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We report the results of the non-invasive photonic system AUM for remote
detection and characterization of different pathogenic bacterial strains and
mixtures. AUM applies the concepts of elastic light scattering, statistical
mechanics, artificial intelligence, and machine learning to identify, classify and
quantify various microbes in the scattering volume in real-time and, therefore, can
become a potential tool in controlling and managing diseases caused by
pathogenic microbes.
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1 Introduction

1.1 Impetus

Pathogenic bacteria, fungi, viruses, and parasites can travel through various routes (air,
water, physical contact, and bodily fluids) and enter their hosts (plants, animals, and
humans), causing infectious diseases [1–5]. Airborne microorganisms transmitted through
human speech, coughing, sneezing, and exhalation are known to have long residence times in
the environment [6–12] and are responsible for the rapid and extensive spread of diseases
[13–15]. The increasing incidences of infectious diseases worldwide are a significant cause
for concern, pointing out the need for better control and management of diseases. The
interplay of pathogenic microbes, their hosts, and the environment, coupled with the
complex dynamics of disease emergence, demand rapid, direct detection and
identification of airborne microorganisms to prevent transmission and the outbreak of
diseases [16]. As a result, various technologies based on nucleic acid, mass spectrometry, cell
structure, and optics were reported and are now in use.

Traditional pathogen detection employs morphological and biochemical techniques
involving culturing with an enrichment step to isolate the target organisms on an agar plate
or to detect pathogens directly from the enriched samples using advanced, sophisticated
technologies and molecular techniques [17–25]. In addition, diversified technology
combinations in biosensors [18], especially optical biosensors [22], have shown
improved capabilities in directly detecting airborne microorganisms. However, the
current molecular technologies in use for the identification of components and signal
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amplification of sensors [17–19], including advanced, sophisticated
technologies and techniques (genomic fingerprinting [20, 21], real-
time quantitative PCR [24], mass spectrometry [25, 26]), still require
on-site sampling and further testing in the laboratory, involves
complex operation processes, having long detection times [1–5].
Interestingly, even though the current techniques have high
detection efficiency and accuracy, the sampling strategy’s
subjectivity and the sampling mechanisms employed are known
to have limitations affecting the accuracy of microbe detection [2].

Although on-site air sample detection features a short detection
time, flexibility, and convenience, the challenges posed by the effects
of in situ environmental parameters, the low concentrations of
airborne microbes, and the possibility of occurrence of a broad
mix of species at a particular location, lead to practical difficulties.
Hence, notwithstanding their limitations and long overturn times,
conventional methods and technologies are still widely used for their
high specificity and sensitivity in identifying and quantifying
pathogens in the air. In addition, traditional culturing is still
considered a gold standard for detecting microbes due to its
ability to obtain an isolated pure form of the pathogen accurately
[27], even though there are difficulties associated with the isolation
and maintenance of a novel unidentified or un-culturable number of
bacteria and viruses present in the real-world samples.

The growing pathogenic strain variations and antimicrobial
resistances demand quick and broad prevention strategies and
improved countermeasures to ensure more directed therapeutic
interventions through point-of-care testing for the prevention
and control of infections [28–30]. Optical technologies have
generated significant interest due to their high speed, high
throughput, non-destructive nature, and amplification-free
measurements that require minimal sample preparation [31].

1.2 Optical technologies

The optical technologies for the study of microbes can further be
categorized based on types of interaction that occur between
microbes and light: UV-Visible Spectroscopy, Fluorescence (Bulk
Fluorescence Spectroscopy, Fluorescence Imaging), Flow
Cytometry, Vibrational Spectroscopy (Raman, Mid-Infrared,
Near-Infrared), Scattering (Elastic Scattering, Dynamic Light
Scattering, Dynamic Laser Speckle (Bio Speckle), Quantitative
Phase Imaging, Differential Dynamic Microscopy, Video
Microscopy), and Optical Coherence Tomography.

The principles of Elastic Light Scattering (ELS), which use the
characteristics of the spatial distribution of the scattered light with
the same wavelength of the illuminating light source, were earlier
used to find bioaerosols among complex, diverse atmospheric
aerosols with high sensitivity due to its increased signal strength,
and the sizeable scattering cross-section, via single-particle or
multiple-particle interrogation [32–36], without using specific
labelling reagents [32].

All optical technologies either detect a signal for a defined
wavelength using a photodiode or other broadband detector or
resolve the output as a function of wavelength using a spectral
sensor. The collective molecular signature from the sample (cell or a
colony) makes up the spectrum, and the level of chemical specificity
within a range depends on the spectroscopy type.

Imaging systems, especially time-lapse imaging systems based
on CMOS imaging sensors-were used to perform early detection and
classification of bacteria. However, limitations in scanning the
samples due to the constraints dictated by the field of view of the
imaging sensors posed difficulties in probing the volume of samples
quickly and effectively. Recent research [37] overcame the
limitations by using a Thin Film Transistor (TFT) based imaging
sensor to build a real-time Colony Forming Unit (CFU) detection
system to count bacterial colonies automatically and rapidly identify
their species using deep learning.

Addressing the need for a portable and cost-effective device for
long-term monitoring and quantification of various types of pollen
which affect human health, Lou et al. [38] presented a label-free
sensor that takes holographic images of flowing particulate matter
(PM) concentrated by a virtual impactor, which selectively guides
particles of a specific size (larger than 6 μm) to fly through an
imaging window. The inline holograms cast on a CMOS image
sensor due to the flowing particles illuminated by a pulsed laser
diode enable particle detection based on deep learning techniques.
However, observing single particles flowing in a single file through
the light beam eliminates the complexity of multiple scattering and
the challenging task of deconvoluting the signals from an array of
particles in size, shape, and materials [33]. Although an exciting
sampling strategy, the technique adopted is still not in situ, with the
inability to detect smaller (<6 μm) particles remaining a practical
limitation, as the smaller particles (PM2.5 and lesser) are known to
cause many adverse effects on human health.

Optics-based technologies comprise a variety of instrumental
configurations by which the signal from bacteria is probed, with or
without spatial information, generally from a relatively small sample
volume. However, to our knowledge, all the technologies and
systems using optics for bacterial identification and
characterization involve in-vitro sampling methods, not in situ
ones that are desirable. Moreover, the devices are neither
portable nor economical for wider deployment for emerging real-
world applications. Therefore, a rapid, robust, mobile, low-cost, and
in situ device is necessary for bacterial detection, discrimination, and
quantification for wider deployment for operational uses in the real
world.

2 Materials and methods

2.1 AUM photonic system

Against this backdrop, Tatavarti [39] designed and developed a
photonic system AUM (Air Unique-quality Monitor) (Figure 1)
capable of detecting, discriminating, and quantifying various air
molecules in situ. AUM photonic system comprises a continuous
wave laser light source located at the bottom on the system’s front
side to illuminate the target volume of air and a position-sensing
photodetector positioned at the top on the front side, to detect the
backscattered laser light from the target volume. Optical filters in
front of the laser source and the photodetector ensure that only the
particular wavelength of light from the source passes through and
falls back on the photodetector after scattering from aerosols/
molecules in the target air volume. AUM system’s backscatter
data observations enabled the scatterers’ (dust, particulate matter,
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and different air molecules - which constitute the pollutants)
detection, differentiation, and quantification. In the AUM
photonic system, the backscattered light from a laser
(635 nm, <5mW, circular beam, TEM00, unpolarized) source is
designed to fall on the small measurement area on a duo-lateral
position sensing photodetector. The position sensing detector (PSD)
is a Lateral Effect Diode, having a sufficiently active sensing area
with a wide dynamic range, whose measurements are independent
of the light spot profile and intensity distribution. The centroid of
the light beam is computed and supplied as electrical output signals
proportional to the displacement from the centre of the detector.
The PSD’s resolution is detector/circuit signal-to-noise ratio-
dependent having a resolution of better than 100 nm. Analog
data from the photodetector can be digitized at any sampling
frequency, up to 10 ???, and processed using proper digital
signal processing circuitry and software. After appropriate signal
conditioning, the photodetector’s analogue positional and light
intensity signals are digitized and stored against their observation
timestamp. The data from AUM can be ported onto storage devices
with wireless connectivity through a remote cloud server or wired
connection to a nearby device. Therefore, AUM photonic system
can yield the backscattered beam’s position in the (x, y) plane of the
detector and the intensity with a sampling frequency as high as
10 kHz.

2.2 AUM: Remote, real-time, in situ
measurement of ELS from bio-aerosols

The continuous interrogation of the laser light beam fromAUM,
with the microbial aerosols in a small air volume, results in optical
scattering. The backscattered light characteristics induced by
microbial aerosols in the small interrogation volume are captured
by the photodetector and monitored by AUM as a function of time.

Thus, the backscattered light falling on the PSD carries an imprint of
the in situ characteristics of scatterers (bioaerosols) present in the
scattering volume.

As ELS can change the spatial distribution and propagation
direction of the illuminating light, the information regarding
scattering could be monitored and analyzed in real-time analysis
for the detection and characterization of aerosol particles
(encompassing the range of sizes from 100 nm to 10mm and
concentrations from parts per trillion to parts per million)
[39–43], in both point and remote-sensing systems [39, 42].
Furthermore, the principles of ELS suggest that the backscattered
light signature patterns carry an imprint of the scatterers’ size,
concentration, molecular weight, and refractive index per se in
multidimensional space. Therefore, the random patterns of points
in n-dimensional space, i.e., spatial point processes [44], known to
play a unique role in stochastic geometry, can be a valuable model
for gaining insights into the phenomena causing them.

2.3 Signal processing techniques for ELS
measurements

The identification of bacteria from optical data measurements
from unknown samples generally utilizes multivariate statistical
methods (Least Squares, Multiple Regression, Principal
Components, Support Vector Machines, Neural Networks, etc.),
along with database measurements taken from known samples.
Many crucial factors, like the classification level (e.g., genus,
species, and strain), the range of bacterial types, and the sample
preparation’s influence on variation, affect these databases.

The method most used when seeking a linear model between
two variables is the standard Minimum Least-Squared
approximation (MLS), also known as linear regression. However,
this method has an underlying assumption that the variable chosen

FIGURE 1
AUMphotonic system [comprising of a continuous wave laser light source at the bottom on the front side, to illuminate the target volume of air, and,
a position sensing photodetector at the top on the front side, to detect the back scattered laser light from the target volume. Optical filters in front of both
laser source and the photodetector ensures that only the particular wavelength of light from the source passes through and falls back on the
photodetector after scattering from microbes in target volume of air [Picture adopted from Tatavarti, 2021 [38]].
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as independent is assumed to be noiseless. Furthermore, the
underlying belief that the base series is free of noise produces a
bias in favour of the base series. Thus, there is a need for an analysis
technique that considers the uncertainty in both variables under
comparison. One such technique, which involves the Eigen modal
decomposition of the covariance matrix, is the Empirical Orthogonal
Function analysis (EOF). As conventionally applied to data, empirical
orthogonal function (EOF) analysis decomposes spatial and
temporally distributed data into modes ranked by their temporal
variances. In addition, EOF analysis allows partitioning of large data
sets into signal-like and noise-like parts.

EOF analysis is also known as the Principal Component Analysis
(PCA) and is quite popular in many fields of study. There are several
reasons for this popularity. Probably the most important is that this
methodoften enables a description of the variations of a complexfieldwith
a relatively small number of functions and associated time coefficients.
This property is fundamental in developing statistical prediction schemes
relying onmultiple linear regression. The skill and statistical confidence of
prediction depend heavily upon a priorimethods of reducing the number
of available predictors. Secondly, EOF/PCA analysis is popular because the
derived empirical functions are often amenable to physical interpretation,
which may give substantial insight into complex processes.

PCA accomplishes an orthogonal linear transformation that
transforms the data to a new coordinate system such that the most
significant variance by some scalar projection of the data comes to lie
on the first coordinate (called the first principal component), the
second largest variance on the second coordinate, and so on. PCA is
a linear dimensionality reduction technique that transforms a set of
correlated variables into a smaller number of uncorrelated variables

called principal components while retaining as much variation as
possible in the original dataset.

Tatavarti and Andrade [45] have demonstrated that the Eigen
decomposition technique of Empirical Orthogonal Function (EOF)
analysis (or PCA), and a modified Minimum Least Square (MLS)
approximation technique is the same. Furthermore, the modified
minimum least square approximation technique—involving a
revised definition of error, compared to the standard description of
the error—is independent of bias on any variable in the analysis,
suggesting that PCA is effective on linear data. Of course, one can
still do a PCA computation on non-linear data. Still, the results will be
meaningless beyond decomposing to the dominant linear modes and
providing a global linear representation of the spread of the data.

The principles of ELS suggest that the backscattered light
signature patterns carry an imprint of the scatterers’ size,
concentration, molecular weight, and refractive index per se in
multidimensional space [32, 33, 39, 41–43]. Therefore, the
random patterns of points in n-dimensional space, i.e., spatial
point processes [44], which are known to play a unique role in
stochastic geometry, can be a valuable model for gaining insights
into the phenomena causing them.

A random medium’s scattering characteristics depend on the
medium’s (air, pollutants, and microbes) composition (the
geometry, morphology, number, and spatial distribution of its
scatterers and their refractive indices). The systems governed by
non-linear interactions are ubiquitous in nature and biology. For
example, anisotropy can significantly optimize the optical scattering
efficiency of a volume of air laden with diverse pollutants and
microbes of varying concentrations [42].

FIGURE 2
Schematic of the experimental configuration for detection of microbes in air—AUM system trials in an anaerobic chamber.
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The elastic scattering of light by air laden with diverse pollutants and
microbes is a function of their size, shape, molecular structure, refractive
index, and concentrations of variousmicrobes in themeasurement volume
and the distance of scatterers from the detector. The interactions of the
scattered radiation due to all these parameters are non-linear and can only
be considered linear at best under overly simplistic optimal conditions
[42]. Therefore, it becomes more prudent to consider the higher-order
statistical moments of scatter data to explore the relationships between
optical scattering parameters and the scatterers.

Tatavarti [39] demonstrated the real-world application and use
of the AUM technology to detect, discriminate and quantify the
various pollutants in the air when AUM was collocated with EPA-
approved state-of-the-art air quality monitoring stations
(comprising multiple sensors for monitoring different
parameters) in India at various geographical locations during

varying environmental conditions over a long period. The
outputs from the collocated AUM and the EPA-approved
stations yielded comparable results indicating the effectiveness
and utility of real-world applications of AUM in detecting,
discriminating, and quantifying the various pollutants in the air.

Recent statistical and machine-learning methods for detecting
interactions among features include decision trees and their ensembles:
CART [46], Random Forests (RFs) [47], Node Harvest [48], Forest
Garrote [49], and Rulefit3 [50], as well as methods more specific to
gene-gene interactions with categorical features, such as logic regression
[51], multifactor dimensionality reduction [52], and Bayesian epistasis
mapping [53]. However, except for RFs, the above tree-based procedures
grow shallow trees to prevent overfitting, excluding the possibility of
detecting high-order interactions without affecting predictive accuracy
[54]. RFs are an attractive alternative, looking at high-order interactions to

TABLE 1 Photonic system AUM trials with injection details of the samples investigated (bacterial strains and mixtures of bacteria) and their pre-injection
concentrations before injection. Cell culture particulars, protocols, and procedures adopted for their classifications using gold standards along with durations of
each run are highlighted. For trials with Individual microbe strains as well as with mixtures, concentrations introduced into the anaerobic chamber increased with
time during each run. During the various Runs with different bacterial strains, the minimum concentrations of bacterial strains injected, were <10 CFU, while the
maximum concentrations ranged from 1.6 × 107 CFU to 2.3 × 108CFU. During the trial runs with mixtures of five bacterial species, the minimum concentrations of
bacterial species injected were <10 CFU, while the maximum concentrations ranged from 0.1 × 108 CFU to 3.2 × 108 CFU in the mixtures.

Pathogens/data acquisition in trials S. No Bacteria (strain) Runs (20 min Run, 5 ml vol.)

Initial pre-injection concentrations of
bacterial strain

Cell numbers (CFU/ml)

9 pathogenic bacterial strains 1 Escherichia coli (ATCC25922) 2.08 × 108

two mixtures comprising five bacteria species each 2 Escherichia coli (ATCC35218) 1.42 × 108

Separate runs for each strain and mixture (Trial
run—20 min duration)

3 Staphylococcus aureus (ATCC29213) 1.54 × 108

1 kHz sampling frequency for each run 4 Staphylococcus aureus (ATCC25923) 1.50 × 108

12,00,000 observations in each run 5 Pseudomonas aeruginosa (ATCC27853) 2.3 × 108

Good repeatability and robustness 6 Enterococcus faecalis (ATCC29212) 1.02 × 108

7 Staphylococcus hominis (H77) 0.16 × 108

8 Bacillus cereus (BY44) 1.66 × 108

Cultures
Luria—bertani medium, laminar flow, incubators,
phosphate buffered saline (PBS) solution for constant
pH of 7.4
Measurements
UV Spectrophotometer for optical density (OD600nm)/
concentration measurements
Standard protocols and safety procedures
US CDC norms

9 Enterococcus faecium (MB224) 0.88 × 108

S. No Bacteria (Mixture) Runs (20 min Run, 5 ml vol.)

Initial pre-injection average concentrations of
bacterial mixture

Cell numbers (CFU/ml)

1 Mixture-1 3.16 × 108

E. coli (ATCC25922), S. aureus (ATCC29213)

P. aeruginosa (ATCC27853), E. faecalis
(ATCC29212)

S. hominis (H77)

2 Mixture-2 3.26 × 108

E. coli (ATCC35218), S. aureus (ATCC25923)

P. aeruginosa (ATCC27853), B. cereus (BY44)

E. faecium (MB224)
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obtain state-of-the-art prediction accuracy, even though interpreting
interactions in the resulting tree ensemble remains challenging.

2.4 AUM: ELS, statistical mechanics, artificial
intelligence, machine learning principles

The AUM photonic system monitors backscattering
characteristics in real-time. It determines the attributes of in
situ microbes, utilizing a unique algorithm that combines
concepts of stochastic geometry with those of artificial
intelligence and machine learning. An extended backscatter
data matrix is constructed to represent various statistical
features of backscattered light data from the observations of
the AUM photonic system. From an initial data matrix of M
observations of three parameters [i.e., data matrix of size (M × 3)]

of the backscattered light Intensity and positional information at
desired sampling; N observations of backscattered light data of
seven statistical parameters (four statistical moments, and the
three statistical features—minimum, maximum and range), over
a chosen averaging interval, are computed to form an extended,
scattered data matrix of size (N × 35), containing
multidimensional information. Data analytical tools and a
robust machine learning algorithm (Random Forests
algorithm) [47, 54, 55] enabled the extraction of information
from large and high-dimensional datasets, thereby identifying
structures and enabling detection and discrimination of the
various microbial characteristics present in the volume of
interrogation of light and matter, which were responsible for
the scattering process.

We employed an innovative experimental configuration (Figure 2),
where AUM was positioned in an anaerobic chamber to make optical

TABLE 2 The physical and biological characteristics of microbes studied along with their SEM pictures.

S.No Sample Gram positive or
gram negative

Size Shape Anaerobic or
aerobic

Scanning electron
microscope

1 Escherichia coil (ATCC
25922)

Gram Negative 2 µm-long
0.25–1.0 Âµm. in
diameter

Rod shaped coliform
bacteria

Facultative
anaerobic

2 Escherichia coil (ATCC
25922)

3 Staphylococcus aureus
(ATCC 29213)

Gram Positive 0.5–1.0 Âµm in
diameter

Round shaped bacterium Facultative
anaerobic

4 Staphylococcus aureus
(ATCC 25923)

Gram Negative

5 Pseudomonas
aeruginosa (ATCC
27853)

Gram Positive 0.5–0.8 Âµm by
1.5–3.0 µm

Rod shaped bacterium Strict aerobic

6 Enterococcus faecalis
(ATCC 29212)

Gram positive 0.6–2.0 Âµm by
0.6–2.5 Âµm

Oval shaped cells Facultative
anaerobe

7 Staphylococcus
hominis (H77)

Gram Positive 1.2–1.4 Âµm in
diameter

Spherical cells in clusters Acidic aerobic

8 Bacillus cereus (8Y44) Gram Positive 1 by 3–4 Âµm Rod shaped bacterium,
motile, spore forming
bacteria

Facultative
anaerobic

9 Enterococcus faecium
(MB224)

Gram Positive 1–2 mm (colony size) Non-haemolytic
bacterium

Aerobic and
anaerobic

Ref: 1. Medical Microbiology , University of Texas Medical Branch at Galveston, Galveston, Texas. Editor : Samuel Baron, Link : https://www.ncbi.nlm.nih.gov/books/NBK8326/

2. SEM Images: Public Domain, Content Provider: https://en.wikipedia.org/wiki/Centers_for_Disease_Control_and_Prevention’s Public Health Image Library.
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backscattering observations from a small interrogation volume, into
which microbial aerosols were introduced continuously as a function of
time. To deliver microbial aerosols into the interrogation volume, we
used a piston compressor nebulizer which converts the liquid in the
machine’s carousel (PBS solution laden with microbes) into a fine mist
due to controlled pressurized air. Ensuring that the liquid sample is
homogeneously mixed and that the nebulization rate is constant, we
determined the change in concentration of bioaerosols injected into the
interrogation volume as a function of time.

2.5 Microbes for study

The microbes for this study comprised nine bacterial strains and two
mixtures of five bacterial species combinations. Table 1 summarizes the
pathogenic bacteria, pre-injection concentrations, and data acquisition
details. Table 2 highlights the characteristics of pathogenic bacteria
considered for this study. The selected strains and mixtures are known
to cause various infections and are resistant to antimicrobial drugs. The
samples of pathogenic bacteriawere culturedby adopting the gold standard
protocols and procedures of cell culture. The selected pathogenic strains
were brought to 37°C after retrieving from -80°C andplacing them in sterile
autoclaved distilled water. Luria-Bertani (LB), a widely used bacterial
culture medium for various facultative organisms, was used for this
study. LB broth medium was prepared and autoclaved at 121°C for
15min. The sterile medium was inoculated with individual stains under
aseptic conditions using a Laminar Airflow cabinet and incubated

aerobically in the incubator at 37°C for 18–24 h. 2% of the overnight
grown seed culture was inoculated in a sterile medium and set further to
count the cell numbers. The grown cultures, harvested by centrifugation at
10,000 rpm for 10min , and the cell pellets were washed twice with
Phosphate Buffered Saline (PBS) solution and resuspended in 2ml of
PBS to measure optical density (OD600nm) using UV Spectrophotometer
(Microplate Reader, 800 TS, United States). Approximate cell numbers
were calculated by the standard value of OD600 (0.1 OD = 108 cells/ml).
Table 1 details the individual bacteria strains and the mixtures of bacterial
species, their initial pre-injection concentrations (final cell numbers
measured after 24 h incubation), cell culture particulars, protocols, and
procedures adopted for their classifications using gold standards, alongwith
durations of each trial run (Table 1). Pathogenic bacterial species and their
initial concentrations for aerosol injection cover a wide range of detection
sensitivity and specificity [2].

2.6 AUM system trials for microbe detection
and characterization

Tests were conducted by continuously injecting different
microbial samples (nine different bacterial strains and two
different mixtures of five bacterial species) through the nebulizer
for each trial run. During that time, the AUM photonic system
recorded the optical backscattered data at a sampling frequency of
1 kHz, for a duration of 20 min resulting in 12,00,000 observations for
each trial. The large number of observations ensured tests for

FIGURE 3
Three-dimensional scatter plots of backscattered light detected by the photodetector of AUM photonic system when aerosols laden with PBS
solution and different bacterial samples were injected into the interrogation volume of light scattering. The plots show relative changes in x, y positions (in
µm) of the backscattered beam and intensity (in au) of backscattered beam, time averaged every 1 s), from the original data for each trial run. The original
data had 12,00,000 points, and the 1-s time averaged data has 1,200 points for each trial run. All trials were repeated twice and checked for repetivity
of results.
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FIGURE 4
(A) Three-dimensional scatter plots of backscattered light detected by the photodetector of AUM photonic system when aerosols laden with
different bacterial samples were injected into the interrogation volume of light scattering. The plots show x, y positions (in µm) of the backscattered beam
and normalized intensity (in au) of backscattered beam, time averaged (for every 1 s). The plots show the relative changes in x, y positions (in µm) of the
backscattered beam and the normalized intensity (in au) of backscattered beam, time averaged (for every 1 s). Intensity values were normalized by
dividing them with the pre-injection concentration values of the species for each trial. The multiplication factor of 10–8 in the normalized intensity values
is not shown on the vertical axes, to avoid clutter in the plot. (B) Three-dimensional scatter plots of backscattered light detected by the photodetector of
AUM photonic systemwhen aerosols laden with different bacterial samples were injected into the interrogation volume of light scattering. This figure is a
zoomed in (in the Z axis) version of Figure 4A, from a different view.

Frontiers in Physics frontiersin.org08

Tatavarti et al. 10.3389/fphy.2023.1118885

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1118885


statistical repeatability, robustness, and a high degree of statistical
confidence. As a result of using a nebulizer during each run, the
microbial concentrations inside the anaerobic chamber continuously
increasedwith time during each run. The increase of concentrations as
a function of timewas computed based on the initial concentrations of
the samples, the injection rate of the nebulizer, the pre-injection
volume of the sample in the carousel after dilution in PBS solution,
and the time of the trial durations. It was established that the increase
of microbe concentration in the anaerobic chamber was linear with
time. For each sample, trials with each sample run for a duration of
20 min were conducted. All the experiments were video recorded to
gain additional insights during analysis. During the tests with
individual microbe strains, as the pre-injection concentrations of
the samples were different, the minimum concentrations of
bacterial strains injected were <10 CFU, while the maximum
concentrations injected ranged from 1.6 × 107 CFU to
2.3 × 108 CFU, whereas in trials with two mixtures comprising five
different bacterial species with the individual injection concentrations
ranging from 10 CFU to 108 CFU, the average initial pre-injection
mixture concentrations varied from 3.1 × 108 CFU to 3.2 × 108 CFU.
In summary, the whole range of aerosol bacterial strains, generally
reported in various environments (from low concentrations to high
concentrations and low specificity to high specificity), were covered
during the trials.

3 Results and discussion

Figure 3 shows the 3D (three-dimensional) scatter plots of
backscattered light detected by the photodetector of the AUM
photonic system in ambient conditions and when aerosols laden
with PBS solution and nine different bacterial samples were injected
into the interrogation volume of light scattering. The 3-D plots
reflect the (x, y) location of the backscattered beam’s centroid
position on the photodetector, and the light intensity of the

backscattered beam, as a function of time for the trial duration.
Although not shown explicitly, the plots have time information
embedded in them. For clarity and statistical robustness, only the
time-averaged (1 s) observations for each trial are shown. For each
trial run of 20 min duration, in the corresponding 3D scatter plots,
there are 1,200 averaged backscattered data points depicting the
(x, y) location of the backscattered beam’s centroid position on
the photodetector, and the light intensity of the backscattered
beam. In plotting Figure 3, the first values of the 1-s averaged data
of x, y positions, and the light intensity were deducted from all the
other consecutive values of x, y, and the light intensity
respectively, for each trial, thus ensuring the elimination of the
effects (if any) of the prevailing ambient air in the measurement
volume and the artifacts (if any) of the changes in the light source
characteristics. All subplots have the same axes and limits for
visual intercomparison.

The 3D backscattered data plots of Figure 3 demonstrate the
effects of 1) ambient conditions in the chamber, i.e., ambient air
only, when no aerosols were injected (top left subplot); 2) the
injection of the aerosolized PBS solution into the anaerobic
chamber, with concentration increasing with time (subplot on
the top row, second from left); and, 3) the injection of aerosolized
pathogenic bacterial strains (nine different strains) into the
anaerobic observation chamber of increasing concentration with
time (see the nine subplots starting from the top row, third from
left to right, to the bottom row third from left).

The static position of the scatter at the origin of the three axes
(top left subplot, Figure 3); indicates that there is no influence of
ambient air conditions, and there is no optical scattering as there are
no aerosols introduced into the measurement volume. With
increasing time and therefore increased concentrations of the
injected PBS and the nine different bioaerosols in the observation
chamber, the data scatter moved diagonally from the bottom right
towards the top left direction in each subplot of Figure 3. The 3D
backscattered data plot (subplot on the top row, second from left,

TABLE 3 Best fit equations of the zero-initialized intensity (backscattered) observations of different samples (ambient, PBS solution, nine bacterial strains) with
time (i.e., with varying concentrations). The pre-injection concentrations of species and their respective volumes are shown. Data pertain to the trials of 20 min
duration runs. The start and stop of injection times (in seconds) of bioaerosol samples during different runs are indicated in the last column.

Sample injected during trial run Best fit equation Goodness of fit Relative start and stop times (in sec) of
sample injection during runs

Initial pre-injection conc. (CFU/ml) (R2)

Ambient Air I � 3.204e−07t2 − 5.275e−05t + 0.001115 0.7136 5–235 s data only

PBS solution I � 9.16400e−05t + 0.07732 0.8820 5–898 s injection

S1, Escherichia coli (ATCC 25922) [2.08 × 108] I � 0.0001893t + 0 .0654 0.9685 200–1,180 s injection

S2, Escherichia coli (ATCC 35218) [1.42 × 108] I � 0.0001772t + 0.101 0.9847 11–1,190 s injection

S3, Staphylococcus aureus (ATCC 29213) [1.54 × 108] I � 0.0001597t + 0.08181 0 .9683 11–1,189 s injection

S4, Staphylococcus aureus (ATCC 25923) [1.50 × 108] I � 0.0001879t + 0.04601 0 .9473 11–1,189 s injection

S5, Pseudomonas aeruginosa (ATCC 27853)
[2.30 × 108]

I � 0.0001224t + 0 .1300 0 .9497 11–1,189 s injection

S6, Enterococcus faecalis (ATCC 29212) [1.02 × 108] I � 0.0001597t + 0 .07891 0.9808 11–1,189 s injection

S7, Staphylococcus hominis (H77) [0.16 × 108] I � 0.0001455t + 0 .1245 0 .9609 11–1,189 s injection

S8, Bacillus cereus (BY44) [1.66 × 108] I � 0.0001706t + 0.06605 0.9813 11–1,189 s injection

S9, Enterococcus faecium (MB224) [0.88 × 108] I � 0.0001329t + 0.07161 0.9165 11–1,130 s injection
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Figure 3) due to increasing concentrations of PBS solution and the
nine bioaerosols (the nine subplots starting from the top row, third
from left to right, to the bottom row third from left, Figure 3) in the
chamber shows the backscattered light intensity increases with time
as the concentrations of scatterers increase in the measurement
volume, suggesting a direct linear relationship between the
concentration of scatterers and the backscattered light intensity.

The effects of the start and stop of bioaerosol injection in each
plot are evident as the initial gap in scatter near the origin of axes and
the varying extents of scatter in the negative (x, y) axes due to the
different concentrations of injected aerosols. In addition, we see that
the location of the scattered beam positions projected on the 2D
photodetector also increases with increasing concentrations of
injected aerosols (of PBS and the nine bacterial strains).
Assuming that the different slopes of the scatter plots of various
aerosol injections into the observation volume, seen in Figure 3, are
artifacts of the sizes, shapes, and structures of the injected aerosols in
the scattering volume of interrogation, we addressed the question of
resolvability of these artifacts from the backscatter observations by
superposing all the backscattered data on one plot.

To further investigate the role of the characteristics of the
scatterers, we normalized the relative scattered light intensity
values by the pre-injection concentration values of the respective
aerosols injected into the observation chamber and plotted in
Figure 4. The multiplication factor of 10–8 in the normalized
intensity values is not shown on the vertical axes to avoid clutter
in the plot. Again, the first values of the 1-s averaged data were
deducted from all the consecutive values of x, y, and the normalized
scattered intensity, for each trial while plotting Figure 4, with
1,200 averaged backscattered data points for each subplot to
ensure statistical robustness and the elimination of 1) the effects

(if any) of the prevailing ambient air in the measurement volume, 2)
the artifacts (if any) of the changes in the light source characteristics,
and 3) the effects of pre-injection concentrations of the microbes.
Figures 4A, B show the superposed 3D backscattered data plots of
runs encompassing ambient air (no injection), injection of PBS
solution, and each of the nine pathogenic bacterial strains. Figure 4B
is the zoomed-in version of Figure 4A, but from a different view
angle [in Figure 4A, the 3D view is from an Azimuth of 34° and an
Elevation of 10°; while in Figure 4B, the Azimuth is 15° and the
Elevation is 10°].

Several insights become apparent in Figure 4: 1) the light
scattering effects due to different aerosols in the interrogation
volume are both detectable and resolvable, underlying the role of
size, shape, and structure of the aerosols in the scattering process, 2)
not only the different bacterial species but also the different strains of
the same species, are detectable and resolvable, underlying the role of
the structure and composition of the aerosols, 3) the effect of aerosol
size is apparent on the observed scattered intensities, with increased
aerosol size resulting in increased scattered light intensity, 4) the
effect of aerosol concentration is apparent on the observed scattered
intensities, with increased aerosol concentration resulting in
increased scattered light intensity, 5) the location of observed
light scatter position (x, y) is indicative of the shape of the
bioaerosols in the interrogation volume with spherical or round
shaped aerosols resulting in light intensity scatter with steeper slopes
in an (x, y) plane compared to rod or rectangular)-shaped aerosols,
6) the spread of the observed scatter positions with a skewness
towards x, y, and z directions with a particular slope of scatter, is
indicative of the spectral sizes and shapes of the aerosols in the
interrogation volume, and 7). the gap in the scatter plots (at the
lower right corner closer to the origin [(x, y, z) = 0] is the artifact of

S. No Bacterial strain Pre-injection initial
concentration (CFU/ml)

Slope of linear fit
equation

Normalized slope of linear fit equation
(Per unit initial conc.)

A (Scattered intensity
vs. Time)

B/A

B

1 Enterococcus coli (ATCC
25922)

2.08E + 08 1.89E + 04 9.10E-13

2 Enterococcus coli (ATCC
35218)

1.42E + 08 1.77E + 04 1.248E-12

3 Staphylococcus aureus (ATCC
29213)

1.54E + 08 1.59E + 04 1.03E-12

4 Staphylococcus aureus (ATCC
25923)

1.50E + 08 1.87E + 04 1.25E-12

5 Pseudomonas aeruginosa
(ATCC 27853)

2.30E + 08 1.22E + 04 5.32-13

6 Enterococcus faecalis (ATCC
29212)

1.02E + 08 1.59E + 04 1.56E-12

7 Staphylococcus hominis (H77) 1.60E + 07 1.45E + 04 9.09E-12

8 Bacillus cereus (BY44) 1.66E + 08 1.70E + 04 1.02E-12

9 Enterococcus faecium
(MB224)

8.80E + 07 1.32E + 04 1.51E-12
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FIGURE 5
Normalized (per unit concentrations) linear slopes of the best fit equations, from the back scattered intensity data for individual bacteria strains
computed for 20 min trial runs. We observe that the normalized slopes per unit concentrations are different, for different strains having varied physical
characteristics and concentrations. Therefore, one can infer that the relationship between best fit equation’s normalized slope of backscattered light
intensity data (see Table 4), the physical characteristics of different bacterial strains (scatterers) as well as the concentration of scatterers in the
scattering volume of interrogation is imprinted in the optical back scatter information.

TABLE 4 Trial details highlighting the two mixtures of bacteria, their composition, pre-injection concentrations, for each of the two trial runs of 20 min durations
each. The relative start and stop times of sample injection during trial runs with mixtures, are 10 sec and 1140 sec respectively.

Mixture 1 (five species mixed
with equal volume proportions)

Initial pre-injection species
concentrations (CFU/ml)

Mixture 2 (5 species mixed with
equal volume proportions)

Initial pre-injection species
concentrations (CFU/ml)

Initial pre-injection
concentration 3.16 × 108 CFU

Initial pre-injection
concentration 3.26 × 108 CFU

Escherichia coli (ATCC 25922) 3.18 × 108 Escherichia coli (ATCC 35218) 3.30 × 108

Staphylococcus aureus (ATCC 29213) 2.92 × 108 Staphylococcus aureus (ATCC 25923) 3.10 × 108

Pseudomonas aeruginosa (ATCC 27853 3.16 × 108 Pseudomonas aeruginosa (ATCC 27853) 3.16 × 108

Enterococcus faecalis (ATCC 29212) 2.64 × 108 Bacillus cereus (BY44) 2.78 × 108

Staphylococcus hominis (H77) 1.60 × 107 Enterococcus faecium (MB224) 2.72 × 107
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FIGURE 6
Three-dimensional scatter plots of backscattered light detected by the photodetector of AUM photonic system when aerosols laden with different
bacterial mixtures were injected into the interrogation volume of light scattering. Themultiplication factor of 10–7 in the normalized intensity values is not
shown. The superposed 3D backscattered data indicate that backscattered data pertaining to the two different microbial mixtures of species still occupy
unique Euclidian space but raises questions regarding resolvability into their constituent individual microbial species. Therefore, the need for
appropriate models for resolving the mixture scatter into different individual species present in the mixture.

FIGURE 7
Results of various microbe characteristics determined by applying the Multi Variate Random Forest algorithm, on AUM’s backscatter observations
during 20 min trial run, when Mixture 1 (comprising of five different bacterial species with varying concentrations) was injected into the observation
chamber. Results indicate good resolvability with high sensitivity and specificity. The time axis shows the scattering artifacts of no bioaerosols (with
sample injection starting at 10 sec after the start of trial) and of bioaerosols injection (from 10 sec to 1,140 sec).
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the effect of lag in starting the nebulization, i.e., the injection of
aerosols into observation chamber.

The superimposed 3D backscattered data plots, therefore,
indicate that backscattered data (from PBS and microbe-laden
aerosols having distinct characteristics of size, shape, and
structure, with varying concentrations) occupy a unique
Euclidian space dictated by the features of the scatterers in the
interrogation volume of air; suggesting that backscattered light data
analyses can reveal microbe characteristics. Figures 4A, B thus
showcase the results of the scatterers’ features (size, shape,
structure) on the observed backscattered data.

Effects of increasing time and, therefore, increasing
concentrations of the microbe-laden aerosols can be seen as the
scatter go diagonally from the bottom right (origin of axes) towards
the top left direction in each subplot. The artifacts of the start of
injection of the bioaerosol sample, and the stop of injection of the
bioaerosol samples of varying initial concentrations for each sample
run, are reflected as different start and stop positions of scattering in
all the 3 days scatter plots. We notice that for each sample run, the
3D scatter begins at the origin of the axes (when there is no injection
of bioaerosols). With the inception of bioaerosol injection at a
particular concentration, the location of the 3D scatters shifts
from the origin of axes towards the negative (x, y) direction with
varying scattered light intensity, consistent with the initial
concentration of the bioaerosols. Gradually, the shift increases in
the negative (x, y) direction with increasing intensity values,
consistent with increasing concentrations of bioaerosols of the
sample in the scattering volume. As the injection of bioaerosols
stopped, the scatter position fell back towards the axes’ origin after
some time. Although not in the present study’s scope, we expect this

would be in sync with the residence times and free fluid dynamics of
injected bioaerosol samples. For each of the different trials
(involving different strains of the same species and various
species), the slopes of the scatter plots were different.

In short, Figures 4A, B show that the backscattered beam positions
projected on a 2D planar area of (300 × 300 µm) on the photodetector,
caused by the scatterers (different strains of bacteria, with concentrations
ranging from 10–109 CFU) and the relative normalized scattered light
intensity changes due to increasing concentrations of scatterers
occupying a range of (0–2 × 10−8au), are not only detectable but
also resolvable, indicating the high sensitivity, high resolution, and
wide dynamic range of the AUM system’s detectability and
discrimination capabilities.

The superposed 3D backscattered plot from all bacterial strains
(Figure 4) shows a bouquet of scatter points resolvable in time and
space, indicating that the backscattered data about each of the
microbe strains/species (having varying sizes, shapes, and
concentrations) does indeed occupy a unique n-dimensional
Euclidian space, and therefore, using appropriate algorithms can
reveal information about the microbe characteristics in real-time.

Table 3 highlights the bacterial species, their initial
concentrations, slopes, and normalized (per unit concentrations)
slopes of linear fit equations. Figure 4 with Table 3 demonstrates that
there is a direct linear relationship between microbe concentration
and the backscattered light intensity (with R2 values greater than
0.9 for all nine bacterial strains during the 20min (1200 s) trials.

Figure 5 shows the plots of the pre-injection concentrations of
different bacterial strains investigated and the normalized linear
slopes (per unit pre-injection concentrations) of the best-fit
equations from the observed backscattered intensity data for

FIGURE 8
Results of various microbe characteristics determined by applying the Multi Variate Random Forest algorithm, on AUM’s backscatter observations
during 20 min trial run, when Mixture 2 (comprising of five different bacterial species with varying concentrations) was injected into the observation
chamber. Results indicate good resolvability with high sensitivity and specificity. The time axis shows the scattering artifacts of no bioaerosols (with
sample injection starting at 10 sec after the start of trial) and of bioaerosols injection (from 10 sec to 1,140 sec). The 11,300 data predictions in each
plot with the linear goodness of fit, (R2) values of predictions greater than 0.99, indicating insignificant errors and reproducibility.
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different bacterial strains during the 20 min run trials. We observed
that the normalized slopes per unit concentrations are different for
different strains of the same species and other species having varied
physical characteristics. For example, Staphylococcus hominus (H
77), which are known to be spherical cells (4–4.5mm in diameter
when cultured in Agar medium) and are known to occur in clusters
(typically in tetrads and sometimes in pairs), have distinctly different
scattering characteristics with higher normalized slopes indicating
that the higher the size, higher the slope (per unit concentration) of
the scattered intensity.

Figure 5 also showcases the special relationship between the
normalized slopes of best-fit linear equations of scattered intensity
and the concentrations of the scatterers (i.e., as a function of time).
Looking at the composite scattered plot of 3-D scattering
characteristics of all the individual bacterial strains, we
summarize that the aerosols’ size, shape, and concentration
govern the location of the scattered light beam and its intensity.
The plots, therefore, indicate the robust relationship between the

best-fit equation’s normalized slope of backscattered light intensity
data, physical characteristics, and the concentration of scatterers in
the scattering volume of interrogation, further validating the
principle that backscattered data is uniquely representative of the
physical characteristics and concentration of the scatterers present
in the interrogation volume. Thus, AUM’s utility for determining
the microbe characteristics (the individual microbial strains/species)
in real-time with high sensitivity and specificity is justified.

Table 4 shows the trial details highlighting the two mixtures of
bacteria, their compositions, and concentrations for each of the two
runs of 20min duration. Each mix had five different bacterial species
(of equal proportions in volume) with varying initial pre-injection
concentrations. The superposed 3D scatter plots from the AUM
photonic system’s observations (x, y positions, and intensity of
scattered beam), of the trials of two different mixtures, are
showcased in Figure 6. The plots show the one second time
averaged, normalized backscattered beam intensity (per unit
concentration in arbitrary units, au) and (x, y) positions of the

FIGURE 9
Pre-injection concentration (CFU/ml) plot of the individual species inMixture 1 (top) and the plot of the slopes of the linear fit equations (of species
concentrations (CFU) as a function of time) from predictions forMixture 1, computed by themachine learning algorithm based on the back scattered data
from AUM system (bottom). The predicted slopes of the linear fit equations of species concentrations as a function of time are consistent with the pre-
injection concentrations of the individual species of the Mixture 1. The linear goodness of fit, (R2) values of predictions are greater than 0.99.
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backscattered beam, as a function of increasing time (i.e., increasing
concentrations of scatterers in the scattering interrogation
volume). The scattering results due to the two mixtures,
comprising five different pathogenic bacterial species each, are
shown in different colors. The effects of the prevailing ambient
air in the observation chamber were removed by initializing the
first values of scattered data to zero for each run. The superposed
3D backscattered data plots (Figure 6) indicate that the
backscattered data of the two different microbial mixtures of
species occupy unique Euclidean spaces, unique to the mixture
composition.

Nevertheless, the resolvability of the mix into various microbial
species warrants additional signal processing. Figure 6 indicates that
when a combination of microbes is present, the mixture
characteristics can mask the individual species information and
validates the necessity for applying the machine learning algorithm
on the extended scattering matrix data for extracting microbe
information with high sensitivity and specificity. Thus,
appropriate signal processing models are needed to resolve the
mixture details into the contributions of different species.

The AUM system trials demonstrated that although the
backscattered light signature patterns carried an imprint of the

scatterers’ size, concentration, molecular weight, and refractive
index per se in multidimensional space (Figures 3–6), there is a
need to apply appropriate signal processing techniques on the
observed data to gain additional insights on the scatterers per se.
Therefore, we chose Random Forrest machine learning algorithms
to tap the information in the non-linear structure of scatter in
multidimensional space [45, 46].

By initially training a subset of the optical backscattered data sets
with corresponding subsets of microbe data of known features, we
created machine learning algorithms for estimating microbe
characteristics. Each subset comprised 40% of the total data sets
of 12,00,000 data points (i.e., 4,80,000). We have used 80% of the
chosen subset of observations for training (3,84,000 data points) and
tested the data on the remaining 20% of the subset observations
(96,000 data points). The models thus trained and tested not only
yielded high predictive performance (correlation coefficients >0.95)
but also revealed the feature importance based on Gini impurity
values, indicating how much each feature contributed to class
prediction, allowing us to iterate on our selection of the features
and validate the choice of the statistical features chosen in our
Random Forest algorithm [45, 46, 52–54]. Finally, we deployed the
trained and tested models (which demonstrated high predictive

FIGURE 10
Pre-injection concentration (CFU/ml) plot of the individual species inMixture 2 (top) and the plot of the slopes of the linear fit equations (of species
concentrations (CFU) as a function of time) from predictions forMixture 2, computed by themachine learning algorithm based on the back scattered data
from AUM system (bottom). The predicted slopes of the linear fit equations of species concentrations as a function of time are consistent with the pre-
injection concentrations of the individual species of the Mixture 2. The linear goodness of fit, (R2) values of predictions are greater than 0.99.
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performance with correlation coefficients >0.95) for further testing
and evaluation. Such models were applied to the total (100%) trial
run data (12,00,000 data points) to derive microbe characteristics, as
shown in Figures 7–10. We hypothesize that such frozen models, for
individual species or mixtures of species, can be applied in real-time
on any optical backscattered data obtained from the AUM system to
determine the relevant microbe characteristics in real-time in the air.

On applying the machine learning algorithms on the
backscattered optical data obtained from AUM, the individual
microbe species characteristics (in the mixtures investigated) can
be determined, as shown in Figures 7, 8.

Figures 7, 8 show the results of various individual microbe
characteristics determined by applying the machine learning
(multivariate Random Forest) algorithm [54] on AUM’s
backscatter observations during the 20min trials, when mixtures
1 and 2 (comprising of five different bacterial species with varying
concentrations) were used. The results demonstrated the ability of
our photonic system AUM for real-time detection, discrimination,
and quantification of microbes in the air. Figures 7, 8 contain a
significantly high number of points (original observations for
20 min (i.e., 12,00,000 original data at1 kHz sampling, were
resampled (averaged) at10 Hz sampling, i.e., 12,000 data points).
Each of the plots in Figures 7, 8 has 11,300 model predictions of

concentrations for each of the five species overlain against the actual
concentrations introduced into the observation chamber due to the
injection of the mixture of species of equal volume but different
concentrations. The R2 (Goodness of Fit, between the actual vs. the
predicted) values in each linear scatter plot was >0.99, indicating
that the errors in estimation/prediction were insignificant and the
results reproducible. We have not shown the error bars on these
plots to avoid cluttering the figures.

Figures 9, 10 show that the AUM system’s results for different
species, as well as other strains of the same species, are accurate for a
wide range of concentrations (0 to 108CFU). Results indicate good
resolvability of all five different bacterial species in both the
mixtures, with high sensitivity and specificity, with R2

values >0.99, demonstrating the efficacy of the AUM photonic
system for real-time monitoring of microbe characteristics in air.

Table 5 details the two mixtures of bacteria, their composition, and
pre-injection concentrations for each of the runs, along with the slopes
of the linear fit equations from predicted results of concentrations of
individual species as a function of time and the normalized slopes (per
unit initial concentrations) of linear fit equations. The slopes of linear fit
equations are consistent with the pre-injection initial concentrations of
individual species of the mixture of scatterers present in the scattering
volume of interrogation.

TABLE 5 Trial details highlighting the two mixtures of bacteria, their composition, pre-injection concentrations, for each of the runs along with the slopes of the
linear fit equations from predicted results of concentrations of individual species as a function of time, and the normalized slopes (per unit initial concentrations)
of linear fit equations. The slopes of linear fit equations are consistent with the pre-injection initial concentrations of individual species of themixture of scatterers
present in the scattering volume of interrogation. The normalized slopes of individual species in the mixtures are identical, showing the dependence only on the
average concentration of the mixture in each run.

S. No Mixture 1
(Bacterial strain

samples)

Pre-injection initial
concentrations (CFU/ml)

Slopes of linear fit equations from
computed results (concentration

vs. time)

Normalized slopes (per unit initial
concentration) of linear fit

equations

1 Escherichia coli (ATCC
25922)

3.18E + 08 2.02E + 05 6.37E-04

2 Staphylococcus aureus
(ATCC 29213)

2.92E + 08 1.85E + 05 6.37E-04

3 Pseudomonas aeruginosa
(ATCC 27853)

3.16E + 08 2.01E + 05 6.37E-04

4 Enterococcus faecalis
(ATCC 29212)

2.64E + 08 1.68E + 05 6.37E-04

5 Staphylococcus
hominis (H77)

1.60E + 07 1.01E + 04 6.37E-04

S. No MIXTURE 2
(Bacterial strain

samples)

Pre-injection initial
concentrations (CFU/ml)

Slopes of linear fit equations from
computed results (concentration

vs. time)

Normalized slopes (per unit initial
concentration) of linear fit

equations

1 Escherichia coli (ATCC
35218)

3.30E + 08 2.09E + 05 6.36E-04

2 Staphylococcus aureus
(ATCC 25923)

3.10E + 08 1.97E + 05 6.37E-04

3 Pseudomonas aeruginosa
(ATCC 27853)

3.16E + 08 2.01E + 05 6.37E-04

4 Bacillus cereus (BY44) 2.78E + 08 1.76E + 05 6.37E-04

5 Enterococcus faecium
(MB224)

2.72E + 08 1.73E + 05 6.37E-04
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Figures 9, 10 show the pre-injection concentration (CFU/ml) plots
of the individual species in sample mixtures (top) and slopes of the
linear fit equations (of species concentrations as a function of time)
from predictions for sample mixtures, computed by the machine
learning algorithm, based on the backscattered data from AUM
system (bottom). The predicted slopes of the linear fit equations of
species concentrations as a function of time are consistent with the pre-
injection concentrations of the individual species of the sample
mixtures. Thus, demonstrating the ability of the AUM system to
detect and discriminate the species/strains comprising the mixes.

4 Conclusion

The experiments conducted in an anaerobic chamber, covering a
range of microbial species with varying concentrations, demonstrated
AUM’s capabilities to detect, discriminate, and quantify the individual
microbes and their mixtures in the air in real-time from a remote
location. We showed that the results from gold standard culturing
methods and conventional sampling strategies, when compared with
those obtained by AUM, yielded (R2) values greater than 0.99.

Since air is a central reservoir for microorganisms in controlled
environments such as operating theatres, regular microbial
monitoring by AUM helps measure air quality and identify
critical situations. The rapidly emerging novel airborne viral
diseases, with their evolving variants and expedited global spread
due to faster modes of transportation for hosts, necessitate a
sensitive and specific rapid screening technology, like the AUM
photonic system. Therefore, the deployment of AUM for the
detection of microbes in the air, with its capability of good
resolvability with high specificity and sensitivity, across various
ports of entry can be effective and imperative in not only
controlling and managing diseases but also in opening new
pathways in understanding the complex disease dynamics.
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