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The integrable Alice—Bob system with the shifted parity and delayed time reversal
is presented through the Lax pair for the (1 + 1)-dimensional Boussinesq equation.
After introducing an extended Backlund transformation, this system shows
abundant exact solutions with the auxiliary functions consisting of hyperbolic
functions or rational functions. The corresponding soliton structures contain line
solitons, breathers, and lumps, all which satisfied the shifted parity and delayed
time-reversal symmetry for the states of Alice A and Bob B. In particular, some
lower-order circumstances can be expressed through their explicit solutions and
their dynamic structures.
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1 Introduction

For one (1 + 1)-dimensional model, except for identity transformation, there are the
shifted parity P; and delayed time-reversal T transformations for the spatial variable x and
time variable ¢, respectively. In other words,

x'=-x+x0=Pox,t' =t +ty =Tyt (1)

with x, and f, being arbitrary constants [1, 2]. However, the Alice-Bob system, which can be
successively used to describe two-place physical problems, may be entangled with each other
through the following relation:

B=fA=4, )

with the §t2ate of AlAice A= A(x,A ) iindAthAe Bob’s state B = B(x', t'); f is a suitable operator
(suchas f =1or f € ® = {1, P, T4, P;T4}) [3-7]. Usually, this intrinsic Alice-Bob system
is non-local since {x’, t'} is far away from {x, t}. However, for one Alice-Bob system, through
the P,T; transformation, there indeed exist some types of multiple soliton structures with
symmetry-breaking solutions according to Lou’s research. In other words, by applying the
operator DT, on one solution S, one can find P,T;S # S.

For an illustrated model, the (1 + 1)-dimensional Boussinesq equation has the following
form:
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1
Wy + Wyx (wZ)Xx - gwxxxx 0) (3)
or
5 1
Wy = —Wxx t+ 2wx + 2Wwy, + gwxxxx: (4)

where wy; = aaTzzw, Wiy = aa—;,w. Eq. 3 is an integrable equation as it
has the following Lax pair:

S (PN S A

I
Y= Gw-Dy+ly,, (6)

and its adjoint version is as follows:

3 3 3
Vo = Z(—I J wydx - wx)u/+ <1— Ew>w’°’ )

Y= o= Dy - Ty, (8)
where I is an imaginary unit.

In non-linear science, this equation is one of the important
prototypic models. It can be used to study the dynamics of thin
inviscid layers with a free surface, the non-linear string, and the
propagation of waves in elastic rods and in the continuum limit of
lattice dynamics or coupled electrical circuits. Multiple complex
soliton solutions through multiple exponential function schemes,
interactions between solitons and cnoidal periodic waves using
the truncated Painlevé expansion method, and soliton solutions
by the extended Kudryashov’s
presented [8-10].

Except for the former works where the physical quantity 412 is

approach can all be

taken directly, we derive the Alice-Bob system of Eq. 3 through its
Lax pair and the dark parameter1zat1on approach [11-13].

After adopting the f = PxTyt symmetry principle through
B= fA Al the Boussinesq Eq. 3 can be induced into the
following Alice-Bob system:

3 1 1
Ay = (AB -A+ EAZ sz> + EAXXXX, 9)
3, 1 1
By = (AB -B+2B*-ZA ) +=Byrrn (10)
2 2 x 3
The corresponding Lax pairs of Eqs 5, 6areas follows:
3 3 3
Wox =7<IJWtdx—Wx)W+<7E—7W>Wx, (11)
4 4 2
I
= Z(4W—E)‘I’+I‘I’xx, (12)
with
Az [ w ov (10
(e (D)
and we can obtain the following coupled equations:
1
Wy + Wy — (wl)xx - gwxxxx =0, (14)
Vit + Vxx — Z(LUV)XX - gvxxxx = 0: (15)

when ¢ = 0. After letting w = A+ B and v = A— B, the non-local
systems (9) and (10) are a direct result from Eqs 14, 15.
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Another method to derive the non-local systems (9) and (10) is
the dark parameterization approach [14-17]. For the coupling
Boussinesq system,

Wigy == Wixx +2 Z(w jxWi-jx t iji—j,xx)
j=0

+7wi,xxxx: (1 = 0,1,2,...,7’1). (16)

3

Wy is the usual solution of Eq. 3; when taking w = u + va (« is a dark
parameter) and n = 1, the coupled equations are as follows:

1
SUxxxx = 0,

Upt + Uy — (uz)xx -3 (17)
and
1
Vit + Vxx — Z(MV)xX - gvxxxx =0. (18)

These equations can directly derive the non-local systems (9) and
(10) through # = A+ Band v = A- B.

The rest of this paper is organized as follows: in Section 2, after
introducing an extended Bécklund transformation, the Hirota
bilinear form is presented through an undetermined function f,
which may contain some soliton solutions for the Alice-Bob systems
(9) and (10) of the (1 + 1)-dimensional Boussinesq Eq. 3. Then, the
hyperbolic function solution and the rational solution for this
system are shown subsequently. In order to illustrate more
clearly, three kinds of explicit solutions and their corresponding
soliton structures are given for the lower-order circumstances. All of
these results satisfy the symmetry of B = P,T;A. A short summary is
given in Section 3.

2 The symmetry-breaking solutions

We first introduce an extended Bicklund transformation:

A=[In(f) +bIn(f), +cln(f),] .
B=[In(f)~bn(f), ~cIn(f),],,

with b and ¢ being two constants; f = f (x, t) is an undetermined

(19)

function and satisfies the following conditions:
f=rf=.

By substituting Eq. 19 into the non-local systems (9) and (10), we
obtain the following bilinear form:

(20)

(D2+D2——D4)(f 1) =0, (21)

where Hirota’s bilinear derivative operators D?, D2 and D? are
written as [18, 19]

"y _(o_2Y(a_2Y ol ¢
Dth (fg) - <ax axl> (at at’) f(x’t) g(x’t )lx':x,t':t'
(22)

Eq. 21 also has the following explicit expression:

ftt_ (3ft+3f _Sffxx+3fxx 4foxxx+ffoXX)~

3f
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FIGURE 1

(A,B) are single soliton structures of Eqs 27, 28, respectively, when the parameters taken as Eq. 29.

2.1 The hyperbolic function solutions and
their soliton structures

Through the bilinear form (21) or Eq. 23, the function f exists in
the following form of the hyperbolic function for the Boussinesq Eq.
3 [4-6].

f=fn= ZKM COSh(iviEi>>Ei = kix + wit,

{v} i=1

V12K 9,82 =1, (24)

where {v} = {y; = +1} and k(i = 1, 2,
constants, and

Sik;
3

w; =
-+, N) are arbitrary

N
Ky = n aij, Gij

i<j

= \/36,6,-\/ (4k; — 3)(4k] — 3) — 24K — 36vwkik; — 24k +9,

(25)

where (i, j = 1, 2, -, N, i # j).
When N = 1, Eq. 24 has the following simple form:

f=cosh(&), & =kix+wtw = %\uzkf -9, 8? =1. (26)

After substituting this form into the Bicklund transformation (19),
the non-local solution of Eqs 9, 10 can be derived as follows:

A = -2k3[(bk, + cw;)tanh (£,) — 1]sech’ (£)), (27)
B =2k [(bk, + cw;)tanh (&) + 1]sech® (&)). (28)

This single-soliton solution satisfies the condition of PTy symmetry
B = fA = A(-x,-t). By introducing Eq. 26, the Alice-Bob system is
the coupling form of two solitary waves. The two solitary waves move
along the X-axis at the speed ~ 12579; the direction is determined by &),
and the amplitude and wave width are determined by k;, b, and ¢, which

is also confirmed by Eqs 27, 28. Figure 1 shows this structure when the
related parameters are taken as follows:

3
Czl,klzi,élzl,wlzl. (29)

When N = 2, Eq. 24 becomes as follows:

Frontiers in Physics

f =Ky cosh[(k; + ky)x + (w1 + wy)t]

+ Ky cosh[(ky — k2)x + (w; — wy)t], (30)
with
K = \jsalfsz\/ (4K} — 3) (4K2 - 3) — 24K} + 36k K, — 24K + 9,
(31)

Ky = \/35152 (4K} — 3) (4K5 - 3) — 24K} — 36k, k, — 24K + 9.
(32)

The corresponding two-soliton solution can be obtained by
substituting Eq. 30 with Eqs 31, 32 into Eq. 19. From the
perspective of algebra, it is natural to consider the simplification of
the function of Eq. 30 by quantifying the double variables of the
hyperbolic function into single variables, that is, k; = +k,, w; = +w,.
These four cases may produce the corresponding soliton or breather
solutions for the Alice-Bob system, respectively. Two typical cases are
presented here for N = 2. Figure 2 presents this structure when the
related parameters are taken through the real constants as follows:

b=1, c=1Lk=1,k=16=1686=-1w = ?,wz = —?.
(33)

Therefore,

Ko = V6L, Ky = V78I, f = V6l cosh (2x) + V78I cosh(?t).
(34)

It is not difficult to find that Eq. 34 is coupled by two hyperbolic
functions similar to Eq. 26, and its image also shows this
phenomenon.

On the other hand, by restricting the parameters ki, k, to the
assumed units on the two-soliton solution, the breather can be
obtained. For example, by setting the following parameters

21 21
b=1, C=1,k1=1,k2=1,61=1,82=—1,wl=—g,a.)2=g,
(35)

the following equation can be derived:

2vV21
Ky = V42,Kyyy = V114, f = V42 cos (2x) + \/114cosh<T\/_t>.

(36)
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FIGURE 2
(A,B) are the two-soliton structures of the Alice-Bob systems (9) and (10), respectively through Eq. 19 after selecting the conditions are Eqs 33, 34.
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FIGURE 3
Breather structures of the Alice—Bob system (9) and (10) through Eq. 19 after selecting the conditions are Egs 35, 36. (C,D) are the corresponding
sectional plots of (A,B) at t =0, respectively.

Here, the cosine part of Eq. 36 makes the Alice-Bob system periodic, and \l W 5 5
the corresponding breather structure is obtained, as shown in Figure 3. Koy = 3818/ (4k] — 3) (4k; = 3) - 24k, — 36kik; — 24k, +9,

When N = 3, Eq. 24 has the following more complicated \j[36,6;\/(4kf Z3) (4k2 - 3) — 24K + 36k, k; — 24Kk +9][36263\/ (42 — 3) (42 - 3) — 24K2 - 36k, — 24K +9],
situation:
_ [(112 2 2 2
f =K{O} COSh (gl + 52 + 53) + K{l} C()Sh (El _ 52 _ 53) K{3] = 3\]8162 (4k1 - 3) (4k2 - 3) - 24k1 + 36k1k2 - 24k2 + 9,
(37)
+ Ky cosh (& = &, + &) + Kizy cosh (§; + &, - &3), \/[33,53\/(4& = 3) (4K - 3) — 24k - 36k, ks — 245 + 9] 38,0, (4K - 3) (4K — 3) — 2016 - 36kok, — 24k + 9],

with
Ky = 3\]6162\/ (4K% - 3) (4K2 - 3) — 24k + 36k, k, — 24K + 9,

d:k;
& = kix + wit,w; = ——[12k> 9,6 = 1(i = 1,2,3).
\j[aa,s,\/(4k§ Z3) (4k2 — 3) - 24K? + 36k Ky — 24K2 + 9][36263\/(4k§ Z3) (4k2 - 3) — 24K + 36k, &, — 24K +9}, 3

Ky = 3\/51 8,4/ (4k? - 3) (4k2 - 3) — 24k> — 36k, ky — 24k +9 Based on the selecting parameters b, ¢, k;, k,, §;, and &, of Eqs 33,

35, two kinds of interactions for the solitons can be constructed by

and

\j[sa, 83\ (42 = 3) (4K — 3) - 24K} — 36k, K, - 24K + 9] [35,63 V(4K = 3) (48 - 3) - 24K + 36k, - 24K + 9}, considering the following equation:
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FIGURE 4

(A,B) are the interaction structures of three solitons for the Alice—Bob systems (9) and (10) through Eq. 42. (C,D) are the corresponding density plots

of (A,B), respectively.

11 11138
ky=—0;=1w3=——, 38
3 10 3 w3 150 (38)
and
3 34/2
k3:5,63:1,w327\/_. (39)

For this time, Ky3(i = 0, 1, 2, 3) are expressed as follows:

__ovuel /17296578 — 2316600+/461
fop = 25 1 = 25 >
V17296578 + 2316600+/461 63+/65941
Ky = 2 Ky =——5—  (40)
5 25
and
K = 3[\/21 (~233+13V697) —[21(233 + 13\/697)1],
Ky = 31/114(415 - 36V42),
Ky = 31114 (415 + 36V42),
(41)

K = 3[\/21(—233 +13V697) +21(233 + 13\/@)1].

The corresponding functions of Eq. 37 are expressed as follows:

31 11138
f =Kcosh{ —x+——+-t
10 150
11 2v3  11v138
+K; cosh| ——x + i— t
10 3 150

Frontiers in Physics

11 24/3 114138
+Kp cosh| —x +( —+ t
10 3 150

9 11v138
—K cosh| —x + t),
10 150

(42)
and

f= 6[\/21 (233 + 13697 sin(2x)sinh<%x + ¥t>

)
+6421(~233 + 13697 ) cos(2x)cosh<§x + %t)

2

342 2421

3
+34/114 (415 + 36 V42 )cosh Sx+ <T - T)t
3 3v2  2v21
+34/114 (415 — 36 V42 )cosh Sx+ (T\/_ - T)t .

(43)

Figure 4 and Figure 5 show two interaction structures of the
Alice-Bob systems (9) and (10) through Eqs 42, 43.

2.2 The rational solutions and lump
structures

The Alice-Bob systems (9) and (10) have a series of rational

solutions and hence contain the corresponding lump structures. For
this purpose, we introduce the following polynomial function:
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FIGURE 5

(A,B) are the interaction structures between the breather and one-soliton structures for the Alice—Bob systems (9) and (10) through Eq. 43. (C,D) are
the corresponding density plots of (A,B), respectively.

FIGURE 6
(A,B) are two lump structures of A and B from Eqgs 47, 48. (C,D) are the corresponding density plots of (A,B), respectively.

INWNHD[ m When N = 1, Eq. 44 has the following simple form:
f=fv= ) [Z @jx? ("“f)tzj:|, (44)
m=0 =0 f =ago +ag, x> +ap,t. (45)
where  aj,,(j=0,1,2,...,m, m=0,12.., N(N+1),N= When
1,2,-+) are constants determined by the powers of the variables
x and ¢t [20, 21]. b=c=apy=ap=a; =1, (46)
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FIGURE 7
(A,B) are two pairs of lumps for the Alice—Bob systems (9) and (10) through Egs 19, 49, 50. (C,D) are the corresponding density plots of (A,B),
respectively.

FIGURE 8
(A,B) are lump structures of A and B from Eqgs 9, 10 through Egs 19, 51, and 52. (C,D) are the corresponding density plots of (A,B), respectively.

the lump solution of the Alice-Bob systems (9) and (10) has the = which is obtained through the Béicklund transformation (19)
following rational form: (Figure 6).

2(1-6x -2t + 2 422 + 6 — 61>~ 26 — X' + 1) When N = 2, Eq. 44 has the following function form:

(1+x%+2)°
2 (14 6x + 2t + 27 — 2x° — 6%t + 6x12 + 2% — x* + 1) (48) f =aog + a0 x> + agax* + agsx® + anit? + a Xt + apxtt
- (1 +x2 + t2)3 ? + a2,2t4 + a2,3x2t4 + ﬂ3>3t6.

A

B (49)
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A pair of lumps of A and B for the Alice-Bob systems (9) and
(10) can be shown after the constants are taken as b = c = ag o = 1, just
as Eq. 46, while

1 3 9 19 54 27
ao1 = —gx Ao = ?5: ao3 = @Jll,l = —gmh,z = ﬁ>al,3 = @,
57 27 9
ayp = @, ay3 = @, ass = @ (50)

These two pairs of lumps for the Alice-Bob systems (9) and (10)
through Eq. 19, Eq. 49, and Eq. 50 are shown in Figure 7.
When N = 3, Eq. 44 has the more complicated function form:

f = oo + ao1x” + agux" + ag3x’ + agux® + apsx'® + agex" +ay,
+ al,zxzt2 + a1,3x4t2 + al,pcst2 + al,sxgtz + alﬁxwt2 + az,zt4
+ a2,3x2t4 + a2,4x4t4 + a2,5x6t4 + a2,6x8t4 + a3,3t5 + a3,4x2t6
+ a3,5x4t6 + a3,6x6t6 + a4,4t8 + a4,5x2t8 + a4,6x4t8 + a5,5t1°
+ as,sxztw + a“tu.

(51)

The lumps of A and B for the Alice-Bob systems (9) and (10) can
also be constructed after the constants b = ¢ = ay = 1; therefore, the
following equations are obtained:

18 135 324 2187
g1 = —0gy = —— 0g3 = ,Agg = ,
ST T T 84777 T 46585 T 3587045
4374 6561
aos = > Aoe = )
17935225 878826025
2610 486 43740 55404
an = M= S 43 = yA14 = >
847 9317 717409 3587045
301806 39366
A5 = o i A6~ Shaon i
175765205 878826025
361287 2916 156006 8748
ayp = 523 = A4 = a5 = >
717409 717409 5021863 2282665
19683
LN R e ————
175765205
1849068 67068 638604
ass = > A34 = >, A35 = >
25109315 2282665 175765205
26244
ase = To o LA
175765205
632043 249318 19683
44 = o5 = > A4 = >
175765205 175765205 175765205
126846 39366 6561
a55 = “Coonras 456 = > 66 = . (52)
878826025 878826025 878826025

These lump structures of the Alice-Bob systems (9) and (10)
obtained through Eqs 19, 51, and 52 are shown in Figure 8.

3 Summary

In this paper, according to the (1 + 1)-dimensional
Boussinesq Eq. 3, the Alice-Bob systems (9) and (10) for
this equation are first derived through the Lax pair and the
dark parameterization approach. This non-local system owns
the bilinear form and may exist in the explicit solution.
Therefore, the N-soliton solutions of the Alice-Bob systems
(9) and (10) are presented with the aid of an undetermined
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extended Backlund
transformation. Typically, the auxiliary function can be

function f after introducing an
taken as the hyperbolic function or rational function. These
two kinds of functions induce the system having solutions that
satisfy B = P.T,A. The lower-order circumstances for N=1, 2, 3
are presented through their auxiliary functions, and the
symmetry-breaking solutions can be constructed. With the
special parameters, the antisymmetric local structures are
depicted, which contain line solitons, breathers, and lumps.
Whether the induced Alice-Bob systems (9) and (10) of the (1 +
1)-dimensional Boussinesq Eq. 3 or the derived results through
the hyperbolic and rational functions satisfy the symmetry of
B=PT4A is first shown here for our understanding. We
believe that this important to
Alice-Bob system for one integrable equation, which may
possess rich local structures.

approach is solve the
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