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The jellyfish-like flying machine is a new development direction of the future
bionic flapping-wing aircraft besides the insect-mimic and bird-mimic micro air
vehicles (MAVs). To better understand the underlying fluid mechanisms of the
jellyfish-like flyer, we numerically simulated the aerodynamic forces of the three-
dimensional flapping wings under different control parameters. The effects of
flapping amplitude, vortex wake, up-flight speed, and wing–wing interaction on
aerodynamic performance were investigated. The results show that, at hovering,
the mean lift rises rapidly at first and then tends to be stable with the increase in
flapping amplitude. The vortex wake can improve the lift at large flapping
amplitudes, while it reduces the lift at very small flapping amplitudes. With the
increase in up-flight speed, the lift decreases. However, the sources of lift
reduction are different for different flapping amplitudes. When the two wings
flap together and the distance between the wings is small enough, the wing–wing
interaction can improve the lift by about 15% compared with that of a single wing,
but much higher power is required, resulting in lower efficiency. The results of this
study provide new insights into the flight mechanism of the jellyfish-like aircraft
and have important guiding significance for the design and optimization of the
jellyfish-like flying machine.
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1 Introduction

After hundreds of millions of years of evolution, flying creatures can obtain astonishing
aerodynamic performance by flapping wings, which has become the inspiration for
designing bionic aircraft. The design of bionic aircraft is generally based on two typical
types of motion: the lift-based stroke in a horizontal plane (also termed the normal mode)
[1], like that of the hummingbird, and the drag-based paddling stroke in a vertical plane [2],
like that of the dragonfly. Since the conventional steady-state aerodynamic theory is
insufficient to explain the high aerodynamic force coefficients required by these small
creatures [3], much endeavor has been put into obtaining the unsteady aerodynamic
interpretations. The revealed unsteady aerodynamic mechanisms include delayed stall,
rapid pitching rotation, rapid acceleration (or added mass), clap and fling, and wake
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capture [4–7]. Although the flapping-powered robotic flyer shows
great potential in producing high aerodynamic forces and energy
efficiency relying on these unsteady mechanisms, it also needs to be
equipped with feedback control systems to maintain stable flight due
to its inherent instability [8–11].

In an experimental study, Childress et al. [12] observed that a
pyramid-shaped flexible body with an array of four wings can
achieve a stable hovering within a vertically oscillating airflow.
Motivated by this experiment, Ristroph and Childress [13]
developed a prototype of the jellyfish-like flying machine. This
flapping-wing air vehicle can achieve self-righting hovering by
opening and closing four downward-pointing wings, without
relying on additional aerodynamic surfaces and without feedback
control. Each wing of the aircraft was hinged on the upper horizontal
loop and rotates around a pivot point, which is very similar to the
simple pitching motion. This provides a new way of movement for
designing bionic aircraft.

This intrinsically stable jellyfish-like flying machine and the
relatively simple actuation motion attracted the attention of
researchers, prompting them to carry out more detailed research
on the aerodynamics and flows of such flyers. Using two-
dimensional (2D) models, Fang et al. [14] and Zhang et al. [15]
explored the aerodynamics and flight dynamics of the flying
machine with theoretical and numerical methods, respectively.
Both studies found that pitching amplitude and wing separation
played a determining role in the locomotion state and aerodynamic
performance. In addition, Zhang et al. [16] simulated the passive
flight of a pair of 2D flexible pitching foils with a concave-down
configuration in the vertically oscillating airflow. It was shown that
flexibility can strongly affect the weight-supporting capability and
stability of the flyer.

It is worth noting that all the aforementioned studies that were
carried out on the jellyfish-like aircraft are 2D studies. More recently,
Liu et al. [17] experimentally investigated the effect of the time
asymmetric pitching motion on the lift generation and the flow-field
characteristics of this kind of ornithopters, which is the only three-
dimensional (3D) research on hovering. They found that the fast
downstroke and slow upstroke pitching pattern was superior to
symmetric pitching. Although the flow-field was 3D in their study,
the vortex structures were still displayed by the 2D PIV
measurement. The evolution of the side-edge vortex was not
considered, and its effect on the forces of the wing remains
unclear so far. The experimental study by Buchholz and Smits
[18] demonstrated that the streamwise vorticity formed at the 3D
panel edges tended to dominate the wake formation. Other studies
[19–21] have also demonstrated that the 3D effect plays a key role in
the formation of vortices and the aerodynamic performance of the
flapping wings. Therefore, with respect to this jellyfish-like flyer, it is
still far from being possible to fully understand the details of 3D
vortex evolution and aerodynamics, especially the vortex structures
around all edges of the wing.

In contrast to the previous 2D studies, this paper numerically
investigated the aerodynamics of 3D flapping wings employing the
locomotion of the jellyfish-like flyer. The hovering was emphasized
because it is an indispensable flight mode for MAVs to perform
special tasks. This is also different from most other works, which
studied the pitching wing in an incoming flow [18–21]. The
aerodynamic performance under some key motion parameters

was examined and related to the flow fields. In addition, the
wing–wake interaction was also considered, which was neglected
in previous studies. The remainder of the paper is organized as
follows: the wing motion and the numerical method with its
validation are described in Section 2. The simulated results are
presented in Section 3. In Section 3.1, the influence of flapping
amplitude on the aerodynamics of a single wing under hovering
conditions is studied first, and then the vortex structures are
examined in detail. The role of vortex wake is also emphasized in
Section 3.2. Next, the effect of up-flight speed on aerodynamic
performance is investigated in Section 3.3. Finally, in Section 3.4, the
interference effect between wings is studied and comparisons with
relevant biological data are presented. In Section 4, we summarize
the conclusions and discuss future research avenues.

2 Methodology

2.1 Wing model and motion

In this work, the wing was modeled as a flat plate with rounded
edges. The wing shape is similar to the teardrop-shaped wing of the
jellyfish-like aircraft manufactured by Ristroph and Childress [13]
(Figure 1A). The aspect ratio R/c of the wing is 2.25, where R and c
are the wing length and mean chord length, respectively. The radius
of gyration r2 of the wing is 0.62R.

To facilitate the flow-field analysis, one opposing pair of
wings was used instead of the bell-like configuration of four
pieces of wings in the original prototype of the ornithopter. It
should also be noted that the simple drive mechanism shown in
Figure 1A does not close all four wings simultaneously but rather
causes one opposing pair to lead the other by a quarter period.
Figure 1B illustrates the pitching motion. The two wings flap
about the wing root with a mirror-symmetric sinusoidal pitching
motion in time. The origin of the Cartesian coordinates OXYZ
coincides with the pivot of the right wing, with the Y-axis passing
through the two wing roots and the Z-axis pointing vertically
upward (Figure 1B). The wings can move upward at a speed of V,
and V � 0 represents the hovering state. The separation distance
between the two wings’ hinge points is H. θ and Φ represent the
opening angle and peak-to-peak flapping amplitude, respectively
(see Figure 1B). The pitching angles of the right (ϕ1) and left (ϕ2)
wings are expressed as follows:

ϕ1,2 t( ) � ±
π

2
− θ + 0.5Φ cos 2πnt( )( ), (1)

where n is the wingbeat frequency and t is the time. A dimensionless
time (τ) is defined as that varies between 0 and 1 for each flapping
cycle. One flapping cycle includes two strokes, with τ � 0 and τ � 1
representing the start of the first right-to-left stroke and the end of
the second left-to-right stroke, respectively.

This paper first studied the aerodynamics of a single wing (the
right wing) at different flapping amplitudes and up-flight speeds,
assuming that the wing–wing spacing is large enough and there is no
interference between the left and right wings. The opening angle for
the single wing was set at θ � 90° to ensure that the resultant force of
the wing points vertically upward [22]. Then, the interference effect
of two wings at different distances was studied. It should be noted
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that to avoid collision between wings, the opening angle was no
longer 90° when the wing–wing interaction was considered.

2.2 Numerical methods

The flows and aerodynamic forces were computed using the
method of computational fluid dynamics (CFD), and the laminar
flow model was used due to the low Reynolds number. The
governing equations of the flow are the three-dimensional
incompressible unsteady Navier–Stokes (N–S) equations:

∇ · u � 0, (2)
zu
zt

+ u · ∇u � −1
ρ
∇p + v∇2u. (3)

In the aforementioned equations, u, t, and p represent dimensional fluid
velocity, time, and pressure, respectively. ∇ is the gradient operator, and
∇2 is the Laplacian operator. v and ρ are the kinematics viscosity and
density of the fluid, respectively. In the non-dimensionalization,U, c, and
c/U are taken as reference velocity, length, and time, respectively.U is the
mean flapping velocity at the radius of gyration of the wing,U � 2Φnr2.
Thus, the non-dimensional parameters involve: u* � u

U, t* � tU
c ,

p* � p
ρU2, z

zt* � c
U

z
zt,∇* � c∇. The non-dimensional wingbeat cycle is

written as T* � 2Φr2/c, which is proportional to the peak-to-peak
amplitude. Then, the dimensionless form of the N–S equations can
be deduced as follows:

∇ · u* � 0, (4)

zu*
zt*

+ u* · ∇*u* � −∇p* + 1
Re

( )∇*2u*. (5)

Here, Re is the Reynolds number, and Re � cU/v. Its value is set at
200 in the following simulations.

The method for solving the N–S equations is the same as that in
the previous studies [23, 24]. The algorithm is based on the method
of artificial compressibility developed by Rogers et al. [25] and
Rogers and Pulliam [26]. To discretize the time derivative of the
momentum equations, a three-point backward differencing formula
with second-order accuracy is used. Moreover, a pseudo-time and a
pseudo-time derivative of pressure are introduced into the
continuity equation. The resulting system of equations is iterated
in pseudo-time. As long as the pressure derivative in pseudo-time
approaches zero, the velocity divergence at the new time level
approaches zero. The derivatives of the viscous fluxes in the
momentum equation are approximated using second-order
central differences. The upwind differencing method based on
the flux-difference splitting technique is used for the derivatives
of convective fluxes. For points located close to boundaries, the
second-order upwind differencing is employed; for points located
toward the interior, the third-order upwind differencing is used.
This algorithm was described in detail in [25, 26]. Under the far-field
boundary conditions, at the inflow boundary, the relative velocity at
the boundary is used to determine the velocity components, while

FIGURE 1
(A) Three-dimensional model of the jellyfish-like flying machine manufactured by Ristroph and Childress [13]. The prototype pulls in and pushes out
four wings by using a motor (M) to rotate a crankshaft (CS) that connects via a link (L*) to each wing. The body of the flyer consists of two crossed vertical
loops that support the motor below and a horizontal upper loop. More detailed information about this flyer can be found in [13]. (B) Simplified wing-pair
model. Here, V is the up-flight speed; θ represents the wings’ base opening angle; R andH denote the wing length and the distance between the two
pivot points, respectively. Two rigid plates are driven to flap with prescribed mirror-symmetric sinusoidal pitching motions of peak-to-peak amplitudeΦ.
(C) Wing grid with an inset showing the grid at a half wing length section. (D) Over-set grid system. (E) Instantaneous snapshots of the flapping wings
during ascending flight. The prototype in (A) achieves upward flight by closing and opening an opposing pair of wings, just like the jellyfish which
periodically contract and expand their bell-shaped structure.
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pressure is extrapolated from the interior; at the outflow boundary,
the velocity is extrapolated from the interior, and pressure is set to be
equal to the static pressure of the still air. On the wing surfaces,
impermeable wall and no-slip boundary conditions are applied, and
the pressure on the boundary is obtained through the normal
component of the momentum equation written in the moving
coordinate system.

To facilitate the study of the wing–wing interaction, the
technique of moving overset grids was employed. Figures 1C,
D show the grid system that consists of two body-fitted
curvilinear wing grids that extend a relatively short distance
from the wing surfaces and a Cartesian background grid that
extends to the domain’s far-field boundaries. The wing grid
captures features such as boundary layers, separated vortices,
and vortex–wing interactions, and the background grid captures
the vortex wake and carries the solution to the far field. Data are
interpolated from one grid to another at the inter-grid boundary
points using tri-linear interpolation. The wing grid (O-H type)
was created using a Poisson solver, which was based on the work
of Hilgenstock [27]. It allows fast generation of the three-
dimensional wing grid with full boundary control. The
background grid was generated algebraically. The non-
dimensional time step (Δt*) is equal to T*/440. The wing grid
has dimensions 43 × 71 × 70 in the normal direction, around the
wing, and in the spanwise direction, respectively (the first grid
layer thickness is 0.001c). The outer boundary of the wing grid is
2.5c from the wing spanwise axis in the normal direction and
1.5c from the wing root and tip in the spanwise direction. The
background grid has dimensions 121 × 121 × 121 in the X, Y, and
Z directions, respectively, and its boundaries are 20c away from
the wing root. To accurately capture the vortex structure, the
background grid is refined in the regions covered by the wing
grid motion and the main development region of the vortex
wake. In these regions, the background grid is evenly distributed,
and the grid spacing is approximately the same as that of the
outer part of the wing grid. A detailed study of the variables such
as time step, domain size, and grid dimensions was conducted,
and the values mentioned previously are appropriate for the
present study.

After the pressure and velocity of the fluid are obtained, the
aerodynamic forces are calculated by integrating the pressure and

the viscous stresses on the wing surface. The lift (L) and drag force
(D) of the wing are defined as the force components along the Z and
Y axes, respectively. The pressure, lift, and drag coefficients are
defined as Cp � (p − p∞)/(0.5ρ(U)2), CL � L/(0.5ρ(U)2S), and
CD � D/(0.5ρ(U)2S), respectively. Here, p is the pressure, p∞ is
the pressure at infinity, and S is the area of one wing. The
aerodynamic power (Pa) required to overcome the aerodynamic
moments is determined by the aerodynamic torque and angular
velocity of the wing. The aerodynamic power coefficient is calculated
as CP,a � Pa/(0.5ρ(U)3S). The propulsion efficiency η is given as
η � CL/CP,a. CL and CP,a are cycle-averaged CL and CP,a,
respectively.

The code has been verified by comparing the calculated forces
with those of experimental measurement of flapping insect wings
[28]. It showed that the calculated results matched the experimental
measurements closely. To further ensure that our code is correct,
Figure 2 compares our calculations with the work of Li and Lu [29],
which studied the forces of pitching and heaving flat plates in an
incoming flow. Again, the aerodynamic data are in good agreement.
In addition, according to the previous research of our group [24],
this flow solver can accurately predict the wing–wing or wing–wake
interactions.

3 Results and discussion

3.1 Effect of flapping amplitude

As mentioned in Section 2.2, the non-dimensional wingbeat
period (T* � 2Φr2/c) is proportional to the peak-to-peak amplitude
Φ. Thus, the mean angular velocity is the same for different
amplitudes. The main purpose of changing Φ is to compare the
difference in aerodynamic performance between smaller, faster
motions and larger, slower motions.

In this section, the aerodynamics and flow structures of a
single wing under the condition of hovering are simulated first
because hovering is an important flight mode for the MAVs to
perform specific tasks. The amplitude of pitching is varied from
Φ � 10° to 80° at intervals of 10°. It should be noted that the range
of pitching amplitude investigated in this study is larger than
those in previous works [18–21]. The transient lift and drag

FIGURE 2
Comparison of the present instantaneous lift coefficient (A) and drag coefficient (B) with previous data obtained by Li and Lu [29] for a rectangular
plate with an aspect ratio of 0.5 at Re � 500.
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coefficients of the wing after the flow reached a stable periodic
state are shown in Figure 3. It is seen that there are two positive
crests and two negative troughs of lift in one cycle for each curve
(Figure 3A). The magnitude of positive crests is larger than that
of the negative troughs, which ensures that the wing is subjected
to an upward average lift. With the increase in Φ, the peak of lift
increases and shifts slightly rightward in phase. The curve of drag
for each flapping amplitude has only one crest and one trough
with equal magnitude, which results in zero cycle-averaged drag
(Figure 3B). As shown in Figure 3B, the crest and trough of the
drag increase as Φ decreases.

CL, CP,a, and η of the wing as a function of Φ are shown in
Figure 4. It shows that CL increases with the enlargement of Φ at
first, and then it remains approximately stable whenΦ is larger than
30°. Since CP,a decreases gradually, η shows a general trend of
continuous growth as Φ increases. It indicates that a larger,
slower flapping motion can improve the efficiency of the wing
compared to a smaller, faster flapping motion. This is also

consistent with the findings of Van Buren et al. [30] in the study
of a heaving and pitching wing in an incoming flow.

Next, we further discuss the vortex structures around the wing
under different flapping amplitudes. Figure 5 illustrates the
evolution of the vortex structures around the wing at eight
typical instants during one flapping cycle at Φ � 40°. The vortex
is visualized by the Q criterion, and the oblique view is used to
facilitate the identification of different vortices. The vortex
structures at τ � 0 (the beginning of the right-to-left stroke) and
τ � 0.5 (the beginning of the left-to-right stroke) in Figure 5 can be
viewed as mirror images of each other due to the symmetry in the
wing kinematics. The “mirrored image” is of help to clearly
demonstrate the vortex structures around the wing.

As shown in Figure 5, when the wing starts to flap from right to
left (τ � 0), the main vortex structures are two curved vortex rings.
One is composed of the side-edge vortices (SV2) and the wingtip
vortex (TV2) formed in the preceding left-to-right stroke, and the
other is composed of SV1 and TV1 formed in the earlier right-to-left

FIGURE 3
Comparison of the instantaneous lift coefficient (A) and drag coefficient (B) of a single wing for different flapping amplitudes Φ within one flapping
cycle.

FIGURE 4
Variation in themean lift coefficientCL , mean aerodynamic power coefficientCP,a , and propulsive efficiency η as a function of the flapping amplitude
Φ for a single wing at hovering.
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stroke. At τ � 0, SV2 is still attached to the wing surface, but TV2 has
shed away from the wing, resulting in the curved shape of the vortex
ring. At τ � 0.125, the new side and tip vortices (SV3 and TV3) are

gradually generated at the wing edge, forming a new vortex ring. At
this instant, the wing as well as the newly formed SV3 bypasses SV2,
providing an opportunity for the wing–wake interaction. At τ � 0.25

FIGURE 5
Formation and evolution of vortices at eight typical instants (A–H) during one flapping cycle for a single wing at Φ � 40°. In all snapshots, the iso-
surface of the Q criterion with Q � 2 is shown.

FIGURE 6
Instantaneous vortex structure of the wing for different amplitudes atΦ (A–H) τ � 0.5. In all snapshots, the iso-surface of theQ criterion withQ � 2 is
shown.
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(Figure 5C), SV3 and TV3 become stronger, and SV2 is distorted due
to the induction of the newly generated vortex ring. From τ � 0.375
to 0.5, TV3 detaches away from the wing, resulting in a gradually
bent vortex ring. In addition, the vortex ring formed by SV2 and TV2

has been seriously distorted, mainly because SV2 is further entrained
and induced by TV3. It should be noted that SV1 and TV1 gradually
dissipate from τ � 0 to 0.5 and finally disappear in the following
process. In the subsequent stroke (from τ � 0.5 to 0.875), the
formation and evolution of vortex structures are similar to those
in the preceding stroke (from τ � 0 to 0.375), that is, the formation
of SV4 and TV4 and their entraining and inducing effect on SV3. By
2D PIV measurement, Liu et al. [17] showed that the flow field for
the wing of the jellyfish-like flyer is characterized as the consecutive
shedding of two vortices at the wingtip with an opposite rotation
sense, which are generated during the downstroke and upstroke,
respectively. This is similar to the generation and shedding of TV3

and TV4 in the present study, although the Reynolds numbers are
different in the two studies.

The vortex structures under different flapping amplitudes at τ �
0.5 are shown in Figure 6. It should be noted that the wing begins to
flap from left to right at this moment. When Φ is smaller than 40°,
the vortex structures become more complex, although they show
similar topology. It is seen that SV3 and TV3 become larger gradually
with the increase in Φ (Figures 6A–D). Due to the short dissipation
time, the vortex structures generated by the previous strokes for
small flapping amplitude can still be displayed. When Φ is larger
than 40°, the strength of the side vortices changes little, which is
consistent with the cycle-averaged lift force performance in Figure 4.
Because of the long dissipation time at the large flapping amplitude,
SV2 and TV2, which can be observed for Φ � 40°, have almost
disappeared for Φ � 70° and 80°.

The iso-surfaces of time-averaged velocity uZ in the flow field for
differentΦ cases are shown in Figure 7. The iso-surfaces in gray with
a threshold of uZ � 0.2 indicate the unfavorable upwash for
propulsion, while those in blue with uZ � −0.3 represent the
favorable downwash for propulsion. The upwash is supposed to

be generated by the part of the distorted vortex ring (SV2), which is
labeled in Figure 6. As shown in Figure 7, the downwash
concentrates near the wing at hovering. This is different from the
case with incoming flow, in which the wakes developed into
bifurcated jets [21, 31]. The downwash is distributed under and
on both sides of the wing, while the upwash is mainly concentrated
on both sides of the wing. As Φ increases from 10° to 40°, the
downwash region becomes significantly wider in the Y-axis direction
and longer in the Z-axis direction (Figures 7A–D). The longer
downwash in the vertical direction indicates a larger lift. As Φ
increases further, the width of the downwash keeps increasing, but
the length changes little (Figures 7E–H), so the overall downwash
beneficial for lift generation is basically unchanged. This is
consistent with the results in Figure 4, which shows that the
mean lift increases rapidly first and then stabilizes approximately.
Meanwhile, the upwash on both sides of the wing decreases
continuously. As Φ reaches 80°, the upwash has nearly
disappeared. This is because the distorted part of the vortex wake
(SV2) dissipates faster for largerΦ, which can also be observed in the
circled part in Figure 6.

According to the vortex structures and downwash in Figure 6
and Figure 7, it can be summarized that with the increase in the
flapping amplitude from 10° to 40°, SV and TV on the wing surface
are significantly enhanced, forming a stronger vortex ring to induce
stronger downwash, thus causing a larger lift. As the flapping
amplitude increases further, the vortex wake, as well as the
accompanying downwash, mainly widens in the horizontal
direction, but the strength of the vortex and the downwash in
the vertical direction changes little, resulting in basically no
change in the lift.

3.2 Wake effect

For flapping wings at hovering, the vortices are convected away
from the wing at a very small speed due to the lack of incoming flow.

FIGURE 7
Iso-surfaces of time-averaged velocity uZ thresholded at 0.2 (gray) and -0.3 (blue) of a single wing for different flapping amplitudes Φ (A–H).
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Hence, as a wing decelerates and reverses to start the next stroke, the
wing inevitably captures and interacts with the remaining wake from
the previous stroke. It is necessary to explore the wake effect under
different amplitudes at hovering, which has not been examined for
the jellyfish-like wing motion in previous studies.

The contribution of wake capture to the aerodynamic force is
isolated by comparing the averaged lift force of the first stroke when
the wing starts to flap in a quiescent fluid and the wake effect is
absent, with that of the ninth stroke after the periodic flow field has

been established. The results are shown in Figure 8. It is seen that
with the increase in Φ, the effect of wake capture changes from
reducing lift to increasing lift, and the improvement of lift keeps
increasing (see the solid and dashed black lines with delta symbols).
Also displayed in Figure 8 are the two components of lift contributed
by friction and pressure, respectively. For all Φ considered, whether
there is wake or not, the friction-based lift (denoted as CL(F)) is
always negative, while the pressure-based lift (denoted as CL(P)) is
always positive. The wake effect is to increase CL(P) and decrease
CL(F). As Φ increases, the improvement in CL(P) caused by the wake
effect becomes larger (compare the solid and dashed red lines with
diamond symbols), while the reduction in CL(F) due to the wake
effect becomes smaller (compare the solid and dashed red lines with
gradient symbols). As a result, the combined effect of the wake
becomes larger with the increase in Φ. It should be noted that at
Φ � 10°, the wake effect on CL(P) is negligibly small, but its reduction
effect on CL(F) is much larger, so the wake effect is to decrease CL at
this small flapping amplitude.

Next, we analyzed the case of Φ � 40° in detail to explore the
reason why the pressure-based lift was enlarged by the vortex
wake. Figure 9 shows the spanwise component of vorticity (ωS)
and pressure contours of the wing at the 0.7R section at τ �
0.125 for the first stroke and the ninth stroke. The vortex
structures and the location of the section are also displayed
in the figure to assist the analysis. Compared with the result in
the first stroke, not only the positive pressure on the lower wing
surface in the ninth stroke is larger, but the negative pressure on
the upper wing surface is also lower, which makes the pressure-
based lift larger (see Figures 9A, B).

For the first stroke, only SV3 is generated at this time instant
(Figures 9A, C). In contrast, for the ninth stroke in Figures 9B, D,
besides the newly generated SV3 on the upper wing surface, two edge
vortices (SV2) can be seen on the lower surface of the wing, and they
are part of the vortex ring generated in the preceding stroke
(Figure 9D). The two edge vortices (SV2) or the previous vortex
ring can induce favorable fluid velocity toward the lower surface of
the wing, resulting in higher pressure as shown in Figure 9B.
Furthermore, it is noted that on both edges of the wing, the
vorticity signs of the newly generated vortex and wake vortex are
opposite (Figure 9B). Therefore, as the wing approaches the vortex
wake, narrow channels are formed between SV3 and SV2, which will
accelerate the fluid in the middle and promote the strength of SV3 at
the same time. As a result, larger side-edge vortices (SV3) are
generated on the upper wing surface, resulting in lower pressure.
This wake capture effect is similar to the findings of Birch and
Dickinson [32], and Lua et al. [33]. These findings indicated that the
wake capture can improve the lift of insect wings. However, it is
somewhat different from the study of Wu and Sun [34], which
shows that the vortex wake can reduce the lift of the wing by
generating a downwash.

It has been shown in Figure 6 that with the decrease in flapping
amplitude, the strength of the vortex gets weaker. At Φ � 10°, SV2

and TV2 generated in the preceding stroke are very small
(Figure 6A), so the surface pressure profit is small. Moreover,
because the wing is more vertically placed, the contribution of
the change in surface pressure to the lift can be almost ignored.
At larger Φ, not only does the effective horizontal projection area of
the wing increase, but the stronger SV2 and TV2 also prompt more

FIGURE 8
Variation in the mean lift and the pressure- and friction-based lift
of the wing as a function of the flapping amplitude Φ with/without
wake effect. Subscripts “P” and “F” in the symbols represent the
pressure- and friction-based components of the lift, respectively.
Subscripts “W” and “N” in the symbols represent the cases with and
without wake effect, respectively.

FIGURE 9
Pressure and spanwise vorticity (ωS) contours at the 0.7 R wing
section, as well as the instantaneous vortex structure (Q � 2) of the
wing at t*/T* � 0.125 (A,C) and t*/T* � 4.125 (B,D) (solid and broken
lines indicate positive and negative vorticity, respectively).

Frontiers in Physics frontiersin.org08

Meng et al. 10.3389/fphy.2023.1125205

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1125205


favorable changes in surface pressure, so the effect of the wake
capture on enlarging the CL(P) becomes larger.

The reason for the negative CL(F) is easy to understand. The
flapping wing obtains upward reaction force by driving the fluid to
convect downward. The downward movement of fluid causes a
velocity gradient near the wing surface, which can result in the
negative lift. When there is a vortex wake, the downward velocity
will be enhanced by the downwash, leading to an increase in the
friction force. Thus, the negative friction-based lift becomes smaller
when there is a vortex wake.

3.3 The effect of up-flight speed

By changing the flapping amplitude, the jellyfish-like aircraft can
switch between hovering, ascending, and forward flight states [13].
In this section, we further explored the aerodynamic performance of
a single wing at different up-flight speeds (V, see Figure 1B).
Figure 10 plots the mean lift coefficient CL of the wing flying
upward at V � 0, 0.25V0, 0.50V0, 0.75V0, and 1.00V0,
respectively. It should be noted that V0 is defined as the mean
velocity of the wingtip at Φ � 40°. It is seen that for a specific
ascending speed, CL rises rapidly at first and then tends to be stable
with the increase in flapping amplitude. When the flapping
amplitude is fixed, CL decreases gradually with the increase in
up-flight speed. The smaller the flapping amplitude is, the faster
the CL drops, and even negative average lift values appear in some
cases.

The vortex structures of the wing with different up-flight speeds
at τ � 0 for three cases (Φ � 10°, 40°, and 70°) are shown in
Figure 11. To show more vortex structures, the criterion of Q �
0.5 is used in these images. For Φ � 10° (left column in Figure 11),
the wake under the wing consists of two sets of vortex rings (shed a
vortex ring in each half-cycle). This is similar to the work of
Buchholz and Smits [18] in which a rectangular plate conducting
pitching motion was studied and a series of “horseshoe vortices”was
observed in the wake. With the increase in the up-flight speed, the
vortex street becomes longer. As the vortices convect downward and

dissipate gradually, the vortex ring breaks and forms two separate
branches. When Φ increases to 40°, the vortex rings become larger,
and they are no longer concentrated in the vertical direction but
convect downstream at an oblique angle relative to the wake
centerline. For Φ � 70°, the vortex rings are further enhanced
and the inclination angle becomes larger.

Figure 12 plots the instantaneous lift coefficients and its two
components (CL, CL(P), and CL(F)) of the wing for Φ � 10°, 40°, and
70° cases at different up-flight speeds. AtΦ � 10°, the change inCL(P)

with the increase in V is relatively small (Figure 12B), but CL(F)

obviously decreases (Figure 12C). This leads to the rapid decrease in
CL with the up-flight speed for the Φ � 10° case, as shown in
Figure 12A. The study by Floryan et al. [35] on the heaving or
pitching foils also showed that viscous drag added an approximately
constant negative offset to the thrust coefficient. Our results show
that this constant negative offset increases rapidly with the increase
in the up-flight speed at a very small flapping amplitude.
Considering that the flapping wing is approximately vertical for
the Φ � 10° case, the larger up-flight speed will cause a bigger
velocity gradient in the normal direction at the wing surface,
resulting in a greater frictional force.

When Φ increases to 40° and 70°, CL(F) is essentially unchanged
at different up-flight speeds (Figures 12F, I), while CL(P) decreases
(Figures 12E, H), resulting in the reduction of CLwith the increase in
V. The change in CL(P) is caused by the velocity change in the
incoming flow relative to the wing surface. When the wing moves up
at a certain speed, the lower wing surface will face a lower relative
inflow velocity as the wing flaps downward, while the upper wing
surface will face a higher relative inflow velocity as the wing flaps
upward. This opposite change in the relative inflow velocity can
reduce the magnitude of positive CL(P) at about τ � 0.125 and
increase the magnitude of negative CL(P) at around τ � 0.375
(Figures 12E, H). Since the effective horizontal projection area of
the wing also becomes larger following the increase in the flapping
amplitude, the reduction in CL(P) would be further amplified at
larger Φ.

3.4 The effect of wing–wing interaction

Using the wing-pair model in Section 2.1, we explored the effect
of the aerodynamic interaction between two wings at different
separations (H, see Figure 1B) at the hovering state. The opening
angle θ � 80° and the flapping amplitude Φ � 20° were selected to
ensure that the two wings would parallel with each other at the end
of the downstroke. Here, the process of two wings approaching is
called downstroke, and the process of moving apart is called
upstroke. Figure 13 displays the instantaneous lift and drag
coefficients of the right wing at different wing–wing spacings,
along with those of a single wing for comparison. It is seen that
the magnitudes of the peak and trough of lift and drag of the wing
pair are larger than those of the single wing, and they increase with
the decrease in H. Since the opening angle is now 80°, the setting of
the relative position of the pair of wings in this section is similar to
that of Liu et al. [17] Therefore, the change trends of the forces in
both studies for the symmetric pitching motion are also similar, that
is, the downstroke mainly produces positive lift and the upstroke
produces negative lift (see Figure 3A in Ref. [17]).

FIGURE 10
Variation in the mean lift coefficient CL as a function of the
flapping amplitude Φ of the wing at different up-flight speeds V.
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The flow-field information of two wing-pair cases (H � 0.1 c
and H � 1.2 c) and the single wing case was selected for analysis
and comparison. The pressure distributions and the velocity
vectors in the YOZ plane at τ � 0.125 and τ � 0.75 are plotted
in Figure 14. AtH � 0.1 c, it is seen that as the wings move close to
each other, the fluid between them is “squeezed” and the pressure
significantly increases compared with that of the single wing
(Figures 14A, C), indicating that the larger force is caused by the
squeezed air between the two wings. During the upstroke, the
“moving apart” of the wings in the opposite direction increases
the gap between the wings and creates a larger suction pressure
there (Figures 14B, D). This suction pressure produces a larger
negative lift and drag than that of the single wing to keep the

wings from moving apart. The large aerodynamic forces due to
the wing–wing interaction are also similar to those of wings
conducting clap and fling motion [36, 37]. When the
separation increases to H � 1.2 c (Figures 14E, F), the pressure
and the velocity vectors of the wing pair are not very different
from those of the single wing, leading to almost the same
aerodynamic force of the two cases. It should be noted that a
favorable strong downward jet is generated under the two wings
atH � 0.1 c (Figure 14C), while no jet but downwash is generated
in the other cases. Therefore, we can deduce that when multiple
flapping wings are arranged at the distance of the prototype of the
jellyfish-like aircraft, which is about 1.2c, the wing–wing
interaction is very small.

FIGURE 11
Instantaneous vortical structures visualized by the iso-surface of Q � 0.5 for the wing at V � 0.25V0 (A–C), 0.50V0 (D–F), 0.75V0 (G–I), and 1.00V0

(J–L) for different flapping amplitudes Φ.

Frontiers in Physics frontiersin.org10

Meng et al. 10.3389/fphy.2023.1125205

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1125205


The variation in CL, CP,a, η, and the mean absolute value of the
drag | CD | of the right wing as a function of H is displayed in
Figure 15. It shows that CL, CP,a, and | CD | increases with the
decrease in H, but η has the opposite changing trend. At H � 1.2c,
the average lift is almost the same as that of a single wing, which
indicates that the interference effect between the two wings becomes
negligibly small when H reaches 1.2 c or larger. Compared with the

single wing, CL and | CD | of the wing at H � 0.1 c are increased by
15.5% and 24.7%, respectively, but at the same time, CP,a is enlarged
by 66.3%, resulting in a 30.1% decrease in efficiency. Although
reducing the distance between wings can improve the lift to a certain
extent, it requires more energy consumption and becomes less
efficient, which is not beneficial to the economic flight of this
jellyfish-like flyer. Dewey et al. [38] found a thrust enhancement

FIGURE 12
Instantaneous lift coefficients and its two components (the pressure-based lift and friction-based lift) of the wing for Φ � 10° (A–C), Φ � 40° (D–F),
and Φ � 70° (G–I) at different up-flight speeds V. Subscripts “P” and “F” in the symbols represent the pressure- and friction-based components of the lift,
respectively.

FIGURE 13
Instantaneous (A) lift and (B) drag coefficients of the right wing of the wing pair at different wing–wing separations (H), with the results of the single
wing for comparison.
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of about 70% for the out-of-phase 2D foils in a side-by-side
configuration compared to an isolated foil with no observable
change in the propulsive efficiency. Fang et al. [14] found that
efficiency increased as the wings get closer due to a mirror-image
“ground effect” between the wings. The differences in the results
between our current research and the previous two research studies
may lie in the difference in wing models (2D vs 3D), and/or the
incoming flow settings (with vs without incoming flow).

It is instructive to test our calculation results against biological
observations. For real jellyfish, there are two main mechanisms for

propulsion [39]. One is the jet propulsion mechanism used by the
elongated jellyfish. During the contraction stroke of the elongated
jellyfish, it drives the entire bell and creates a powerful jet in the
subumbrellar cavity. Periodic bell contractions cause the ejected jets
to form a series of uniform vortex rings with the same rotational
direction in the wake. This motion can produce rapid acceleration
and swimming speed but require high energy expenditure. The other
is the “rowing mechanism” used by the oblate jellyfish [40]. For
oblate jellyfish, contractions occur primarily at the bell margin,
which is similar to using paddles (the bell margin) to row a boat (the

FIGURE 14
Pressure contours and the velocity vectors around the wings in the YOZ plane for the (A,B) single wing case, (C,D) H � 0.1c case, and (E,F) H � 1.2c
case at τ � 0.125 and τ � 0.75. H is the distance between two wing roots.

FIGURE 15
Variation in CL , CP,a , η, and the mean absolute value of the drag | CD | of the wing as a function of wing–wing separations (H). The symbol “∞”

indicates the single wing case.
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body). An oblate jellyfish produced periodic vortex wake instead of
strong jets. A train of closely spaced vortex ring pairs was formed in
the wake and convected downstream. This motion was more
efficient in propulsion. For the numerical results in this study,
the velocity fields at H � 0.1 c and H � 1.2 c correspond well to
those of elongated and oblate jellyfish, respectively. At H � 0.1 c,
although wings can gain a larger aerodynamic force and generate a
favorable jet, the efficiency is lower. AtH � 1.2 c, although the force
on the wings is small and no jet is generated, the efficiency is higher.
Therefore, the real jellyfish-like flyer is closer to a simplified rowing
model without the interference effect between multiple wings.

4 Conclusion

By solving the incompressible Navier–Stokes equation, we
numerically investigated the aerodynamic performance of the
flapping wing of the jellyfish-like flyer under some control
parameters, including the flapping amplitude, up-flight speed,
and the spacing of the wing pair. The wake capture effect and
wing–wing interaction were emphasized and discussed. Different
from previous 2Dmodels, the 3Dwingmodel with a shape similar to
that of the jellyfish-like aircraft wing was used in this study.

With the increase in the flapping amplitude, the lift of the wing
first rises rapidly and then becomes approximately stable. As the
flapping amplitude increases from 10° to 40°, the vortices generated
at the wing edge are significantly enhanced, forming an intenser
vortex ring to induce stronger downwash. When the flapping
amplitude increases further, the vortex wake, as well as the
accompanying downwash, mainly widens in the horizontal
direction, but the strength of the vortex and the downwash in
the vertical direction changes little, resulting in basically no
change in lift.

The wake capture effect changes from reducing the lift at Φ �
10° to increasing the lift when Φ is larger than 20°, and with the
increase in Φ, the improvement of lift caused by the vortex wake
keeps increasing. The vortex wake improves the lift mainly by
inducing a larger fluid velocity relative to the lower wing surface
and inducing larger edge vortices on the upper wing surface,
making the positive pressure and suction force on both wing sides
larger.

When the wing has an up-flight speed, the variation in lift with
amplitude is similar to the results at hovering. At a specific Φ, the
mean lift gradually decreases with the increase in up-flight speed. It
is also found that the viscous drag accounts for the reduction in lift at
small flapping amplitude, while the change in surface pressure
dominates the force variation for large flapping amplitude.

The aerodynamic effect of the wing–wing interaction was also
studied. It is found that when the distance between wings is small
enough, the wing–wing interaction can improve the lift of the wing,
but it requires more power consumption and results in lower efficiency,
which is unfavorable to the aircraft. When the wings’ spacing is the same
as that of the prototype of the jellyfish-like flyer, the aerodynamic
interference between multiple wings can be neglected.

The findings in this study may shed some light on further
understanding of the aerodynamics of the jellyfish-like flapping
wing and provide useful insights into the future design of jellyfish-
like aircraft. While the flyer is described as being “jellyfish-like”,
there are some apparent differences between the kinematics of its
wings and that of a jellyfish’s bell. During swimming, jellyfish
contracts and expands the soft deformable bell very
complicatedly, with asymmetries in the contraction and
expansion phases. Therefore, it is necessary to consider the
effects of flexibility and time asymmetry motion while adopting
the 3D wing model, as well as to evaluate the postural stability of the
air vehicle.
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