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The use ofmobile phone call detail records and device location data for the calling
patterns, movements, and social contacts of individuals, have proven to be
valuable for devising models and understanding of their mobility and behaviour
patterns. In this study we investigate weighted exposure networks of human daily
activities in the capital region of Finland as a proxy for contacts between postal
code areas during the pre-pandemic year 2019 and pandemic years 2020,
2021 and early 2022. We investigate the suitability of gravity and radiation type
models for reconstructing the exposure networks based on geo-spatial and
population mobility information. For this we use a mobile phone dataset of
aggregated daily visits from a postal code area to cellphone grid locations, and
treat it as a bipartite network to create weighted one mode projections using a
weighted co-occurrence function. We fit a classical gravity model and a radiation
model to the averaged weekly and yearly projection networks with geo-spatial
and socioeconomic variables of the postal code areas and their populations. We
also consider an extended gravity type model comprising of additional postal area
information such as distance via public transportation and population density. The
results show that the co-occurrence of human activities, or exposure, between
postal code areas follows both the gravity and radiation type interactions, once
fitted to the empirical network. The effects of the pandemic beginning in 2020 can
be observed as a decrease of the overall activity as well as of the exposure of the
projected networks. These effects can also be observed in the network structure
as changes towards lower clustering and higher assortativity. Evaluating the
parameters of the fitted models over time shows on average a shift towards a
higher exposure of areas in closer proximity as well as a higher exposure towards
areas with larger population. In general, the results show that the postal code level
networks changed to be more proximity weighted after the pandemic began,
following the government imposed non-pharmaceutical interventions, with
differences based on the geo-spatial and socioeconomic structure of the areas.
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1 Introduction

Studies on human mobility using large scale and longitudinal datasets from real world
systems are useful for understanding human behaviour, designing techno-social systems, as
well as forecasting different crisis scenarios like pandemics. Alongside with improved
methods for obtaining novel data from mobile phones or other digital devices, human
mobility as long range migration and short range trips has been an active field of research.
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The use of mobile phone records data, social media data and other
mobile applications has made it possible to capture large and
longitudinal datasets of human locations, trajectories and
behavioural patterns [1–3]. This data has motivated the
modelling of various aspects of human mobility, such as patterns
of their behaviour and trajectories [4, 5], co-locations [6, 7], agent-
based systems [8–11], and migration [3, 12–16]. Networks are
naturally useful for modelling and analysing mobility patterns, as
the locations and trips, or entities and social ties, can be considered
as nodes and edges, respectively (e.g., [17]). Networks of
telecommunication and proximity have shown characteristic
structural properties being present in human networks, such as
small-worldness and the presence of communities [18].

Over the years numerous studies have demonstrated the
relationship between the mobility and distance, such that the
number of trips between two locations has a negative correlation
with the distance between them. Similarly, when modelling the
mobility between two regions, the population sizes have been shown
to correlate with the number of trips between the said locations [15,
19]. These gravity type models, inspired by Newton’s law of gravity,
have also been applied to communications [19], social connections
and trade [20]. Another commonly used model for describing
human mobility is the radiation model, which considers the
number of opportunities as the distance variable such that the
number of opportunities within the radius of the distance
between two locations denominates the probability of an action
to another point [21]. Such models have been utilized to describe the
use of services, job seeking and migrating. It should also be noted
that there are numerous other external variables affecting the human
mobility in addition to the commonly used population sizes and
distances, such as available means and cost of transportation or
government imposed restrictions [22, 23].

With the emergence of the SARS-CoV-2 pandemic in Finland
in early 2020, the authorities imposed non-pharmaceutical
interventions (NPIs) in order to contain the spread of the virus
and keep the demand for healthcare and hospitalisations on a
sustainable level [24]. This global pandemic sparked vast
interest in studying different models of epidemic spreading [25]
and efficiency of strategies regarding the restrictions [26, 27] as
data on human behaviour, epidemiological outcomes and NPIs
became available from numerous sources. The NPIs included
such methods as social distancing [28], contact tracing [29] as
well as restrictions like school closings and remote work guidelines
[27, 30], which affect the overall daily behaviour of people,
should they comply with them. In addition to the restrictions
imposed by the government, the self-imposed social distancing
of health-aware people had an effect on their mobility as well as on
the spread of the virus. The changes in human mobility and
behaviour, caused by restrictions or general awareness, and
their effects on the spreading of the virus have been studied at
the level of countries [31–34] and at a more microscopic level
such as cities and grids [35–38]. Worth noticing is that the
dynamics of epidemic spreading have been shown to be more
complex than just the contacts caused by activity [39] and the
estimated epidemiological effects of different NPIs have been
shown to be model dependent [40].

Yet, utilizing mobile phones as sources of mobility and contact
data for researchers and decision makers is highly necessary [41,

42]. The data obtainable from mobile phones ranges from call
detail records (CDR) and GPS traces from applications to
Bluetooth-based proximity capturing. While the most
commonly used data source for human mobility has been the
CDR data, many studies have used the activity-type or location
aggregated data from companies such as SafeGraph, Google, Apple
or Meta (see [7, 31–33, 37, 43, 44]) to estimate the effect of mobility
in various countries and regions on the spread of COVID-19 and
on NPIs. For instance, Fritz and Kauermann [44] investigated the
effects of the co-location rates and friendship networks on the
epidemiological outcomes in Germany using mobility data from
Facebook users. The authors utilized regression models to
investigate the connection of mobility, social ties and the spread
of the virus. From the analysis, the authors found that the co-
location of an area was the primary aspect in the transmission rate
of disease, reinforcing the importance of restrictions limiting
mobility between areas. In addition to the mobility and
transportation, there are density, demographic, environment
and infrastructure related factors that have been shown to have
significance in the spreading of the virus (see [45]), such as the
population size and population density of urban areas [46, 47] or
household size [48].

In this study we investigate the human behaviour before and
during the COVID-19 pandemic in Finland using the daily
activities as a proxy for estimating the possible contacts
between the populations living in different postal code areas.
The overarching objective of this study is to use modelling to
show large scale changes in exposure induced by human mobility
during the pandemic using postal area level networks. Our first
research objective is to use the aggregated daily activity data for
creating models of possible exposure networks (or contact
networks). The second objective is to quantify the changes in
this system during the first 2 years of the pandemic in comparison
to the preceding prepandemic year 2019. Finally, we aim to show a
relationship between the government imposed NPIs and the
exposure networks, using data from the Oxford COVID-19
Government Response Tracker (OxCGRT) [49].

In contrast to previous studies utilizing mobility and short term
activity data, in this study we seek to obtain new insight to the
relationship between the activity and NPIs by using postal code and
cell grid level activity data with daily time resolution from a type of
dataset that is not commonly used. This data contains more micro
level activity than the community level reports used in some studies,
but less information than the individual mobility traces used in some
other studies such as [7]. The data we use is obtained from Telia, a
telecommunications company operating in Finland, and it contains
aggregated daily activity data of mobile phone users. Similar data has
been used in other studies such as [21, 38, 50, 51], but not in the
same type of modeling paradigm. The methodology of using gravity
and radiation type models for predicting the movement of people
between two areas with varying population, number and diversity of
services [52] has been investigated with different datasets of CDR or
GPS locations in the form of origin-destination networks [53, 54].
Our study considers a bidirectional relationship between postal code
areas, where the populations in these areas do not require visiting the
other’s geographical area to form an edge. Thus, the bidirectional
edges represent the interaction of exposure in a broader setting than
directed trips between an origin area and a destination area.
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The rest of the manuscript is divided into four sections,
Methods, Results, Discussion, and Conclusions. First, we present
the daily activity data along with the pre-processing steps done to
make the data into sets of networks for periods of time. From these
networks we construct two types of models, a gravity-type model
and a radiation-type model, by using postal code area level data. In
the Results section we present the findings on the fitting of the two
classical models and the changes in the resulting networks over the
course of years 2019–2021. In the Discussion section we consider the
implications of our findings and discuss potential future research. In
the Conclusions section we present overall concluding remarks.

2 Materials and methods

In this section, we describe the empirical dataset and explain the
construction of the weighted bipartite projections, the measures
used to investigate the temporal changes in the network and finally
the proposed model for predicting the likelihood of social
connections between areas using geospatial and socioeconomic
information.

2.1 Data

The data used in this study is obtained from Telia, the second
largest telecommunications company operating in Finland with a
≈ 30% market share. This data, called “Crowd Insights” [55],
contains aggregated human activities for each day in the format
of home and grid location matrix. In this study we define an activity
as a temporary stay in a location during a given day. The data is
based on the phone location calculated from the signal to the cell
towers and the data is extrapolated by the company from the
population of customers to represent the whole population. We
make the assumption that the observations from the population
were done uniformly. The difference to the CDR data is that in order
to record an activity, the user does not need to perform an
interaction such as a call. Thus the data is not event-driven, but
“sightings data” [41]. Each mobile phone user’s home location is
marked with its postal code area, where the user stayed longest
before 9 am, i.e., the place the user woke up in the morning. The
activity of each user is recorded if the user spent at least 20 min
during the day in that particular grid location. This data is then
anonymised and aggregated for each postal code area, thus
generating a matrix where during 1 day a postal code area has an
amount of visits or mobile activities to each grid cell. The grid was
defined by the telecom areas, ranging in size from 0.5 by 0.5–2 by
2 km depending on the density of users in the area. In order to
protect the privacy of less populated areas, activities with less than
5 people are redacted from the dataset. As the data is aggregated, we
are not considering the explicit flow of people between two areas or
the trajectories of individual users. The dataset contains the activities
during the periods 1.1.2019–23.9.2019 and 1.2.2020–31.3.2022, with
some days being removed due to low signal quality. For reducing the
possible inaccuracy caused by the incomplete yearly sets and the
seasonal trends therein, we create uniformly sized subsets where
each date is contained in the set of each year. By filtering these

subsets, we obtain 219 dates for each year from 2019 to 2021. These
subsets are referenced as yearly sets in this manuscript.

In this study we consider a subset of the data by choosing only
the activities that are both stemming from and occurring within the
capital area of Finland, meaning the municipalities of Helsinki,
Vantaa, Espoo and Kauniainen. In other words, an accepted activity
is performed by a person waking up in the chosen geographical area
and performing the activity in the grids of the area. Thus, we
consider the capital area as a separate subsystem from the rest of
the country, even though the data contains people moving in and out
of the system. Postal code areas in the chosen geographical area are
highly populated, but also smaller in size than the average postal
code areas in the country.

Filtering the data results in 167 postal code areas as home areas
and 1444 grids as the areas for performing mobile activities. This
data can be presented as a bipartite network, where for each day we
consider the home areas and grid areas as separate classes of nodes
and the links are the number of people who have performed the
mobile activity. In the scope of this paper, we are investigating the
difference in human behavior during the years 2019–2022 by
constructing networks of the postal areas and analyzing it at the
graph level using various time windows for the activity aggregation.
The aim is to use the commonalities between activities of various
areas as a proxy for contact as well as functional activities such as
work and thus form a network of connected postal areas.

In addition to the activity data, we use socioeconomic data on
the same postal code area level as variables in the model. The data
is obtained from Statistics Finland [56] and is openly available. In
this study we are not considering the changes in the socioeconomic
values for each postal code area as the changes can be considered to
be minor during the timespan of the study and the reporting of
postal code areas changes between the years in the Statistics
Finland data. As the final source of information we use the
OxCGRT dataset [49] for obtaining a numerical index on the
level of mobility and other activity related restrictions in Finland
during the pandemic.

For the analysis of the daily contact networks between the postal
code areas we calculate a set of graph theoretical properties with the
intention of observing changes and quantify some of the
characteristics of the networks. Daily population activities follow
a weekly schedule as well as public holidays and holiday periods,
resulting in relatively high variance throughout the year. We address
this by analyzing the network properties on daily networks as
moving averages as well as networks aggregated as averages of 7-
day periods or as years. The dataset contains gaps, namely, the time
between 24.09.2019 and 31.01.2020, which we address by comparing
only the common dates during each year when doing comparisons
between the years. Otherwise these empty periods of time are
visualized as discontinuities.

For measuring the changes in the network and reinforcing the
reasoning behind the models, we calculate the average clustering
coefficient, assortativity of degree correlations and weighted degree
distributions. Then we compare the resulting weighted networks to
the distances and population sizes used in Eq. 2 and Eq. 3 without
fitting the data beforehand. For the calculation of the average
clustering coefficient and the degree assortativity we utilize the
NetworkX library [57] in Python 3.7.
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2.2 Models

In this section we describe first the process of constructing the
networks of exposure from human mobility using the above
described empirical data and then fitting two types of models to
simulate the interactions between postal code areas, i.e., the nodes of
the network. We use the edges of these projected networks for fitting
a gravity type model and a radiation type model using postal code
level population data. The changes in the structure of these networks
over time are analysed using standard graph theoretical measures.

2.2.1 Bipartite network projection
The temporal activity data forms a bipartite network in the form

of an adjacency matrix A of size 167 × 1444, where each postal area
(row) has a number of activities in each geolocated grid (column).
From this matrix we calculate a weighted one mode projection by
defining the edge weight functionWi,j for the postal code areas i and
j as the sum of products over each grid cell:

Wi,j t( ) � ∑
g

wg
i t( )∑zw
z
i t( )

wg
j t( )∑zw
z
j t( ), (1)

where wg
a(t) is the number of activities, i.e., people visiting the grid

cell g from the postal code area a at time t and the denominator is the
sum of all activities from the corresponding postal code area. The
multiplication ensures that both postal code areas, i and j, have
activity in the particular grid cell during that day. The weightWi,j is
bounded between 0 and 1, where 0 would indicate no co-occurring
activities and value 1 would indicate full co-occurrence to a single
grid cell, e. g., as depicted in Figure 1. A small value indicates a low
probability for picking a random activity from each postal code area
such that both of the activities were performed in the same grid cell.
This way we obtain a weighted projection between the postal code
areas that can be used as a proxy for contacts between the postal code
areas. Examples of the edge weight function are illustrated in
Figure 1. Using this method for the duration of the empirical
data we obtain S = 1031 daily networks, in which the nodes are
the only permanent structure.

We make two assumptions when considering these projections
as exposure between postal code areas. First we assume that all the

grids are weighted uniformly, i.e., the grid size is not considered. We
justify this with the fact that the vast majority of activities taking
place in the grids with the smallest size and the largest grid cells are
mostly recreational areas such as parks. Also, as the privacy of the
mobile phone users is preserved by omitting activities made by less
than 5 persons from a postal code area during the day, the effect of
these less active grid locations is not significant. Secondly, we make
the assumption that the activities to a grid are uniformly spread
throughout the day across the postal code areas, i.e., the active
population does not change during the day.

2.2.2 Modelling networks of exposure
The main research goal of this paper is to create a characteristic

model for predicting and understanding the resulting bipartite
network projections (Eq. 1) that represent the contacts between
the postal code areas due to the co-occurrence of individual mobile
activities or mobilities. For this we use two classical models: a
gravity-type model and a radiation-type model [8, 11, 19, 21]. In
case of the gravity-type model, we consider the exposure between
populations in two postal code areas, fg (i, j) = Wi,j, to be to
dependent increasingly on the size of the two populations and
decayingly on the distance between them, as follows

fg i, j( ) � C
pi ·pj( )Bp
dBd
i,j

, (2)

where C is a constant, B is the parameter specific exponent, pi and pj
are the population variables of the postal code areas i and j, and di,j is
the “crow-flight” distance between the centroids of the land areas
(excluding waters) of these postal areas, measured in meters. This is
an assumption since the population is not evenly distributed and the
real world distances can be longer due to the transportation
infrastructure. As in literature we consider our gravity-type
model symmetrical, i.e., the exposure or the individual mobility
is the same from i to j as from j to i.

The second model we evaluate with the empirical networks (Eq.
1) is based on the radiation-type models, which in general are
formulated as directed interactions. However, for the problem of this
study we consider the interactions symmetrical as in the gravity-type
model introduced above. The model is based on the notion of

FIGURE 1
Two examples of the weighted exposure network construction for three example postal code areas, red, blue and green. The first example consists
of only one grid area and the second has 2 grid areas. Both examples assume no other activities. Each person represents one activity (i.e., a visit) from the
respective postal code area to the grid area connected by an arrow. The 3 nodes represent the corresponding projection with edge weights illustrated
next to the edges and calculated using Eq. 1.
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number of possible opportunities within the radius equal to the
distance between two areas centered on the source area. Here the
radiation model for exposure, fr (i, j) =Wi,j, is constructed using the
following modified form of the standard model:

fr(i, j) � (pi ·pj)Bp
[(pi + rdi,j)·(pj + rdj,i)·(pi + rdi,j + pj)·(pi + rdj,i + pj)]Br ,

(3)

where rdi,j is the sum of population variable within the radius di,j
from the area i excluding the populations in areas i and j, and B is
the parameter used for fitting the model to the data. The
population variable under radius, rdi,j, was obtained by
calculating the fraction of the area under the radius di,j for each
postal code area and multiplying each population variable by the
fraction of area covered. Here it is assumed that the population,
services or workplaces are evenly distributed. We use this
approximation due to lack of more detailed data. Prior to
fitting the models, we filter out the postal code areas with less
than 500 inhabitants, which from our empirical dataset removes
only seven areas that are mostly uninhabited industrial zones.

Both the gravity and radiation type models are fitted to the
weights of the edges of the empirical 7-day average networks and

the yearly average networks with a linear regression utilizing
ordinary least squares (OLS) for obtaining the parameter values.
To use a linear regression model we change the models in
logarithmic form such that the gravity type model is of the form

log Wi,j t( )( ) � Bp ·log pi ·pj( ) − Bd ·log di,j( ) (4)
while the radiation type model is of the form

log(Wi,j(t)) � Bp ·log(pi ·pj) − Br ·log[(pi + rdi,j)·(pj + rdj,i)·(pi + rdi,j + pj)·(pi + rdj,i + pj)]. (5)

The statistics of the fitted exponents (Bp, Bp, Bd, Br) are shown in
Table 1 and in Figure 5 the values are visualized over the time period
of our dataset.

After fitting and evaluating the gravity and radiation models, we
investigate whether combining additional geospatial and population
level variables to the gravity type model would give a better estimate of
the edges of the network. These additional variables were chosen by
evaluating the edges with largest error. The chosen variables are the
population density, obtained from the socioeconomic Statistics Finland
dataset [56], and a simple distance via public transportation (i.e., train
and metro). The distance via public transportation was obtained by
using the geographical coordinates of each train and metro station and

TABLE 1 The fitted coefficients for the yearly average networks. The means are obtained by fitting the models for the full yearly averaged networks with postal
code areas of population less than 500 being removed from the network. The number in brackets is the standard error for the coefficient. SMAPE and RMSE
measure the error of the fitted model and lower number indicates a better fit.

2019 2020 2021

Gravity C 0.4949 (±8.3*10–2) 1.7864 (±9.2*10–2) 1.9716 (±9.8*10–2)

Bp 0.0212 (±4.0*10–3) 0.0316 (±4.0*10–3) 0.0575 (±4.0*10–3)

Bd 0.3913 (±2.0*10–3) 0.4980 (±3.0*10–3) 0.5412 (±3.0*10–3)

SMAPE 0.1618 0.1788 0.1891

RMSE 1.331*10–3 1.337*10–3 1.398*10–3

R2 0.6 0.665 0.674

Radiation C −0.9098 (±8.8*10–2) 0.3904 (±9.5*10–2) 0.4898 (±0.102)

Bp 0.0608 (±4.0*10–3) 0.0816 (±4.0*10–3) 0.1117 (±4.0*10–3)

Br 0.1256 (±1.0*10–3) 0.1672 (±1.0*10–3) 0.1824 (±1.0*10–3)

SMAPE 0.1810 0.1937 0.2055

RMSE 1.145*10–3 1.358*10–3 1.401*10–3

R2 0.5 0.605 0.618

E.Gravity C 0.8885 (±0.083) 2.513 (±0.0965) 2.7746 (±0.103)

Bp −0.0605 (±4.0*10–3) −0.0092 (±5.0*10–3) 0.0190 (±5.0*10–3)

Bp̂ 0.0855 (±3.0*10–3) 0.0382 (±3.0*10–3) 0.0352 (±3.0*10–3)

Bd 0.4774 (±9.0*10–3) 0.7085 (±0.01) 0.7815 (±0.011)

Bd̂ 0.4774 (±9.0*10–3) 0.3331 (±0.011) 0.3532 (±0.012)

SMAPE 0.1465 0.1684 0.1804

RMSE 1.240*10–3 1.297*10–3 1.364*10–3

R2 0.668 0.697 0.703
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their interconnections within the four municipalities. For each pair of
postal code areas we calculate the distance from the centre of the area to
the nearest station and then calculate the shortest path length via public
transportation between the corresponding nearest stations. In the case
both areas have the same nearest station, the distance is set as the
distance between the two area centres. The final form of this extended
model fe (i, j) is as follows

fe i, j( ) � C
pi ·pj( )Bp · p̂i ·p̂j( )Bp̂

dBd
i,j ·d̂

Bd̂
i,j

, (6)

where p̂ is the population density and d̂ is the distance via public
transport. The extendedmodel was fitted similarly to Eq. 4 and Eq. 5.

3 Results

In this section, we will construct the projected empirical
networks, analyze them in terms of general attributes and
their time-dependent structural changes as well as fit the
above introduced three models to the data. In total, the
dataset contains 1031 days of individual mobile activities in
the original grid cells which we project to daily postal area
level weighted exposure networks using the formula in Eq. 1.
The aggregated networks were constructed such that each edge
weight was the mean of the corresponding edge within the chosen
time frame. The weekly averaged networks were constructed as 7-
day consecutive bins and the yearly averaged networks are

FIGURE 2
Proportional percentage difference of the total activity in the empirical bipartite networks (A) and of the average edge weight in projected exposure
networks (B) between the overlapping dates for the years 2020 and 2021 to the pre-pandemic year 2019 as 7-daymoving averages. The differences to the
pre-pandemic year are more pronounced in the projected exposure networks (panel B) than in the total activity (panel A) and show less fluctuations
throughout the overlapping dates. The change in panel B indicates a topological change in the bipartite network, i.e., the places people visit. Self-
loops were excluded from the projected exposure networks.

FIGURE 3
7-day moving averages of measures of the projected networks during the yearly overlapping dates in the dataset: (A) Average weighted clustering
coefficient ( �C) as proportional difference to the same time in the year 2019, (B) weighted degree assortativity correlation coefficient. The networks in
both (A) and (B) are filtered by edge weight to have the 90-percentile of edges based on edge weight. The results indicate changes in the topology of the
exposure networks, namely, in the edges between nodes of lowweighted degree and high degree hubs, such as the postal code areas located in the
proximity of central locations. This can be seen in the disassortativity during the pre-pandemic year changing towards assortativity during the pandemic.
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constructed using overlapping dates during the years 2019,
2020 and 2021 in the data (dates from 01.02. and 23.09.).
With this binning we obtained 146 weekly networks and the
yearly overlapping dates contain 219 days, which were used in the
aggregated yearly networks.

In Figure 2 the total daily activity and the average edge weight
of the pandemic years 2020 and 2021 are visualized in
comparison to the same dates during pre-pandemic year
2019 as a moving average. Both these measures show
similarities in terms of the overall difference to the pre-
pandemic year. Both the seasonality and public holidays can
be seen as peaks in the overall activity, whereas the same peaks
are not as prominent in the average edge weight. Also worth
noticing is the proportional difference, as the total activity at
points exceeds the 2019 level, the average edge weight does not.
Comparing the time series of the activity measure and the average
edge weight to the average containment index from the NPI
dataset [49] shows a negative correlation as would be expected if
the population is compliant or epidemic aware. Interestingly the
correlation for the average edge weight is stronger than for the
total activity, as indicated by the correlation coefficients ≈ − 0.76
and ≈ − 0.56, respectively. The correlation coefficient between the
same measures is ≈ 0.72. All correlation coefficients are shown in
Table 2. The resulting aggregated yearly networks and the related
weighted degree and edge weight distributions are shown in
Figure 4. As can be expected from the proportional
comparisons in Figure 2, the means of the distributions shift
towards 0 during the pandemic. The highest weighted degree
becomes also lower, i.e., ≈ 0.873 to ≈ 0.622 and ≈ 0.603. For
clarity of visualization, the yearly networks are depicted using
the four strongest edges for each node with the node width and
colour representing the weight in Figure 4. A visually noticeable
difference is the decrease in the number of longer distance edges
to the geographical center (central Helsinki) taking place after
2019. Utilizing the Clauset-Newman-Moore greedy modularity

maximization [58] for clustering the postal code areas to
communities in the aggregated yearly networks using the 95-
percentile of the edges based on weight shows that the number of
detected communities declines from 16 during pre-pandemic
2019 to 4 and 5 during pandemic 2020 and 2021.

Next we measure the average clustering coefficient and degree
assortativity in the filtered 90-percentile graphs. The time series
are shown in Figure 3. The proportional difference in the
weighted average clustering coefficient in Figure 3A shows
similar change as the average edge weight. The Pearson
weighted degree assortativity, depicted in Figure 3B, increases
during the pandemic, which indicates that the edges in the
filtered aggregate networks during the pandemic are more
often found between postal code areas with similar weighted
degree. This effect can also be seen in the network visualizations
in Figure 4, where the strongest edges are no longer between the
central area and areas further from it. Also, this correlates with
the notion of larger communities detected during the pandemic.
The result remains uniform when replacing the edge weight with
1 in the filtered network.

3.1 Evaluating the models

For the performance evaluation of our three models we first fit
them to the aggregated yearly networks with the empirical data.
Then we perform the evaluation by calculating the errors using
symmetric mean absolute percentage errors (SMAPE) and root
mean squared error (RMSE):

RMSE �
�������������∑n Wf −Wo( )2

n

√
, SMAPE � 1

n
∑n Wf −Wo

∣∣∣∣ ∣∣∣∣
Wf

∣∣∣∣ ∣∣∣∣ + Wo| |,

where n is the number of edges,Wf is the predicted edge weight and
Wo is the observed edge weight. The results for the fitted exponents
and errors are shown in Table 1. The predicted values obtained for
the radiation, gravity, and extended gravity models are plotted
against the observed values for the year 2019, depicted in Figures
5A–C, respectively. As anticipated by the correlations to the unfitted
models, the gravity model performs better than the radiation model
in predicting the edge weights and the extended gravity model
performs the best. Same can be seen in the models’ R2 values, which
indicate the proportion of variance explained by the variables. All
the three models have R2 values over ≥ 0.5 in 2019 with interestingly
an increase during the pandemic years. The difference in
proportional error (SMAPE) between the three models remains
consistent in all three aggregated yearly networks. The values of
RMSE show that in the pre-pandemic year 2019 the radiation model
shows the lowest error, but in the subsequent years the error shows
an increasing trend for all three models. The error metrics over time
for the weekly networks are shown in Supplementary Figure S2.

The fits of the models in Figure 5 illustrate the error. All three
models overestimate the weakest edges and underestimate the
strongest edges with varying magnitude, the radiation model
having the largest error. While the absolute values between fitted
exponents of the samemodel are not comparable due to the different
units in the variables, the proportional differences show changes in

TABLE 2 Correlation coefficients between weekly networks, NPI indices and
fitted model parameters. �W is the mean edge weight and ∑i∑gw

g
i is the total

activity in the unprocessed bipartite network. Themean NPI stringency score is
calculated from the subindices as described in Section 3.1.

Variable �W NPIc

Data �W −0.8235

∑i∑gw
g
i 0.7146 −0.6682

Gravity Bp −0.9206 0.6997

Bd −0.9859 0.8299

Radiation Bp −0.9474 0.7358

Br −0.9851 0.8436

E.Gravity Bp −0.9710 0.8118

Bp̂ 0.9052 −0.8147

Bd −0.9736 0.8267

Bd̂ −0.1005 0.0989
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the aggregated networks. The exponents of gravity model indicates a
larger significance on the exponent for population Bp after 2019 as it
increases in proportion to the distance exponent Bd. The distance
exponent shows the previously discussed weakening of longer
distance edges by increasing with each year. The fitted exponents
of the radiation model show a similar change with the increasing
weight of Bp. The exponent for population within radius, Br,
increases but not in proportion to Bp. When including the
population density in the extended gravity model, the fitted
population size exponent becomes negative in 2019 and increases
during the pandemic while Bp̂ decreases. Bd increases similar to the
basic gravity model, decreasing the weight of long distance edges.
The exponent for the distance via public transportation, Bd̂ remains
in the same order of similar magnitude throughout the 3 years,
i.e., from prepandemic 2019 till pandemic 2020 and 2021.

After fitting and analyzing the yearly aggregated networks, we
investigate the full duration of our dataset with the weekly
aggregated networks. The fitted exponents over the course of
the dataset are shown in Figure 5. The gravity model over time
shows the two exponents Bd and Bp behaving similarly, while their
relative difference changes. Similar shape can be seen in the case of
radiation model but with more extreme relative changes. In the
case of the extended gravity model the two additional variables
show a negative relationship to exponents of the basic gravity
model. The point in time when the exponent Bp becomes positive
can be seen to occur at the beginning of the pandemic. Comparing
the fitted exponents to the average edge weight over time shows
high correlations as can be expected. Consequently, most of the
exponents share a high correlation to the NPI restriction index.
The outliers in terms of the correlation strength is the added

FIGURE 4
The yearly projected networks with the mean edge weights for the years 2019 (A–C), 2020 (D–F) and 2021 (G–I). In sub-figures A, D and G the
network is shown as 90th percentile of the edges filtered by edge weight. The width and colour depict the weight of the edge and the node size depicts
the weighted degree. The histograms in sub-figures B, E and H depict the weighted degree distribution of each yearly network. The histogram has 20 bins
and the red vertical line depicts the mean. The rightmost histogram depicts the distribution of edge weights. The networks show that during the
pandemic years the edges between the nodes in the city center and the nodes in in the surrounding areas are reconfigured to nodes in closer proximity of
each area. For instance, the postal code areas in the upper right corner are more connected within themselves in 2021 when comparing to the pre-
pandemic year 2019. The weighted degree and the average edge weight distributions can be seen to shift towards 0 during the pandemic.
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variable d̂ in the extended gravity model. These correlations are
listed in Table 2.

In order to investigate the effects of particular types of NPIs on
the extended gravity model coefficients over time, we fit the 9 sub-
indices related to the restriction stringency in the OxCGRT dataset
[49] to each of the fitted exponents (Bp, Bd, Bp̂ and Bd̂) of our
extended gravity model (6) using an OLS regression, where the
dependent variable is a model exponent and the independent
variables are the set of stringency subindex scores:

Bi t( ) � C + βH1 ·SH1 t( ) +/ + βC8EV ·SC8EV t( ), (7)
where Bi(t) is the corresponding exponent from the extended gravity
model at time t, βi is the coefficient for the corresponding NPI index
Si and Si(t) is the stringency subindex score at time t. The NPI
stringency subindices fitted to these exponents are: H1 Public
information campaigns, C1M School closing, C2M Workplace
closing, C3M Cancel public events, C4M Restrictions on
gatherings, C5M Close public transport, C6M Stay at home
requirements, C7M Restrictions on internal movement and
C8EV International travel controls. The stringency subindex
scores with values between 0 (no restrictions) and 100 (the most

stringent restrictions) are calculated from the OxCGRT data as
instructed by the authors. For details on computing the subindex
score, see equation 2 in the article by Hale et al; [49]. To match the
weekly aggregation of the fitted exponents, we consider each weekly
data point as the average stringency subindex score. The results
show varying coefficients and p-values for each different NPI sub-
index depending on the exponent they were fitted to. Across the four
models fitted extended model’s exponents, the stringency subindex
for restrictions on gatherings has a constantly low p-value and
standard error. In case of school and workplace closures,
restrictions on internal movement and cancellation of public
events also show significant p-values (< 0.05). In addition, the
closures on public transport have an effect on Bd̂, as expected.
The predicted values of each of the exponents of our extended
gravity model are shown in Supplementary Figure S3 and the related
coefficients in Supplementary Table S1.

Finally, comparing the predicted networks to the corresponding
observed networks reveals the lacking aspect of gravity and radiation
type models in the context of networks. The previously discussed
errors and model fits indicate that the models capture the aspect of
exposure between postal code areas. This can also be seen when

FIGURE 5
Fitting of the aggregated networks to the 3models. (A–C) The predictedmodel values plotted against the observed empirical values for the network
of 2019. Each point denotes an edge in the network and the straight line indicates the perfect fit. Points closer to the line have smaller error and points
above the line are overestimates and vice versa. The points are visualized also in equally sized bins, depicting themean (dot), the 25th percentile (box) and
the 95th percentile (line connected to box). The colour of the box is green if the 95th percentile contains the perfect fit to the observed data (straight
line). The rest of models fitted to aggregated yearly networks are shown Supplementary Figure S1 in Supplementary Material. (D–F) The fitted model
exponents for the whole duration of the data with 7-day aggregated networks. The vertical line denotes the missing data between 24 September
2019 and 31 January 2020. The fitting of the models in panels A–C shows that each of the models overestimate the low weight edges and underestimate
the edges with high weight. The extended gravity model in panel C has the best fit and smallest error. The fitted coefficients over the whole dataset in
panels D–F can be seen to remain stable during the pre-pandemic year 2019 and change as the pandemic begins. The increase in the coefficient for
distance (Bd) indicates that edges between postal code areas further apart have a lower weight during the pandemic.
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comparing the average edge weights of the predicted networks and
observed ones, as the differences between the two values are of the
order of 10–14. However, a difference arises when comparing the
average weighted clustering coefficient and the average weighted
degree assortativity coefficient. The model produces networks with
higher assortativity and clustering than observed in the empirical
networks.

4 Discussion

In Finland the SARS-CoV-2 pandemic started in early
2020 having a visible effect on the activities of the population
like their mobility, due to the government-imposed restrictions
and self-imposed social distancing. This can be seen in Figure 2
as a reduction in the overall activity in the bipartite networks and as
a significant reduction in the average edge weight in the projected
exposure networks during the pandemic. Notably, we can see that
higher level of activity does not explicitly mean higher exposure
between the postal code areas as implied by the Spearman
correlation between the two values being ≈ 0.621 with p-value
< 0.01. Comparing the overall activity and edge weight to the
NPIs in the form of an index, we see that the average edge
weight has a higher correlation to the NPI stringency index than
the activity has (−0.824 and −0.668). High correlation to the NPI
stringency index could be seen as high compliance to the restrictions
as well as general awareness of the public, resulting in lesser
exposure. Moreover, the lesser amount of fluctuations, seasonal
or other, in the average edge weight and the related fitted
exponents of the models hint that the underlying behaviour
remains stable during “normal” pre-pandemic times but changes
once the restrictions are imposed. The changes in the network
attributes such as assortativity depict the reorganization where
instead of having more exposure to hubs of high weighted
degree, the exposure is distributed more evenly across the postal
code areas, as the assortativity shifts towards positive values. Similar
trend can be seen in the weighted clustering coefficient, shifting to
lower values when the pandemic sets on.

The proposed applications of gravity and radiation type
models are shown to be sufficient in estimating the exposure
between the postal code areas, with the application of gravity
type model performing better than the radiation type model. As
can be expected, the prediction error decreases once the gravity
model is fitted with additional variables of population density,
p̂, and public transport distance d̂i,j. In addition to changing
exponent weights, the error also increases with increasing
restrictions on human mobility (see Supplementary Figure
S2). While the error values can be seen to increase, also the
R2 values show an increase, which we suspect being caused by a
higher number of extreme outliers. Fitting the models over the
full duration of our data shows that the exponents (Figure 5)
correlate with the average edge weight as well as the NPI index.
These changes in the exponents can be interpreted as shifting
weight between distance and population size. Interestingly, in
the extended gravity model the exponents for population size
and population density show an anti-phase like behaviour. The
significance of higher population size and density in resulting to
higher exposure in the models shares similarities to the results

of the studies considering urban scaling and COVID-19, where
the contact rate of the virus was shown to scale with population
size and density in urban areas [46, 47]. In both gravity type
models, the weight for longer distances decreases (see Table 1),
which we also confirmed manually from the empirical data. The
distances larger than the nearest vicinity show a comprehensive
reduction and the longest distances remain at the low level. Of
this finding the government imposed restrictions and guidelines
such as social distancing and remote work could explain the
lower weight for long distance edges as people eligible for
remote working would not be commuting. Temporary
closures of restaurants and other services can also have a
similar effect as the number of trips decreases [59]. The
results in both projected networks and in the fitted model
exponents showed a high correlation with the general NPI
stringency index, and when fitting the series of exponents of
the extended gravity model to the subcategories of restrictions
we see that certain restrictions affect certain exponents more
than others. The coarse model in itself provides an estimate
where the extended gravity model’s exponents would be given a
certain set of restrictions. As mentioned before, using such
exponents for the model yields a good estimate for the mean
edge weight, but overestimates the network properties when
compared to the observed networks.

The independent variables used in the extended gravity model,
namely, population size, distance, population density and distance
via public transport, share similarities and thus we tested for multi-
collinearity by using the variance inflation factors (see
Supplementary Table S2). In the extended gravity model the
variance inflation factors were found to be within acceptable
bounds, i.e., in the range from 1.65 to 3.02, and indicating a
moderate level of correlation. The exposure networks set certain
limitations to the models applied. First of all the models cannot
estimate the “self-loops” in the network as the distance in the
denominator would be zero. However, the weight of these self-
loops can be obtained from formula 1. We have included a
visualization similar to Figure 3 of these self-loops over the
duration of the dataset in the Supplementary Material of this
manuscript (see Supplementary Figure S4). Similar to the average
exposure (see Figure 2B) these values show a relative change when
the pandemic begins, compared to the corresponding time in 2019.
Interestingly, the trend is opposite, indicating that the probability of
picking two activities from a postal code area increases as the
exposure to other areas decreases due to people visiting fewer
individual places and having less activity in general. In the
visualized distributions of yearly aggregated self-loop weight the
weights can be seen to shift towards higher exposure. Secondly, the
exposure networks impose the limitation of using certain models.
The values of exposure are bound between 0 and 1 and thus other
regression models, such as generalized linear models like Poisson
regression, commonly used for count variables are not readily
applicable without transformations that are dependent on the
data and as such lose interpretability. Testing the models with
Breusch-Pagan test showed that heteroskedasticity is present in
the three models. The formulation of the three models does not
permit the inclusion of zero observations. Conceptually, in a
network these zero observations mean that the corresponding
edge does not exist. However, the number of such observations
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in the data is low. The yearly aggregated networks contain 4, 11 and
9 zero observations for the years 2019, 2020 and 2021, respectively,
out of the 13,861 possible edges.

The mobile phone location based dataset used in this study has
two limitations that could cause some inaccuracies. Firstly, the data
defines the home location of each person as the postal code area in
which the person stayed longest before 9 a.m., i.e., the place the
person woke up in the morning. This definition could misplace
some groups of people like those staying in hotels, which could
cause fluctuations in the number of activities per capita especially
in the pre-pandemic times. Also, people working in night shifts
would be misplaced during the working days. Secondly, the
additional protection of individual privacy by filtering activities
with less than five individuals from a postal code area creates
inaccuracies in the projected networks, which is why in fitting the
models we filter out the postal code areas with population less than
500. This filtering removes seven postal code areas, including three
industrial areas with population sizes of less than 200, two sparsely
populated areas with populations less than 270, a hospital, and a
military area.

The dataset provides a comprehensive view of the population
activities on daily aggregation level, but lacks in terms of temporal
co-occurrence within the day. Datasets such as the one created by
Iyer et al. [7] consider the aspect of co-occurrence of events within a
minute of time. The usage of GPS traces also make it possible to
consider uniformly sized grids, whereas the data used in our study
contained grids of different size based on the location of telephone
masts. The heterogeneous grid sizes as well as daily aggregation of
the dataset can lead to some overestimation of the exposure in terms
of people being in relative proximity at the same time, e.g., being able
to transmit an infection. Similar overestimation can also be
considered in urban areas, where the real life exposure is
depending also on the two people being in the same room or
building. While these are the limitations, the data being in an
aggregate form can be considered to better protect the privacy of
individual users.

The design of this study considered an area-wise limited
system of people living in 4 municipalities in the capital yet
most populated area of Finland. The limitation can cause
inaccuracies with the radiation model in areas located in the
outskirts of the investigated area, as the variable of people living
within the radius (rdi,j) is not considering the populations outside
of the system. For the radiation model, the values for rdi,j were
also calculated such that the distribution of population was
assumed to be even across the postal code area. Another
assumption was made for the population size data, as we only
consider the numbers recorded in 2019. The changes between the
beginning and the end of our dataset were not large enough to
significantly change the results of the model. Due to this, we are
not considering factors such as influx of new inhabitants or
outflow of people to other municipalities. A potential
limitation and inaccuracy arises from calculation of distances
between postal code areas. The assumption of having the geo-
spatial center of each postal code area the point of calculation
disregards the population density and distribution within the
area, which results in some level of error in distances especially
between postal code areas sharing borders. Also, in reality the
distances between postal code areas are not the same as the

calculated crow-flight distances, in which case a more realistic
measure could be the travel time. Considering the travel time
between locations would most likely improve the model, but such
data would add to the model complexity as the travel time can
vary due to, e.g., road closures or constructions and public
transportation changes. Moreover, an average travel time
weighted with the means of travel available to the local
population could improve the results.

In the future we aim to conduct further analysis on the empirical
dataset in terms of the time series of exposure and the
socioeconomic aspects of each postal code area. Also, a detailed
analysis of the NPI effects is warranted [59]. Intuitively, the method
of constructing a weighted projection network based on data of daily
visits to a set of locations and using the resulting links as a proxy for
contact could be used in modelling spreading processes between the
postal code areas with compartmental SEIRS-type models [25,
60–62].

5 Conclusion

Mobile phone based datasets have been shown to provide
novel insights into human mobility and their social interactions.
In this paper we have investigated the use of aggregated mobile
phone location data as a source for gaining insight into the
exposure between populations living in different postal code
areas using co-occurring visits to mobile phone grid locations
as a proxy. People visiting the same cellphone grid areas form a
bipartite network, which we project using Eq. 1 resulting in a fully
connected network with edge weights between 0 and 1. The
resulting empirical networks show the changes in exposure
stemming from co-occurring activities between pre-pandemic
and pandemic times shifting towards lower clustering, higher
assortativity and lower weight for edges with longer distances
between populations and to higher populated areas. These
changes along with high correlation with the NPI-indices
reflect the adherence to government imposed restrictions,
remote work as well as self-imposed social distancing of aware
individuals. We showed that the weights of the exposure can be
modelled using gravity and radiation type models with
population variables and distances between the postal code
areas. The simplistic models yield promising results at the
level of average edge weights, but are found to be lacking in
reproducing the assortativity and clustering of the empirical
networks. Lastly, we conducted a brief investigation on
modelling exposure for the whole duration of our dataset
using the different NPI sub-categories for calculating the
exponents of our best performing gravity model, showing a
varying degree of weight for the NPI sub-categories depending
on the gravity model exponent.
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