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Communication networks are used as an important guarantee for information
interaction and efficient collaboration within many fields and systems; however,
under information technology conditions, the destruction of a number of nodes in
a network may have a great impact on the overall operation of the network.
Therefore, it is important to accurately determine the critical nodes in the network
to enhance the network’s resistance to destruction. Combining the characteristic
attributes of the communication network, a node contribution evaluationmatrix is
proposed based on the efficiency matrix, from the perspective of node receiving
information; a node value evaluation matrix is proposed from the perspective of a
node providing information to neighboring nodes, and node importance is
calculated by integrating the evaluation results of the two matrices and the
node’s own attributes. The algorithm is suitable for directed-weighted network
node value evaluation, and the effectiveness and accuracy of the algorithm are
verified by comparing other algorithms for a small-scale network. In further
experimental validation, a hybrid weighted communication network evolution
model based on organizational structured networks is proposed, and networks of
different sizes are generated for experimental simulation. The results show that
when nodes with high importance are removed from the network, they can cause
a rapid decrease in the network efficiency and maximum connectivity, confirming
the accuracy of the algorithm in evaluating the importance of nodes and
identifying critical nodes in the network.
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1 Introduction

Following the rapid development of information technology, communication networks
have become an indispensable and important part of many systems and fields [1, 2]. A
communication network refers to a complex network with topology and specific functions
and is composed of multiple nodes with information transmission functions that are
interconnected by communication links. The communication network is the basis for
information transmission, close collaboration, and efficient cooperation among the
components within the system [3, 4]. Differences in hierarchical relationships, location
effects, and information interaction capabilities of the nodes in a communication network
result in nodes having different values and varying influence on the whole network [5–7].
Evaluating the importance of nodes in communication networks, detecting critical nodes in
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the network, and protecting them are important for improving
networks’ resilience to damage [8].

At present, evaluating the importance of network nodes is
generally based on complex network theory, mainly focusing on
the study of undirected and unweighted networks, while results
from the study of directed-weighted networks are rare [9–13].
The connection between communication network nodes
represents a link for information transmission and defines the
direction of information flow; the strength of information
interaction between nodes; and the connectivity of
communication links, transmission rate, communication
capacity, and other various indicators [14, 15]. This causes
specificity of the connected edges between nodes, which need
to be assigned different weights for consideration; therefore,
evaluation methods in undirected and unweighted networks
cannot be simply applied to communication networks.

[16] proposed the DWCN_NodeRank metric to evaluate the
importance of nodes in directed-weighted networks from the
perspective of information transmission based on the idea of the
PageRank algorithm. However, the algorithm was not well-
distinguished for partial nodes and it converged slowly,
making it difficult to guarantee accuracy. Wang et al. [17]
constructed multiple influence matrices for directed-weighted
networks; however, the algorithm needed to calculate both the
shortest path and the number of path entries between nodes,
making it highly time-consuming, complex, and difficult to apply
to large-scale networks. Ma et al. [3] introduced a mutual
information (MI) algorithm [18] to communication networks
to measure node importance; however, the algorithm did not take
the mutual influence between non-adjacent nodes into account,
while the consideration of edge weights was neglected in the
calculation process and the measured results were unconvincing.
The literature [19–22] used a node importance contribution
matrix and a network efficiency matrix to evaluate the value
of nodes; however, the former only considered the influence
between neighboring nodes, while the latter ignored the
weakening effect of intermediate nodes on information
transmission when considering the interaction between non-
adjacent nodes, and both did not take the directedness of the
network into account.

In this article, complex network theory is used to evaluate the
importance of nodes in communication networks. To address the
problem that most current node importance evaluation
algorithms are not applicable to directed-weighted networks,
we combine the characteristics of communication networks
and, first, complete the construction of a topological model of
a communication network. Second, considering the directedness
of the network, the importance of nodes in the network is divided
into the importance of receiving information from other nodes
and the importance generated by providing information to
adjacent nodes. From the above two different perspectives,
CEM and VEM are proposed to measure the node importance.
Finally, a hybrid weighted communication network evolution
model based on OSN is proposed to determine the characteristics
of communication network hierarchy, and experimental
simulations are performed in the model to verify the
effectiveness of the algorithm.

2 Communication network and its node
importance

2.1 Communication network topology
model construction

In communication networks, information transmission between
nodes occurs both bidirectionally and unidirectionally, and the
weights of two edges in bidirectional communication
transmission may not be the same. Based on this, the
communication network is abstracted as a hybrid weighted
network with both undirected and directed edges [3].

For the convenience of research, the bidirectional link in the
communication network, i.e., the undirected edges in the network, is
transformed into two directed edges with opposite directions, thus
transforming the hybrid weighted network into a directed-weighted
network with only directed edges. The weights of communication
links represent the flow of information transmitted between nodes,
so the principle of similar weights is used [23], i.e., the larger the
weight, the stronger the connection between nodes. On this basis,
the nodes in the network can then be studied using a directed-
weighted network node importance assessment method.

In the directed-weighted network model, G � (V , E,W), where
V � v1, v2,/, vn{ } is the set of nodes in the network, the number of
nodes is n, E � e1, e2,/, em{ } is the set of directed edges with the
number of edgesm,W � (wij)n×n is the edgeweightmatrix, and if there
exists a directed edge pointing fromnode vi to node vj, thenwij denotes
theweight of the edge, and if not, thenwij � 0. The node strength can be
divided into in-strength Sin(i) and out-strength Sout(i). Sin(i) is the sum
of the weights of all edges pointing to node vi, which can be obtained by
summing the ith column ofW and Sout(i) is the sum of the weights of
edges connected from node vi, which can be obtained by summing the
ith row of W . The total strength of the nodes is Si � Sin(i) + Sout(i).
The connectivity of nodes in a network is usually represented by the
adjacency matrix A � (aij)n×n, which can be regarded as a mapping of
the edge weight matrix W . When Wij is not 0, there exists a directed
edge (vi, vj) pointing from vi to vj, then aij � 1, and vice versa, aij � 0.
In a directed network,A is not always a symmetric matrix, i.e., aij is not
necessarily equal to aji. Summing the ith row of the adjacency matrix A
represents the out-degree Dout(i) of node vi and summing the ith
column of A represents the in-degree Din(i) of node vi.

2.2 Related metrics

Based on the network model constructed above and considering
the operational characteristics of the communication network [15,
24, 25], the following definitions are given to measure the individual
nodes in the network as well as the network globally.

2.2.1 Node importance metrics
Metric 1: Node efficiency Ik [15]. The average of the sum of the

inverse of the distances from a node to other nodes in the network
can be calculated as:

Ik � 1
n − 1

∑n
i�1,i ≠ k

1
dki

, (1)
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where dki is the shortest path distance from node vk to node vi. In a
weighted network, the closeness of node connections is measured by
the weights of the edges between nodes, and, based on the principle
of similar weights, the node distance is the minimum value of the
sum of the inverse of the weights of the edges contained in the node
path; the calculation for which is as follows:

dki � min
1

wkj1

+ 1
wj1j2

+/ + 1
wjni

( ), (2)

where j1, j2,/, jn denote the intermediate nodes through the
path from node vk to node vi. If there is no path between nodes vk
and vi, then dki → ∞. Node efficiency reflects the difficulty of
nodes to transmit information to other nodes in the network as
well as the contribution of nodes to network information
transmission. The larger the value of node efficiency, the
greater the role played by nodes in network information
transmission.

Metric 2: DWCN_NodeRank (NR). Zhang et al. [16] proposed
the NR method, an evaluation metric for the importance of nodes in
directed-weighted network; the NR(v) value of a node is calculated
as follows:

NR v( ) � 1 − σ

n
+ σ ∑

vi∈Vin v( )

w vi, v( )
∑ki

j�1w vi, zi( )NR vi( ), (3)

where σ(0< σ < 1) is the damping coefficient, which indicates the
resistance to continue propagation when the information flow
reaches a node. The larger the damping coefficient, the greater
the benefit of the information flow to the node. vi ∈ Vin(v) is the
incoming node of node v. ∑ki

j�1w(vi, zi) denotes the sum of all the
connected edge weights with node vi as the source node, i.e., the out-
strength Sout(i) of node vi.The NR(v) value is calculated by the
iterative method, which is related to the in-degree of the node and
the proportion of the node to the out-strength of the source node;
the larger the NR(v) value, the more important the node is in the
network.

2.2.2 Network global efficiency metrics
Metric 3: Maximum connectivity C [24]. The ratio of the

number of nodes contained in the maximum connected subgraph
to the total number of network nodes in the directed graph network
is called the maximum connectivity, and can be calculated as:

C � max Zi‖ ‖
n

, (4)

where Zi ∈ G denotes a connected subgraph in the network, where a
connected path exists between any nodes in the subgraph. max ‖Zi‖
denotes the number of nodes in the maximum connectivity
subgraph of the network and the maximum connectivity
C ∈ (0, 1] reflects the difficulty of information transmission in
the network. When C � 1 the network is fully connected.

Metric 4: Network efficiency E [25]. The average of the
summation of the inverse of the distances of all nodes in the
network represents the efficiency of the entire network and is
calculated as follows:

E �
∑

i≠j,i,j∈V

1
dij

n n − 1( ) (5)

The higher the efficiency of the network, the smoother the
transmission of information in the network and the stronger the
connectivity of the network.

3 Node importance evaluation method
based on importance evaluation matrix

In complex communication networks, nodes interact with each
other through paths composed of directed edges to complete an
information interaction. The variability of node connectivity in the
network and the fact that the edges connecting nodes have different
weights and directions cause the strength of interaction between
different nodes and their contribution to the overall information
flow efficiency of the network to be strong or weak. The node
importance contribution matrix [20] mainly describes the
contribution of nodes to adjacent nodes without taking the
interaction effects between non-adjacent nodes into account, and
it is only researched for undirected networks. The efficiency matrix
[22] takes the influence of non-adjacent nodes through the shortest
path between nodes into account. However, this method just
considers the influence of the nodes in the shortest path on
network information transmission and only for undirected
networks.

In this article, we believe that the importance of nodes in the
process of information transmission in the network is mainly
reflected in two aspects: one is the contribution value from other
nodes in the network. In a directed network, when there exists a path
from node vi to node vj, information can be transmitted through
node vi to node vj, and node vi can be considered to make a
contribution to node vj. Therefore, the contribution of all nodes in
the network to vj can be used to evaluate the importance of node vj.
However, it is not comprehensive enough to use only the
contribution degree of other nodes as the basis of measurement.
In a directed communication network, there are some nodes which
in-degree are 0, and these nodes do not receive information from
other nodes, such as from some sub-nodes located at the bottom of
the intelligence reconnaissance network. These nodes only transmit
information to the higher-level nodes and do not receive
information from other nodes; all nodes in the network do not
contribute to this node and it is difficult to distinguish the
importance of such nodes by only using the above method [26,
27]. Therefore, we believe that another aspect that reflects the
importance of a node lies in its ability to provide information to
its neighboring nodes. When the amount of information provided
by node vi to its neighboring nodes is greater, the node is more
important.

In this article, CEM and VEM are proposed to measure the value
of nodes in the above two aspects in directed-weighted networks.

4 Node contribution evaluation
matrix (CEM)

For directed-weighted networks, the transmission efficiency
between nodes forms the network efficiency matrix E � (eij)n×n,
where eij � 1

dij
is the information transmission efficiency between

node vi and node vj. The traditional efficiency matrix does not
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consider the influence of intermediate nodes contained in the
information transmission path on the transmission efficiency, so
we redefine the transmission efficiency matrix EN as follows:

EN �
0 e12α

l12 / e1nα
l1n

e21α
l21 0 / e2nα

l2n

..

. ..
.

1 ..
.

en1α
ln1 en2α

ln2 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (6)

where lij is the number of intermediate nodes contained in the
shortest path from node vi to node vj. α(0< α< 1) is the fading rate,
which indicates the amount of information remaining when the
message continues to propagate backward through each
intermediate node. eijαlij is used to denote the transmission
efficiency of information from node vi to node vj. The higher the
transmission efficiency, the smoother the information transmission
from node vi to node vj. Each row of the efficiency matrix EN is
multiplied with the total strength of the corresponding node to
obtain the CEM as follows:

HCEM �
0 e12S1α

l12 / e1nS1α
l1n

e21S2α
l21 0 / e2nS2α

l2n

..

. ..
.

1 ..
.

en1Snα
ln1 en2Snα

ln2 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

where eijSiαlij is the contribution of node vi to node vj, which is
influenced by the strength of the source node and the transmission
efficiency. After obtaining the CEM, the contribution importance of
the node hCEM(j) can be obtained by calculating the contribution of
all nodes in the network as follows:

hCEM j( ) � ∑n
i�1,i ≠ j

eijSiα
lij (8)

A larger value of node hCEM(j) indicates that the more
information node vj receives from other nodes in the network,
the more important the node is.

4.1 Node value evaluation matrix (VEM)

The CEMmeasures the node importance from the point of view
that the node receives contributions from other nodes. In this
section, the node value is measured from the point of view that
the node provides information for its adjacent nodes, and the VEM
is proposed as follows:

HVEM �

0 a12 · w v1, v2( )
Sin 2( ) / a1n · w v1, vn( )

Sin n( )
a21 · w v2, v1( )

Sin 1( ) 0 / a2n · w v2, vn( )
Sin n( )

..

. ..
.

1 ..
.

an1 · w vn, v1( )
Sin 1( ) an2 · w vn, v2( )

Sin 2( ) / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

In this matrix, aij reflects the connection between nodes,
w(vi, vj) denotes the weight of edge (vi, vj), Sin(j) is the in-
strength of node vj. The ratio of the two can represent the
proportion of the information provided by node vi to the

information received by node vj. The higher the ratio is, the
more valuable node vi is to node vj, so the value importance of
node vi can be expressed as:

hVEM i( ) � ∑n
j�1,j ≠ i

aij
w vi, vj( )
Sin j( ) (10)

A higher hVEM(i) value means the node is more valuable to its
adjacent nodes, and the node is more important.

4.2 Evaluation the node importance

CEM and VEMmeasure the importance of nodes from different
perspectives, and obtain the contribution evaluation vector hCEM
and value evaluation vector hVEM. The two vectors are normalized
and the comprehensive importance of the node is determined by
considering the above two measurement methods:

hI � θ · hCEM + 1 − θ( ) · hVEM (11)
Combining Eq. 11–13, the above equation can be expressed as:

hI i( ) � θ · ∑n
j�1,j ≠ i

ejiSjα
lji + 1 − θ( ) · ∑n

j�1,j ≠ i

aij
w vi, vj( )
Sin j( ) , (12)

where θ(0< θ < 1) is an adjustable parameter used to adjust the
proportion of evaluation results based on different methods. CEM
and VEM have different emphases in evaluating the importance of
nodes. The former considers the influence of non-adjacent nodes
and evaluates the importance of nodes from the perspective of nodes
receiving global network information. The latter only considers the
influence of adjacent nodes, and evaluates the importance of nodes
from the perspective of nodes providing information locally to the
network.

After obtaining the comprehensive importance of the node, it is
also necessary to take the node’s own strength information into
consideration in the calculation of the node importance. The
importance of the node vi can be finally expressed as:

I i( ) � hI i( ) · Si (13)

4.3 Algorithm steps and complexity analysis

In a communication network, the most direct form of
information exchange and dissemination exists between
adjacent nodes; however, when the strength of a node and the
efficiency of information transmission are high, this will also
have a greater influence on non-adjacent nodes, which makes the
evaluation results inaccurate if only node importance is evaluated
in terms of nodes receiving or outputting information. Therefore,
this article comprehensively considers the characteristics of the
above two aspects in a directed-weighted network. The
information flow and interaction of the communication
network, CEM, and VEM are proposed. Combining the node
importance obtained by the two matrixes, a comprehensive
evaluation of the node importance is finally realized. The
specific steps of the algorithm are as follows.
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Step 1: Preparation stage. According to the network edge weight
matrix W , the out-strength Sout(i), in-strength Sin(i), and total
strength Si of each node in the network are calculated. Using the
Floyd algorithm, the shortest path length dij between all node pairs
in the network and the number of intermediate nodes lij included
are calculated according to Eq. 2.

Step 2: Constructing CEM and calculating the node contribution
importance. Fill the obtained Si, eij, lij values into the matrix, sum
each column element of the matrix, and then convert it into a
column vector, thereby obtaining the node contribution evaluation
vector hCEM.

Step 3: Constructing VEM and calculating the node value
importance. Fill the elements W and Sin into the corresponding
positions of the matrix and sum up each row of the matrix to obtain
the node value evaluation vector hVEM.

Step 4: Importance integration. Normalize the vectors hCEM and
hVEM and fuse them according to Eq. 11 to obtain the
comprehensive importance vector hI of the node.

Step 5: Node importance calculation. The importance of the node
vi is obtained by multiplying the node strength Si and the node
comprehensive importance hI(i), according to Eq. 13.

The framework chart of the proposed algorithm and a
comparison of the two evaluation methods are shown in
Figure 1.

From the above algorithm steps, the time complexity of the
entire algorithm is mainly concentrated in the calculation of the
node distance in step 1. The time complexity of the Floyd algorithm
is O(n3), so the time complexity of the entire algorithm is O(n3).
Previous studies [19, 20] optimized the design of the Floyd
algorithm to reduce the time complexity of the algorithm to
O(n2), In this article, the improved method in Ref. [20] is
adopted and the final computational complexity of the algorithm
O(n2) is obtained.

5 Experiment analysis

5.1 Algorithm effectiveness analysis

The ARPA (advanced research project agency) network is a
typical network model, which is often used to verify the evaluation
results of the importance of complex networks. As shown in Figure 2
the network has 21 nodes and 26 edges. This article takes the
directed-weighted ARPA network as an example to analyze the
effectiveness of the algorithm employed here. The node deletion
(ND) method, NR method (σ = 0.85) [16], MI method [3], our
algorithm (α = 0.8, θ = 0.7), and only the evaluation results of the
CEMmethod are used for comparison. The experimental results are
shown in Table 1.

From the comparison results in Table 1, the calculation results of
the algorithm in this study have a higher distinguishing effect for
nodes than the NR method and only the CEM method; the above

FIGURE 1
Framework chart of the proposed algorithm and a comparison of the two evaluation methods.
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twomethods have the same evaluation results for 8 nodes with an in-
degree of 0 in the network, especially for the evaluation of nodes 1, 5,
9, and 16. The above four nodes are located in different positions in
the network, and the edge weights of the nodes are different.

However, the NR values of the four nodes and the evaluation
results using only the CEM cannot effectively distinguish them.
Therefore, it is not comprehensive enough to consider the
importance of nodes in directed-weighted communication

FIGURE 2
Directed-weighted network obtained by the ARPA network.

TABLE 1 Results of node importance evaluation in ARPA networks.

ND method NR method MI method CEM method Our algorithm

Node Value Node Value Node Value Node Value Node Value

2 0.2655 19 0.0375 2 3.7744 2 0.4993 2 0.3555

3 0.2598 2 0.0363 14 2.9717 14 0.2202 14 0.1568

14 0.1705 6 0.0278 19 2.5055 3 0.1131 3 0.1057

12 0.1504 12 0.0231 6 2.2741 19 0.0725 19 0.0516

15 0.1449 3 0.0217 9 1.3862 6 0.0289 15 0.0456

19 0.1440 14 0.0208 3 1.0314 12 0.0277 12 0.0353

11 0.0967 7 0.0157 5 0.3285 15 0.0199 1 0.0286

4 0.0950 11 0.0157 21 0.3285 4 0.0037 9 0.0277

6 0.0933 8 0.0101 1 −0.297 7 0.0035 5 0.0230

17 0.0909 10 0.0101 12 −0.3083 11 0.0035 21 0.0230

18 0.0824 15 0.0097 8 −0.6931 20 0.0031 6 0.0205

1 0.0767 4 0.0095 10 −0.6931 8 0.0020 13 0.0175

13 0.0750 20 0.0095 11 −0.6931 10 0.0020 17 0.0153

10 0.0728 1 0.0071 13 −0.7903 1 0 8 0.0152

9 0.0694 5 0.0071 18 −0.9444 5 0 10 0.0152

16 0.0682 9 0.0071 7 −1.0986 9 0 18 0.0150

7 0.0677 13 0.0071 17 −1.2164 13 0 16 0.0111

5 0.0637 16 0.0071 16 −1.8225 16 0 11 0.0111

8 0.0592 17 0.0071 15 −1.8589 17 0 4 0.0096

20 0.0528 18 0.0071 4 −2.0149 18 0 7 0.0082

21 0.0528 21 0.0071 20 −2.1690 21 0 20 0.0072
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network only from the perspective of nodes receiving contributions
from other nodes. Comparing the algorithm in this study with the
evaluation results using only the CEM, the first four nodes with the
highest importance are the same, and they are all nodes 2, 14, 3, and
19. For the node ranked fifth in importance, the CEM considered to
be node 6, and the algorithm in this study considered to be node
15 after the comprehensive VEM. Comparing the evaluation of the
above two nodes by the node deletion method, the importance of
node 15 is obviously better than node 6. Therefore, the algorithm in
this study considers the importance of two aspects of the node,
which not only strengthens the distinction of the algorithm for node
identification, but also makes the evaluation results more accurate.
At the same time, taking the evaluation results of the node deletion
method as a reference, comparing our algorithm with the MI
method, the evaluation result of our algorithm is more relevant
to the node deletion method.

The algorithm based on CEM and VEM measures the importance
of nodes from the two aspects of receiving information and outputting
information. We proved using examples that the algorithm has better

applicability to the directed-weighted network, and the accuracy of
measuring the importance of nodes.

5.2 Further analysis in simulated network

5.2.1 Construction of hybrid weighted
communication network

Most of the real-world communication networks have an
obvious organizational hierarchy [28], such as the combat
command network, which has obvious hierarchical
characteristics between nodes and contains tree skeletons and
implicit connections [29, 30]. Such networks can be classified as
Organizational Structure Networks (OSNs) [31]. In order to
better simulate the hybrid weighted communication network
with organizational structure characteristics, this study
proposes an OSN-based hybrid weighted network evolution
model for the characteristics of the communication network.
The construction process of the model is as follows.

FIGURE 3
Hybrid weighted OSN communication network model (N = 100).

TABLE 2 Distribution of edges in the hybrid weighted network generated by the model.

Skeleton network edges (undirected edge) Implicitly connected Total number of edges

Undirected edge Directed edge

N = 100 198 64 54 316

N = 200 324 98 75 497

N = 300 406 86 93 585

N = 500 634 137 168 939

N = 1000 1218 372 411 2001
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Step 1: Generate nodes and establish a communication network
skeleton with a hierarchical structure. First, add a central node to
the network and randomly generate m (m ∈ [a, b]) nodes under
the central node; the layer of these nodes is 1. Then, take each
node in the first layer as the central node and randomly generate
m nodes below. In this step, the number of layers of generated
nodes is 2 and this process is repeated until the number of
network nodes reaches N.

Step 2: Assign weights to the skeleton network and define the edge
connecting the node and the parent node in the skeleton network as
an undirected edge. The edge weight isw0 · βdi , where β(0< β< 1) is
the weight weakening value and di is the layers of child nodes. The
lower the number of layers the node is in, the more valuable the
connection between the node and the upper-level node; therefore, a
higher weight is given.

Step 3: Generate implicit connections for the skeleton network and
assign edges between nodes according to the probability given by the
following formula:

P i, j( ) � e−
Dij
λ · e−

d2
i
+d2

j
−2( ) 1/

2

ξ (14)
where λ and ξ are adjustable parameters that are used to adjust the
probability of implicit connection andDij is the number of layers of
the common parent node of node vi and node vj. We believe that the

lower layers a node is located in, the more frequent the information
interaction between nodes, and the greater the probability of
generating implicit connections.

Step 4: Determine the direction and weight of implied edges.
The direction of the edge is divided into the following three
cases: i) when di <dj the implied edge points to node vi, ii)
when di � dj the implied edge is an undirected edge, and iii)
when di >dj the implied edge points to node vj. In this study,
we believe that implicit connections are generally directed
from lower-level nodes to upper-level nodes, that is, nodes
with higher layers provide information to nodes with lower
layers and newly generated edges are given weights w2

0 ·
β(di+dj+2).

5.2.2 Simulation experiment analysis
Taking the parameters a � 4, b � 6, λ � 0.8, ξ � 0.8, and β �

0.7 in the above network evolution model, three hybrid weighted
OSN communication network models with N = 100, 200, 300,
500, and 1000 nodes are generated. Figure 3 shows a simulation
network with 100 nodes generated according to the model rules.
The lower the number of node layers in the figure, the larger the
node. Table 2 shows the number of directed and undirected edges
in the three generated networks.

In order to further verify the effectiveness of the algorithm,
according to the ranking results of the importance of the nodes,

FIGURE 4
Maximum connectivity curves of the network after removing nodes according to the ranking results of different algorithms. (A–E) respectively show
the results of five groups of experiments with a network size of 100 to 1000.
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the nodes in the network are deleted in turn, and the changes of
the maximum connectivity C and the network efficiency E of the
network are observed. The NR method (σ = 0.85), the MI
method, and the CEM are also used as comparisons. In
addition to this, we added two different mechanisms of node
importance evaluation algorithms for directed-weighted
networks: the K-Order Propagation Number (WKPN)
algorithm [11] and WVoteRank algorithm [32]. The accuracy
of the different evaluation algorithms was further compared in
OSN networks by the node deletion method. The experimental
results are shown in Figures 4, 5.

As can be seen from Figure 4, removing the nodes in the
network according to the sorting results of the algorithm in this
study (α = 0.8, θ = 0.7) can rapidly decreases the network
connectivity, which has a significant impact on the
transmission of information in the network. Compared with
other algorithms, this algorithm also has certain advantages.
As can be seen from Figure 5, in networks of different scales,
the network efficiency decline curves obtained by our algorithm
can maintain a rapid downward trend in the initial stage,
indicating that after these nodes are removed from the
network, the network will be rapidly destroy.

As shown in Figures 4, 5, the algorithm in this study deletes the
same number of nodes in most cases, which can cause greater
damage to the network. Therefore, using the algorithm in this article,

and considering the importance of the two aspects of the node, the
node can be measured more accurately.

6 Conclusion

In this article, a communication network is abstracted as a
hybrid weighted network for analysis and the CEM and the VEM
are respectively proposed to evaluate the importance of nodes
from the perspective of nodes receiving and output information.
The effectiveness of the algorithm is proved in a small network. A
hybrid weighted network evolution model based on OSN is
proposed to verify the efficacy of the algorithm.

The experimental results show that the algorithm proposed
in this study can better distinguish the nodes in the network and
is more suitable for evaluating the importance of different types
of nodes in a directed network. The validity of the algorithm is
verified in the ARPA network. Compared with other directed-
weighted network node value evaluation algorithms, the
measurement results of the node value of the algorithm in
this study have a higher correlation with the measurement
results based on the ND method, indicating that the
algorithm is more accurate in identifying key nodes in the
network. At the same time, according to the sorting result of
the algorithm in this study, when the node is deleted from the

FIGURE 5
Network efficiency changing curves after removing nodes according to the ranking results of different algorithms. (A–E) respectively show the
results of five groups of experiments with a network size of 100 to 1000.
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OSN-based hybrid weighted network model, the maximum
connectivity and network efficiency drop rapidly, which shows
that the important nodes identified by our algorithm have great
value in the network. Through experimental simulation, the
accuracy of the algorithm in discovering critical nodes in the
network is further verified, which has certain application value
for improving the invulnerability of communication networks.
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