7a)

mμdx
μ � 0, (7.7b)

hμ]dx
μdx] � 1 − 2GM

r
( )−1

dr2 + r2dΩ2
2, (7.7c)

Φμ]dx
μdx] � 0. (7.7d)

This is a torsionful NC spacetime. It is a vacuum solution of
the equations of motion of the NLO EH Lagrangian (6.25),
which describes Galilean gravity, as it does not involve the
subleading fields. This strong gravity expansion of the
Schwarzschild metric cannot be captured by Newtonian
gravity because it has non-zero torsion. However, it can be
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described as a torsionful NC geometry. Studying the geodesics
in this novel geometry, one can show that the three classical
tests of GR—perihelion precession, deflection of light, and
gravitational red-shift—are passed perfectly [61]. Thus, it is
possible to have a non-relativistic causal structure and still
correctly include the effects of gravitational time dilation, albeit
in a conceptually different way from that in GR.

7.2.1 Other solutions
We also mention here some other types of solutions that have

been studied in the literature. One can consider the
Tolman–Oppenheimer–Volkoff fluid, where it turns out that the
TOV equation can be derived entirely from the NR framework.
Another interesting case is that of cosmological solutions, where
one can show that the FLRW spacetime is also an exact solution
of NRG.

One important remark is that the results of the 1/c2 expansion of
a given Lorentzian spacetime can depend on the coordinate chart
used to construct the expansion. Given two different charts on a
Lorentzian spacetime related by a diffeomorphism that is not
analytic in c, the expansion of the spacetime in these charts will
yield distinct non-relativistic spacetimes, which are not related by
gauge transformations. An example is the expansion of flat
spacetime in the usual Minkowski coordinates versus Rindler
coordinates, leading to non-gauge-equivalent NC geometries.

As an additional example of the dependence of the expansion on
the scaling we choose for the parameters in a solution, we consider
two inequivalent 1/c2 expansions of AdSd+1. In global coordinates
and with explicit factors of c, the AdSd+1 metric is

ds2 � −c2 cosh2 ρdt2 + l2 dρ2 + sinh2 ρdΩ2
d−1( ), (7.8)

where l is the AdS radius, ρ > 0 is dimensionless, and t has
dimensions of time. The corresponding type II TNC geometry
can be read off as follows:

τμdx
μ � cosh ρdt, (7.9a)

hμ]dx
μdx] � l2 dρ2 + sinh2 ρdΩ2

d−1( ), (7.9b)
mμ � 0, (7.9c)
Φμ] � 0. (7.9d)

Obviously, the 1/c2 expansion terminates immediately. This is a
torsionful NC spacetime. Likewise, the 1/c2 expansion of AdS in
Poincaré coordinates also leads to a torsionful type II TNC
geometry.

Conversely, if we do the coordinate transformation r = l sinh ρ in
(7.8), we obtain the metric

ds2 � −c2 1 + r2

l2
( )dt2 + dr2

1 + r2

l2

+ r2dΩ2
d−1. (7.10)

Thismetric describes the static patch of de Sitter if we replace l2 with
−l2. Then, if we define l � c

H, where H is independent of c, we find

ds2 � −c2dt2 ∓ H2r2dt2 + dr2

1 ± H2r2

c2

+ r2dΩ2
d−1, (7.11)

where the upper sign is for AdS and the lower sign is for dS.
Expanding this to NLO, the resulting type II TNC geometry is

τ � dt hμ]dx
μdx] � d �x · d �x, mμdx

μ � ±
1
2
H2 �x

2
dt,

(7.12)
where Φμ] is omitted, and we transformed to Cartesian
coordinates. This TNC geometry is known as the
Newton–Hooke spacetime. Grosvenor et al. [68] showed that
such a spacetime could be written in the form of a non-relativistic
FLRW geometry with flat spatial slices by a sequence of NC gauge
transformations. Furthermore, they were related to a null
reduction of a pp-wave geometry in [69].

7.3 Odd powers in 1/c

So far, we have focused on even powers of 1/c in our large c
expansion. This is a consistent subsector in the purely gravitational
sector. In earlier work [26], using a weak field assumption along with
physical constraints on the energy-momentum tensor, odd terms
only appear at subleading orders beyond the 1PN order in post-
Newtonian expansions. A complete analysis of odd powers,
including ones that can appear at pre-Newtonian orders and
going beyond the weak field assumption, was performed in [11].
The motivation for this is that an energy-momentum tensor that
sources torsion can also source the leading-order odd term in the
metric at order c1 when there is dynamics. Another motivation is
that a solution such as the Kerr metric admits several 1/c expansions
depending on how one scales the mass and angular momentum, and
some of these lead to odd powers in 1/c [11]. Finally, odd powers in
1/c can capture retardation effects.

The starting point of [11] follows from writing the line element
as follows:

ds2 � −e−Ψ cdt + Cidx
i( )2 + eΨkijdx

idxj

+O c( )dt2 +Oi c0( )dtdxi +Oij c−1( )dxidxj.
(7.13)

The authors of [11] then obtain the LO equations of motion of the
LO physical fields, which consist of a scalar potential Ψ, a vector
potential Ci, and a spatial metric kij. When these fields are time-
independent, they can be shown to be solutions to the Einstein
equations for stationary metrics. Interestingly, when we allow time
dependence, the LO fields satisfy the same equations as when no time
dependence is involved. Thismeans that the time dependence sits in the
integration “constants” when solving the Einstein equations for
stationary metrics. These time-dependent integration constants
source the following subleading equations. Thus, we can view the 1/
c expansion as an expansion around a stationaryGR solution, which has
been illustrated for the Kerr metric in [11]. Similarly, the 1/c2 expansion
can be viewed as an expansion around a static sector of GR [8].

8 Discussion

In this review, we have emphasized introducing the reader to the
various notions of NC geometry and how they enter the non-relativistic
expansions of general relativity. We only mentioned a few applications,
but there are numerous further developments and extensions related to
the topic of this review, which we briefly mention here.
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8.1 Connection to the post-Newtonian
expansion

The post-Newtonian expansion is performed in harmonic
gauge. The Einstein equations can be formally integrated using
a retarded Green’s function (to obey a no-incoming-radiation
boundary condition in the past). Then, one solves this integral
equation by performing a 1/c expansion (in a large but
finite region containing the source) and a G expansion
(outside the source) and matching the two in their
overlap region. However, a calculational scheme that
allows one to do this in an arbitrary gauge does not
currently exist.

The covariant 1/c expansion seems the ideal starting point
to generalize the existing approaches, such as the ones by
Blanchet–Damour and Will–Wiseman. However, this
would be very reminiscent of what is sometimes called the
“classic” approach. The latter has been abandoned because
the 1/c expansion beyond the 1PN order has a finite regime
of validity, so one cannot impose asymptotic
boundary conditions on the 1/c solution. Nevertheless, we
want to advocate a hybrid approach that combines
the Blanchet–Damour or the Will–Wiseman
approach with the classic approach. We refer to [36] for
more details.

8.2 Carroll expansion of gravity

The study of the small speed of light limit and expansion of GR
goes back to [70] and later [71]. This expansion is also called an
ultra-local or Carroll expansion because the Poincaré group
contracts to the Carroll group [72–74] in the c → 0 limit. The
systematic study of the small speed of light expansion of GR,
paralleling the approach of [10], was recently obtained in [75], to
which we refer for further references on Carroll geometry and
Carrollian gravity theories. Interestingly, although the LO action in
the large c expansion is just the TTNC condition, in the Carroll
expansion, the LO action already involves non-trivial (though
ultra-local) dynamics.

8.3 Other formulations

Different approaches to frame and/or first-order formulations
of non-relativistic (and ultra-local) limits and expansions of gravity
have been considered in [62, 75–77]. Furthermore, the Palatini
action for GR was reformulated in [60] in terms of moving frames
that exhibit local Galilean covariance in a large speed of light
expansion.

There are also interesting connections between the 1 +
3 formulation used in GR and the non-relativistic expansion. A
1 + 3 formulation of Newton’s equations was discussed in [78]
and [78] and applied to cosmology in [80]. The relation to
the 1 + 3 formulation was performed more systematically in
[81], extending the computation of the effective
Lagrangian to a higher order and making some new all-
order observations.

8.4 NR gravity models in two and three
spacetime dimensions

For GR, special types of models exist when considering NRG in
two and three spacetime dimensions. Three-dimensional CS
theories of NRG based on extended Galilei algebras were first
obtained in [82–84] and further studied and generalized in
[85–89]. Likewise, non-relativistic (and Carrollian) versions of JT
gravity were first given in [89, 91] and generalized in [92].

8.5 Non-relativistic string theory

The topic of non-relativistic string theory is an entire subject on
its own, although closely related to that of the present review.
Therefore, we refer the reader to a recent review article [93] that,
besides the present review article, is part of a larger set of reviews
related to modern developments in non-relativistic physics. Non-
relativistic string theory on flat spacetime was first formulated in
[94]. A natural question, which has only been recently addressed,
motivated largely by the developments reviewed here, is the question
of what type of curved target spacetime geometry non-relativistic
strings move in. This study was initiated in [95–97], and we refer to
the review [93] for a complete set of references. See also [98] for a
derivation of type I torsional string Newton–Cartan (TSNC)
geometry along similar lines as those presented in Section 5,
using both the perspective of the limit and null reduction of
relativistic string actions, as well as the gauging of the so-called
fundamental string Galilei algebra. Moreover, the stringy analog of
type II TNC, called type II TSNC, was recently discussed in [99, 100].
We also note that when quantizing non-relativistic string theory,
one finds low-energy effective actions [101–104] similar to the type I
TNC actions described in this review, though they involve different
geometric fields.

8.6 Non-relativistic holography

Non-relativistic, or more generally non-Lorentzian, geometry
and gravity play a role in non-AdS holography. In its original
form, the AdS/CFT correspondence relates a relativistic bulk
gravity to a corresponding dual (conformal) relativistic field
theory living on the boundary. Beyond this, roughly three
other classes of dualities have been found involving some
types of non-Lorentzian geometry. The first is the appearance
of non-Lorentzian geometry on the boundary. This was
uncovered in the context of Lifshitz holography, which led to
the discovery of a torsionful generalization of NC geometry
[4–6]. The reason that NC geometry appears is that light
cones open up as one approaches the boundary. This
observation spurred many of the subsequent developments in
non-relativistic geometry.

Additionally, it has been suggested that non-relativistic field
theories have perhaps a more natural holographic realization
with NRG theories in the bulk [84, 105–107]. This also seems to
be the case for the holographic bulk duals of Spin Matrix Theory
[108], which are quantum-mechanical theories obtained from
near-BPS limits of AdS5/CFT4. On the string theory side, these
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are described by novel non-relativistic worldsheet models [96,
109–112], which in the low-energy limit are expected to be
described by dynamical non-Lorentzian gravity theories.
Finally, we mention that there also exists an example [113] of
a non-relativistic bulk gravity theory with a scale-invariant
relativistic field theory on the boundary.

8.7 Supersymmetry

A natural generalization to consider is supersymmetric
extensions of NRG. This is especially relevant in view of the
connection of NC gravity with string theory and holography and
using supersymmetric localization techniques for non-relativistic
field theories. We refer to the recent review article in [114], which is
also connected to the present review. Bergshoeff and Rosseel
provided an overview of the different non-Lorentzian
supergravity theories in diverse dimensions constructed in recent
years.

8.8 Generalizations

Furthermore, we mention here several further generalizations
involving some types of NRG. Hartong and Obers [49] showed that
TNC geometry is a natural geometrical framework underlying
Hořava–Lifshitz gravity with manifest diffeomorphism invariance.
This connection was further studied in [52, 84]. A teleparallel
version of NC gravity was considered in [115, 116], whereas a
non-relativistic MacDowell–Mansouri type approach was
considered in [117]. A generalization of NRG for arbitrary co-
dimension foliation was presented in [118]. Two further
generalizations include a non-relativistic version of spin-3 CS
gravity [119, 120] and multi-metric gravity [121].

8.9 Field theory applications

Another point worth mentioning is that TNC geometry plays an
important role as the natural background geometry [7, 46, 122, 123]
in non-relativistic field theories, which are ubiquitous in condensed
matter and biological systems. Further applications, involving
energy-momentum tensors, Ward identities, hydrodynamics, and
anomalies in the context of non-relativistic field theories, can be
found in [58, 124–128]. Last but not least, the use of type II TNC is
expected to be important to further examine the physics of non-
relativistic quantummatter in non-trivial, non-relativistic spacetime
geometry. Developing this framework could allow addressing new
signals at low energies for quantum matter in gravitational
backgrounds and studying composite systems with potentially
measurable decoherence effects.

Overall, we conclude that the field of non-relativistic and
generally non-Lorentzian gravity and its relation to field theory,

gravity, and string theory remains growing in scope. Each of the
exciting research lines mentioned previously is expected to develop
further in the coming years.
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