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Detective quantum efficiency (DQE) is a prominent figure of merit for imaging
detectors, and its optimization is of fundamental importance for the efficient use
of the experimental apparatus. In this work, I study the potential improvement
offered by data processing on a single-event basis in a counting hybrid pixel
electron detector (HPD). In particular, I introduce a simple and robust method of
single-event processing based on the substitution of the original cluster of pixels with
an isotropic Gaussian function. Key features are a better filtering of the noise power
spectrum (NPS) and readily allowing for sub-pixel resolution. The performance of the
proposedmethod is compared to other standard techniques such as centroiding and
event normalization, in the simulated realistic scenario of 100 keV electrons
impinging on a 450 μm-thick silicon sensor with a pixel size of 75 μm, yielding
the best results. The DQE can potentially be enhanced over the entire spatial
frequency range, increasing from 0.86 to nearly 1 at zero frequency and
extending up to 1.40 times the physical Nyquist frequency of the system thanks
to the sub-pixel resolution capability.
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1 Introduction

Noise constitutes a fundamental limit to the detection efficiency of any radiation imaging
system. Therefore, it is suitable to express the resolving power of a detector as the ratio between
the signal and the noise (SNR). In the ideal case of a perfect imaging detector where each
incoming particle is detected at its precise impinging position, the SNR is ultimately limited by
the intrinsic variability given by the statistics of the incoming radiation. In the real world, any
detector will introduce some additional noise for reasons mostly related to the physics involved
in particle detection, to the mechanisms of signal generation, and to the interpretation and
processing of the detected signal. As a metric of such worsening, it is customary to refer to the
detective quantum efficiency (DQE) (see [1] and references therein for a historical overview),
defined generically as follows:

DQE � SNR2
OUT

SNR2
IN

. (1)

In the case of two-dimensional linear imaging systems, it is proper to extend the concept of
DQE to the domain of spatial frequencies (μ, ]), leading to the following formulation [2]:
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DQE μ, ]( ) � MTF μ, ]( )2
NNPS μ, ]( ) · 1Q, (2)

whereMTF corresponds to themodulation transfer function, NNPS to
the normalized noise power spectrum, obtained by dividing the NPS
by the mean output signal, and Q to the incoming electron flux
density, which corresponds to the SNR2

IN under the assumption of
Poisson statistics. For simplicity and practicality reasons, the study of
the DQE is often restricted to one single frequency coordinate (μ and ]
being equivalent by symmetry) [3] in such a way that

DQE ]( ) � DQE 0, ]( ) � DQE μ, 0( ). (3)
In the last decade, counting hybrid pixel detectors (HPD) have

offered great advances in the field of X-ray diffraction experiments
(XRD) [4, 5] and also shown great promises in other fields like non-
destructive testing [6] and medical imaging [7, 8] because of key
features like a large area, a large number of pixels, a fast frame rate, a
wide dynamic range, no dark current, an excellent pixel point spread
function, and no noise associated to the readout operation (provided a
threshold level sufficiently higher than the electronic noise). Dose-
independent DQE is also a noteworthy property [9]. For these reasons,
these technologies have started being introduced to the field of
electron microscopy, and many existing counting HPD like
MEDIPIX2 [10], MEDIPIX3 [11], EIGER [12], EIGER2 [13], and
IBEX [14] were investigated. For all electron detectors in general, and
for dose-sensitive applications such as cryoEM [15] in particular, the
quest for an optimization of the DQE performance is one of the
driving forces of all the design phases, from the hardware to the image
processing methods.

To this last category belongs the concept of single-event analysis.
Electrons deposit energy in a semiconductor sensor along spatially
randomized tracks, and depending on the electron energy, pixel size,
and sensor thickness, the lateral spread can give rise to signals in
(possibly several) neighboring pixels. Given the cluster of pixels
pertaining to single events, the goal of the single-event analysis is
to provide a better estimation of the real impinging position and/or
reduce the signal variability (noise) among the pixel ensemble,
improving the two fundamental ingredients of the DQE—the MTF
and the NNPS, respectively. Several studies have already dealt with this
topic. For example, [16–18] explored the benefits given by counting,
centroiding, and event weighting in MAPS detectors; [19] applied
several centroiding algorithms to a real case of cryoEM protein
imaging again with MAPS detector; [20] further exploited the
timing capabilities of a TIMEPIX3 detector applied to centroiding
techniques in combination with a convolutional neural network, but
the analysis was limited to the MTF. Centroiding is also the typical
processing implemented in a commercial state-of-the-art direct
detection detector (DDD) [21], and it typically allows for sub-pixel
resolution, which is indeed attempted in [19, 20].

We can individuate some firm points:

i. The random nature of the electron track tends to diminish the
correlation between energy deposition per pixel and real
impinging positions [16, 17, 20]. This is expected, in particular,
when the size of the electron tracks is greater than the (isotropic)
contribution of the thermal diffusion and when the pixel size is not
small enough to allow for a very fine spatial sampling of the
deposited energy track. Typical counting detectors, therefore, do

not suffer disadvantages with respect to detectors preserving the
spectral information such as charge integrating detectors.

ii. Centroiding techniques may improve the spatial localization of the
event, thus improving the MTF, but the assignment of the full
event to a selected pixel of the cluster increases the high-frequency
component of the NNPS, degrading the DQE in that range
[16, 17].

iii. In counting detectors operating in standard mode (no single-event
analysis), the variability associated with the event
multiplicity— the number of firing pixels per event—leads to a
decrement of the DQE (0) for the reason presented in [10]:

DQE 0( ) � 〈m〉2
〈m2〉, (4)

where m is the probability distribution of the event multiplicity.
Normalizing to unity the events frees us from this relation and,
leaving untouched the cluster shape, does not spoil the DQE at
higher spatial frequencies [16].

iv. Methods involving sub-pixel resolution may lead to non-uniform
filling of the sub-pixel matrix elements [20]. This effect is intrinsic
to the method, and it is not ascribable to some non-ideal behavior
of the detector. The important consequence is a possible worsening
of the DQE (0) due to the different weights given to the noise of the
sub-pixels in the final, flat-field corrected image.

In this work, I set up a numerical framework aimed to study
and compare several single-event processing techniques in
counting HPD. In addition to event centroiding and event
normalization, used as reference, I devised a further, relatively
simple and more effective processing method focused more on
reducing the contribution of the NNPS rather than trying to
improve the MTF only. In particular, each event is replaced by
a normalized, isotropic two-dimensional Gaussian function
centered on the event centroid and binned (integrated) over the
surrounding pixels. The shape and parameters of such functions
are retrieved from physical considerations. The possibility of sub-
pixel resolution arises straightforwardly, and it is readily explored.
The main advantages of this method are as follows: i) a potential
enhancement of the DQE over all the frequency range and up to
frequencies higher than the physical Nyquist frequency; ii)
robustness, and iii) computationally fast. Practical
considerations and limits of the method are also discussed. The
range of usability extends to all dose-sensitive electron microscopy
scenarios where optimized DQE is required, particularly in
CryoEM applications. The scientific impact and popularity of
this technique are indeed experiencing steady growth over the
years, and single-event processing is already of customary use [22].
Despite being introduced in the context of counting HPD, the
proposed method is, in principle, applicable to other counting
devices, e.g., MAPS detectors, whose physics of signal generation
and detection share many similarities with HPD.

As a case study for comparison, I chose to mimic a counting HPD
consisting of a 450 μm-thick silicon sensor with a pixel size of 75 μmas
a direct detection layer, bump-bonded to a counting read-out
application-specific integrated circuit (ASIC). The impinging beam
consists of electrons of energy 100 keV. For the sake of realism, I took
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the IBEX ASIC [23]as a reference. Incidentally, this simulated scenario
corresponds to the experimental CryoEM setup used in [13].

2 Materials and methods

2.1 Simulation framework

The first step of the workflow was the computation of a statistically
relevant database of electron tracks in the semiconductor sensor. A total of
40 million tracks impinging on the uniform (non-pixelated) side of the
sensor were generated using FLUKAMonte Carlo code1 [24, 25], storing,
for each track, the three-dimensional spatial coordinates with an accuracy
of 3 μm in all directions and the amount of energy deposited therein. The
electron impinging position is uniformly distributed across the sensor
surface, covering an area of 1024 × 1024 pixels.

A custom-developed software environment—an improved version
of the one described and validated in [14]—processes each individual
track to mimic the physics of the charge collection and signal
formation at the pixelated electrode. The generated charge
distribution of each track segment was thus propagated through
the remaining sensor thickness to the pixels, and a Gaussian
blurring was added to reproduce the effect the thermal diffusion,
with a total width depending on an initial intrinsic contribution σ0
and, under the assumption of the constant electric field, to a
contribution depending on the total travel length:

σ z( )2 � σ20 + σ2th,MAX

d − z

d
, (5)

where d is the sensor thickness, z is the penetration depth measured from
the impinging side, and σth,MAX is the maximum of the thermal diffusion
contribution when z = 0. The charge collected by each pixel was converted
into energy, and a counting threshold was applied—if the energy is higher,
the pixel counts a 1; otherwise, it is 0. A random fluctuation, normally
distributed and assumed uncorrelated among the pixels, was added to the
signal, representing the electronic noise. The response of both the sensor
and the read-out electronics has been assumed uniform in space. At this
point, the statistical distribution of the event multiplicity can be extracted
and, using Eq. 4, the corresponding DQE (0). The series of pixel clusters
representing single events were then individually analyzed according to the
methods described in Section 2.3 and then summed up to form two overall
images, one used for the computation of the MTF and one for the
computation of the NNPS. The one used for the MTF simulates the knife-
edge experimental technique where half of the beam is blanked along a
straight line slightly tilted (2°) with respect to the pixel matrix orientation.
This is simply achieved by filtering events by the impinging position on the
sensor. The one used for the NNPS consists, on the other hand, of a plain,
uniformly filled image.

2.2 Simulation parameters

The simulated detector system consisted of a silicon sensor with a
thickness of 450 μm and a pixel size p of 75 μm, read-out by a counting

ASIC. The value of σ0 was set to 2 μm rms and, at room temperature,
the value of σth,MAX was estimated to be 7.5 μm rms. The value of the
electronic noise contribution was set to 430 eV rms [26]. The
threshold energy was set to 4 keV, close to the lowest practical
limit available for the referenced chip. The choice of the threshold
energy, in particular, in relation to the DQE (0), is analyzed in more in
detail in Section 3.1.

2.3 Single-event processing and sub-pixel
resolution

Different single-event processing techniques were investigated. As a
ground reference, I refer to the standard counting case with no event
processing as SC. As a relative term of comparison with previous works,
I probed both the event normalization and the plain centroiding
techniques, referred to as NORM and CoG, respectively. The NORM
processing consists of scaling the count value of each pixel pertaining to
a cluster by the total number of pixels forming the cluster such that every
event counts as one. The CoG processing consists of computing the
geometrical center of gravity of the pixel cluster and assigning the event
to the pixel containing it.

The technique I propose aims to enhance the DQE by trying not to
increase the MTF but rather to reduce the NNPS. To achieve this,
processed events needs to have the following qualities: i) each of them
counts as one (event normalization); ii) have a finite spatial extension
(no collapse of the event cluster to a single pixel); and iii) have a
smooth and isotropic shape. The last two requirements are of
particular importance in order to efficiently reduce the high-
frequency components of the NNPS in both spatial directions,
which happens by introducing a correlation between neighboring
pixels. The requirement of isotropicity arises from the consideration
that single-event exhibits, in most cases, shapes with a certain degree of
directionality, i.e., of anisotropicity, thus offering no natural
attenuation to the high-frequency components of the noise along
the direction “orthogonal” to the track line, where pixels have no
correlation. Given these qualities, it is necessary to define the center
and the specific shape of the processed event. As center, I chose the
geometrical center of gravity, which, after all, retains some correlation
with the real electron impinging position. As shape, I chose a Gaussian
function, isotropic in the two spatial dimensions, which was found to
nicely fit the probability distribution function of the position of the
real impinging point relative to the centroid. This reflects, in a sort of
average Bayesian inference, the uncertainty on the real impinging
point given the event centroid. I refer to this method, the first of two, as
GSE, where the subscript stands for “semi-empirical,” being the
knowledge of the impinging points made available using numerical
simulations. In the second, “fully-empirical”method, referred to as GE,
the size of the Gaussian function was instead derived from the
probability distribution of the distances of the firing pixels of the
event cluster from the centroid. When the cluster consisted of more
than one pixel, the contribution of each pixel was weighted with the
inverse of the event multiplicity. It must be noted that this probability
distribution is discrete in the two-dimensional space as a consequence
of the basic fact that single events can assume only a discrete number
of shapes and, therefore, the centroids can localize only at certain
specific positions. In any case, the low-pass filtering effect is somehow
tailored to the average size of the single-event. Examples of both
probability distribution functions are provided in Section 3.2,

1 v. 4–2.1. The physics was set to multiple Coulomb scattering with cutoff
energy of 1 keV for electrons and 100 eV for photons. Fluorescence was
enabled, and no biasing was used.
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associated with this specific case study. As a final step in either case, the
continuous, Gaussian-shaped processed events must be binned into
the pixel matrix. The binning was achieved by integrating the function
over the area of the pixels in a neighboring area around the event
center. Therefore, the expression of the count value c associated to the
(i, j)-th pixel is as follows:

ci,j � ∫
xi+1

xi

∫
yj+1

yj

1
2πσ2

exp − x − cogx( )2 + y − cogy( )2
2σ2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦dxdy, (6)

where cog is the geometrical center of gravity of the event and σ is the
standard deviation computed according to the chosen method. Owing
to the separability of the x and y components, the expression can be
rewritten in terms of combination of error functions erf:

ci,j � 1
4

erf
xi+1 − cogx


2
√

σ
( ) − erf

xi − cogx

2

√
σ

( )[ ] erf
yj+1 − cogy


2
√

σ
( ) − erf

yj − cogx

2

√
σ

( )[ ],
(7)

which is easy to compute numerically.
The CoG, GSE, and GE can be used to improve the spatial

resolution of the system below the geometrical limit set by the
pixel size, thus achieving sub-pixel resolution. Each original pixel
was subdivided into a matrix of n × n sub-pixels of equal size, and the
event centroid was assigned to the sub-pixel containing it. I explored
oversampling factors n up to 3 (in the following, the oversampling
factor associated with a specific processing method is indicated as a
subscript), as for higher values, no further improvement was
observed in this specific case study. An intrinsic problem of the
oversampling was that event centroids do not necessarily fill the sub-
pixel matrix equally as a consequence of their discrete distribution
on the two-dimensional space. According to the relative probabilities
of occurrence of the different cluster shapes—dictated by the
physical case—the distribution of the centroids can be skewed,
e.g., toward the central sub-pixel, to the lateral ones along the
border between neighboring pixels or the ones at the corners of
the original pixel. Given the symmetry of the problem along the x
and y directions, the sub-pixel response matrix also exhibits a
diagonal symmetry. An additional source of non-uniformity lies
in the arbitrariness in the assignment of the sub-pixel containing the
centroid when the centroid is located on the boundary among
neighboring sub-pixels and a rounding rule has to be set. The
overall, undesired effect is then to generate a pattern reflecting
the structure of the sub-pixel response in the final image,
obtained by summing all processed events. The effect is stronger
for the CoG method, which has the highest degree of event
“localization,” while it is milder for both GE and GSE methods in
virtue of their spatial blurring, which potentially spans over several
neighboring pixels. The mandatory restoration of the uniformity in
the final image can be achieved by dividing the value of each new
(sub-)pixel by the value of the corresponding position in the sub-
pixel response map as a classic flat-field correction. The sub-pixel
response map can be computed as the average signal value at each
specific sub-pixel location under the condition of uniform
illumination, followed by normalization in order to have the
mean value of the sub-pixel response map equal to 1 (needed to
preserve the magnitude of the detected signal). In this idealistic
scenario, the flat-field correction factors are perfectly defined and not
subject to statistical and/or systematic errors. There is, however, a

side effect. The multiplication of the value of each pixel by scalar
weight is in a different way than the associated noise. In particular,
the noise of low-counting pixels is amplified more than the noise of
high-counting pixels is reduced, leading to an overall reduction of
the SNR (0)out and, therefore, of the DQE (0) in reason of the
harmonic mean of the sub-pixel response map. Proof of this
statement is given in Appendix.

3 Results and discussion

3.1 Multiplicity distribution and DQE (0) vs.
threshold energy

In counting HPD, the threshold energy is a setting that can
critically influence the performance. In order to find a reasonable

FIGURE 1
On the left-hand side axis, the event multiplicity cumulative
probability distributions as a function of the threshold energy.
Multiplicities higher than 4 have negligible occurrence and are not
shown. On the right-hand side axis (green), the average event
multiplicity.

FIGURE 2
DQE (0) obtained from the event multiplicity distributions using
Eq. 4.
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value for this study, I investigated its influence on theDQE (0) by studying
the multiplicity distributions and using Eq. 4; Figure 1 shows the
cumulative probability distributions of the multiplicity as a function of
the threshold energy. Multiplicities higher than 4 have negligible
occurrence and were omitted. The average multiplicity value as a
function of the threshold energy is also shown. The resulting DQE (0)
is plotted in Figure 2. The half-beam energy threshold value (50 keV)
clearly separates two different behavior regimes. Below this value, the
DQE (0) is almost constant within the range of 0.81–0.86. This indicates
that the ratio between 〈m〉2 and 〈m2〉 remains basically stable, although
both quantities increase for decreasing thresholds. Only below ~4 keV, the
DQE (0) raises a bit, but the improvement is limited to a few percent. On
the other hand, for increasing the energy threshold above half-beam
energy, the DQE (0) decreases progressively. In this regime,m = {0, 1} (in
no way an electron can deposit more than half of its energy in more than
one pixel), and Eq. 4 simplifies to DQE (0) = 〈m〉, whose decreasing
behavior is obvious. For the purpose of the DQE (0), the threshold energy
should, thus, be set as low as possible. At the chosen, realistic threshold of
4 keV, 〈m〉 = 1.99, 〈m2〉 = 4.74 and, therefore, DQE (0) = 0.86.

3.2 Spatial distribution of impinging points
and firing pixels with respect to the centroid

Figure 3 shows the two-dimensional statistical distribution of the
distance of the real impinging point from the event centroid. For visibility
reasons, a brighter color in the scatter plot means higher a value of
probability density. The impinging points look genuinely randomly
distributed around the centroid, and the shape is well-described by a
bivariate normal distribution, whose fitting yields a value for the standard
deviation of 0.24 pixel rms in both directions. This number was then used
in the GSE method. The x and y marginal distributions of the simulated

data and of the two-dimensional Gaussian fitting are also shown in the top
and right-hand side panels. Figure 4 shows the two-dimensional statistical
distribution of the distance of the firing pixels from the event centroid.
Also, in this case, to guide the eye, brighter color and bigger symbol size in
the scatter plot mean a higher value of probability density. The discrete
nature of the distribution—consequence of the finite number of shapes
clusters can assume (as mentioned in Section 2.3)—appears evident. The
standard deviation of the bivariate normal distribution arbitrarily used to
fit this dataset amounts to 0.35 pixel rms, the value that is used in the GE

method.

FIGURE 3
Statistical distribution of the distance of the real impinging point
from the event centroid. A brighter color means a higher probability
density value. On top and on the right-hand side, the x and y marginal
distributions of the simulated data and of the two-dimensional
Gaussian fitting.

FIGURE 4
Statistical distribution of the distance of the firing pixels from the
event centroid. Brighter color and bigger symbol dimension mean
higher probability density values. On top and on the right-hand side, the
x and ymarginal distributions of the simulated data and of the two-
dimensional Gaussian fitting.

FIGURE 5
Example of single event processing for each of the probed
processingmethods. Symbol (+) represents the real impinging point, and
(o) represents the computed center of gravity.
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3.3 Imaging metrics vs. processing method

With the help of Figure 5 we can visualize, for illustration purposes,
the effect of the several probed processing methods and oversampling
factors on an exemplary case of a single event. The position of the centroid
and of the real impinging point is also shown as a reference. The isotropic
blurring given by methods GSE and GE is clearly recognizable.

Figure 6 shows the sub-pixel response maps resulting from the
processing methods with an oversampling factor greater than 1. Sub-
pixel intensities are indicated both with color code and with the
corresponding numerical value. As expected, the highest variation
among the sub-pixels is observed for the CoG case. In particular, with
an oversampling factor of 3, one can observe the extreme degeneration of
some elements of the matrix to zero. This result leads to an undefined
behavior when applying the sub-pixel correction to the overall image due to

division by zero, and therefore, the study of the CoG3 was discontinued.
Higher oversampling factors (not shown here) for CoG were found to lead
to the same situation.On the other hand,GSE andGEmethods yieldedmuch
more uniform results by virtue of their low-pass filtering effect, especially for
oversampling factor 2. For oversampling factor 3, some non-uniformity is
left, in particular, for GSE, due to its shorter spatial correlation range.

Figure 7 shows the MTF for the different processing methods. The
frequency range is expressed both in absolute value and as fraction of the
physical Nyquist limit, which corresponds to ]Ny=(2p)−1 = 6.67mm-1. The
sinc function corresponding to theMTF of the ideal pixel is also shown for
comparison. All processing methods, except the GE, slightly improve the
MTF with respect to the SC case, with the biggest improvement by far
being given by the CoG2. For increasing oversampling factor also, the
MTF of GE and GSE increases, but the enhancement is more pronounced
stepping from oversampling factor 1 to 2 rather than from 2 to 3.

FIGURE 6
Sub-pixel response maps for each of the probed processing methods with an oversampling factor higher than 1.

FIGURE 7
MTF for the different probed processing methods. The frequency
range is expressed both in absolute values and as a fraction of the
physical Nyquist limit.

FIGURE 8
NNPS for the different probed processing methods. For normalization
purposes, the NNPS was multiplied by the scalar Q. The frequency range is
expressedboth in absolute values andasa fractionof thephysicalNyquist limit.
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Figure 8 shows the NNPS as a function of the spatial frequency for the
different processing methods. For normalization purposes, the NNPS was
multiplied by the scalar Q (see Eq. 2). In this way, the behavior of the ideal
pixel matrix with Poissonian uncorrelated noise leads to a flat line of value
1, also shown as a term of comparison. At zero frequency, all methods
involving event normalization and CoG1 exhibit a value close to the
theoretical limit and sensibly lower than the unprocessed SC method. A
remaining tiny noise excess with respect to the ideal case is due to the
effect of the non-uniformity of the sub-pixel response map. For the CoG2

method, which suffers the highest non-uniformity in the sub-pixel
response map, this effect is, on the contrary, macroscopic. At higher
spatial frequencies, a clear distinction between CoG and all the other
methods can be observed. In the CoG cases, the collapse of the events to
individual pixels leads to completely uncorrelated pixels, and therefore,
the corresponding NNPS remains flat over all the frequency ranges. In all
the other cases, the corresponding NNPS exhibits a decreasing behavior
for increasing spatial frequencies. The low-pass filtering effect, already
naturally present in the SC case, is enhanced by the GE methods over all
the ranges and for all oversampling factors. A milder roll-off is instead
noticeable for the GSE and NORM methods, which intersect the curve of
the SC method at roughly ]Ny/2. For oversampling factors greater than 1,
the NNPS of both GSE and GE methods keeps decreasing monotonically
up to the corresponding oversampled Nyquist frequencies.

Finally, Figure 9 shows the resulting DQE. The sinc2 function
corresponding to the DQE of the ideal pixel is also shown for
comparison. Incidentally, I would like to point out that both the DQE
and the MTF of the SC method are in excellent agreement with the
experimental data shown in [14].2 At zero frequency, all methods involving
normalization of the events andCoG1 have a higherDQEvaluewith respect
to the SCmethod and are close to the theoretical limit of 1. CoG2 has, on the
other hand, the worst performance. At higher spatial frequencies methods,
SC and, above ]Ny/2, NORM and GSE1 behave similarly and close to the

curve of the ideal pixel. A tiny improvement is noticeable forGE1 in virtue of
its longer spatial correlation range that makes the effect of the isotropicity
more efficient (both theMTF and theNNPS decrease, but the net effect is in
favor of the DQE). In this high-frequency range, the CoG1 has the worst
performance. It is, however, for oversampling factors higher than 1 that the
GSE and GE methods reveal their true superiority. In order to quantify the
performance, one can look at the “critical” frequency value ]C such that
DQE (]C) is equal to DQE (]Ny) of the ideal pixel case, which amounts to
0.405 (to guide the eye, it is drawn in Figure 9 as a horizontal line).While all
methods with oversampling factor 1 (excluded CoG1) have a similar critical
frequency at around 0.94 ]Ny—which means an effective pixel size
pE=(2]Ny)−1 = 1.06 p—GSE2,3 and GE2,3 methods have a critical
frequency in the range 1.32 ]Ny–1.40 ]Ny, meaning an effective pixel size
of 0.71 p–0.76 p. Also, CoG2 has a critical frequency of 1.37 ]Ny, but it pays
the price of a poorer DQE (0). All these figures of merit are summarized in
Table 1.

3.4 Generalization and limits of usability

From the obtained results, we can infer some general properties:

a. CoG methods are very sensitive to the uneven (and discretized)
geometrical distribution of the centroids. This clearly appears in the
non-uniformity of the sub-pixel response maps, particularly for
increasing oversampling factors. The spatial distribution of the
centroids is also strongly related to the particular physical case
under analysis (electron beam energy, sensor material, and
geometry) and, therefore, so does the DQE.

b. The NORM method works well, but it is not scalable to
oversampling factors higher than 1 and, therefore, cannot be
exploited to achieve sub-pixel resolution.

c. The proposed family of methods G not only guarantees robustness
against non-uniform centroid distributions, due to the spatial
blurring, but is also readily scalable to any arbitrary
oversampling factor. A general pre-condition for reasonable use
of pixel oversampling is to have a physical pixel size of roughly the
same magnitude or slightly smaller than the average lateral spread
of the electron track. For bigger pixel sizes, indeed, the number of
events with multiplicity higher than 1 decreases sensibly,
preventing, in many cases, the computation of the event
centroid with sub-pixel information; for smaller pixel sizes, on
the other hand, electron tracks are naturally oversampled by the
detector, and a further division into sub-pixels give minimal to no
additional useful information. At intermediate cases, it is
reasonable to assume that the optimal oversampling factor is in
the range of 2–3, like the example examined in this work.

d. The fact that I observed almost no difference between the DQE of GSE

and GE methods questions the importance of the spatial width (σ) of
the processed events. In this work, I derived this parameter from
physical considerations, but nothing prevents a more pragmatic
approach where such width is optimized empirically.

3.5 Practical considerations

In a realistic scenario, the use of an oversampling factor higher than
1 requires the preliminary step of computing the sub-pixel response map
necessary for the correction of the final overall image. This task can be

FIGURE 9
DQE for the different probed processing methods. The frequency
range is expressed both in absolute values and as a fraction of the
physical Nyquist limit of the detector.

2 I refers to the measurements taken at the threshold energy of 5 keV.
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accomplished by applying the single-event analysis on images (or sub-
regions of images) recorded under uniform illumination and by averaging
the corresponding sub-pixel position of the entire macro-pixel matrix and
normalizing the obtained values by theirmean. Additional statistical and/or
systematic errors in the computation of the flat-field correction factors,
typical of any real-world detection system, would also concur with the
worsening of the imaging performances, although, in typical circumstances,
it should not be severe. As an example, a random error with zero average
and 1% (5%) standard deviation would lead to a decrease of the DQE (0) of
only ~0.005% (~0.12%), according to Eq. 20 in Appendix.

4 Conclusion

I devised a simple and robust single-event processing method for
countingHPDbasedonreplacing theoriginal eventwithan isotropic two-
dimensionalGaussianfunction. I investigatedthepotential improvements
in terms of DQE with respect to the unprocessed case and other well-
known processing techniques, namely, event normalization and
centroiding. In my method, the Gaussian function representing the
event is centered at the event centroid and has a unitary integral. The
spatialwidthwas retrieved in twoways. In thefirst, semi-empiricalway (it
requires preliminary Monte Carlo simulations) GSE, from the statistical
distribution of the real impact position of the electrons with respect to the
event centroid; in the second, fully empirical way GE, from the statistical
distribution of the firing pixels with respect to the event centroid. The
rationale ofmymethod is to enhance theDQEnot by improving theMTF
but rather by reducing the NPS, by virtue of its spatial low-pass filtering
effect,which reflects the intrinsic natural uncertainty in the localization of
the detected event. The method, readily scalable to oversampling factors
higher than 1 and due to the higher uniformity of the sub-pixel response
map,canefficientlyachievesub-pixelresolutioncapabilities.Withpossible
uses in all dose-sensitive applications where optimized DQE is required,
CryoEM, above all, themethod is inprinciple applicable to other counting
devices like MAPS detectors.

I numerically investigated the realistic case study of 100 keV electrons
impinging on a 450 μm-thick silicon sensor with a pixel size of 75 μm at the
threshold energy of 40 keV. At zero spatial frequency, the proposed
method’s GSE and GE enhance the DQE as much as the other methods
involving event normalization (NORM, CoG1) from 0.86 of the SCmethod

to nearly the theoretical limit of 1. At higher spatial frequencies and for
oversampling factors higher than 1, on the other hand, they demonstrate the
highest DQE among all the probed methods and allow for an extension of
the effectiveNyquist frequency up to 1.40 times the physical one, meaning a
corresponding pixel size 0.71 times the physical one. This is without
significant differences between GSE and GE and between oversampling
factors 2 and 3.

While the behavior of the proposed technique depends on the
particular physical case under analysis in general, I expect a good
performance for all those cases where the pixel size is roughly
comparable to the average lateral spread of the electron track. The
optimal oversampling factor is also not expected not to exceed 3,
although 2 could already be satisfying like in the analyzed case. As
an outlook, further studies should be devoted to clarifying the
dependence, in this case almost negligible, of the spatial width
parameter of the G methods on the DQE.

Data availability statement

The raw data supporting the conclusion of this article will be made
available by the author, without undue reservation.

Author contributions

The author confirms being the sole contributor of this work and
has approved it for publication.

Acknowledgments

The author would like to deeply thank Valeria Radicci for the
support with the Monte Carlo simulations and Michael Rissi and
Christian Disch for the fruitful discussions.

Conflict of interest

Author PZ is employed by DECTRIS Ltd.

TABLE 1 Summary of the probed filters. Lengths are expressed in the physical pixel unit, and frequencies are expressed in the physical Nyquist unit.

Processing method Oversampling factor DQE (0) Critical frequency ]C Effective pixel size pE

SC 1 0.86 0.93 1.07

CoG1 1 0.98 0.86 1.16

CoG2 2 0.83 1.37 0.73

NORM 1 0.98 0.94 1.06

GSE1 1 0.99 0.94 1.06

GSE2 2 > 0.99 1.38 0.72

GSE3 3 > 0.99 1.38 0.72

GE1 1 0.99 0.95 1.05

GE2 2 > 0.99 1.40 0.71

GE3 3 > 0.99 1.32 0.76
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Appendix

Proof that the sub-pixel response map
correction leads to a lower SNR (0)out

Let us assume a system of n pixels illuminated by a uniform flux
that generates, on a certain time frame, an average of c0 counts on each
pixel. For simplicity, but without losing generality, let us assume that
the pixels do not exhibit cross-talk and, therefore, the associated noise
is uncorrelated and follows a Poisson statistics, i.e., σ20 � c0. We can
then write the zero spatial frequency component of the signal-to-noise
ratio as

SNR 0( )2out �
∑
i�1

n

c0( )2

∑
i�1

n

σ20

� nc0( )2
∑
i�1

n

c0
� nc0. (8)

If the pixels are now subject to a systematic non-uniformity ui with
arithmetic mean A (ui) = 1 (i.e., there is no loss of counts), the average
counts per pixel become ci = c0ui, and in order to restore the uniformity, it
is necessary to divide ci by ui obtaining the (obvious) relation:

ci′ � ci
ui

� c0ui

ui
� c0. (9)

Let us now focus on the Poisson noise σi associated with the pixel
counts. Due to the systematic non-uniformity, the average number of
counts per pixel has changed and, therefore, its associated noise
becomes σ2i � ci � c0ui. The flat-field correction implies the
division of the pixel statistics by a scalar, leading to

σ′2i �
σ2i
u2
i

� c0
ui
. (10)

The SNR’ (0), therefore, becomes

SNR 0( )′2out �
∑
i�1

n

ci′( )2

∑
i�1

n

σ′
2

i

, (11)

� nc0( )2

∑
i�1

n

c0
/ui

, (12)

� nc0( )2
nc0

n

∑
i�1

n

1/ui

, (13)

� SNR 0( )2outH ui( ), (14)
where H represent the harmonic mean operator. From the well-known
inequality H (ui) ≤ A (ui) = 1, we can state that

SNR 0( )′2out ≤ SNR 0( )2out. (15)
The stronger the non-uniformity ui, the smaller the resulting

SNR(0)′2out. To see this, we can rewrite ui = 1 + ϵi; since A (ui) =
1, then A (ϵi) = 0 and Var[ui] � Var[ϵi] � E[ϵ2i ]. For values of ϵi small
enough, the term 1/ui at the denominator of the harmonic mean can
be expressed with its Taylor series centered around 1:

1
ui

� 1
1 + ϵi

� 1 − ϵi + 1
2
ϵ2i − o ϵ2i( ). (16)

This leads to the following approximation of the harmonic mean:

H ui( ) ≈ n

∑
i�1

n

1 − ϵi + 1
2ϵ2i

, (17)

≈
1

1
n∑
i�1

n

1 − 1
n∑
i�1

n

ϵi + 1
2n∑

i�1

n

ϵ2i
, (18)

≈
1

1 + 1
2 E ϵ2i[ ], (19)

≈
1

1 + 1
2 Var ui[ ]. (20)

Since Var [ui] is always a positive number,H (ui) can only decrease
for increasing dispersion of ui.
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