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Analytical expressions for scaling of brain wave spectra derived from the general
non-linear wave Hamiltonian form show excellent agreement with experimental
“neuronal avalanche” data. The theory of the weakly evanescent non-linear brain
wave dynamics reveals the underlying collective processes hidden behind the
phenomenological statistical description of the neuronal avalanches and
connects together the whole range of brain activity states, from oscillatory
wave-like modes, to neuronal avalanches, to incoherent spiking, showing that
the neuronal avalanches are just the manifestation of the different non-linear side
of wave processes abundant in cortical tissue. In a more broad way these results
show that a system of wave modes interacting through all possible combinations
of the third order non-linear terms described by a general wave Hamiltonian
necessarily produces anharmonic wave modes with temporal and spatial scaling
properties that follow scale free power laws. To the best of our knowledge this has
never been reported in the physical literature and may be applicable to many
physical systems that involve wave processes and not just to neuronal avalanches.
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1 Introduction

The complexity of oscillatory and wave patterns across a wide range of spatial and
temporal scales of brain activity results in multiple independent models for these activity
patterns. The standard view of brain electromagnetic activity classifies this activity into two
significant but essentially independent classes. The first class includes a variety of the
oscillatory and wave-like patterns that show relatively high level of coherence across a wide
range of spatial and temporal scales [3]. The second class focusses on the asynchronous,
seemingly incoherent spiking activity at scales of a single neuron and often uses various ad
hoc neuron models [4–8] to describe this activity. Linking these two seemingly disparate
classes to explain the emergence of oscillatory rhythms from incoherent activity is essential
to understanding brain function and is typically posed in the form using the construct of
networks of incoherently spiking neurons [9–11].

Coherent macroscopic behavior arising from seemingly incoherent microscopic
processes naturally suggests the influence of critical phenomena, a potential model from
brain activity that was bolstered by the experimental discovery of the “neuronal avalanches”
[12, 13] where both spatial and temporal distributions of spontaneous propagating neuronal
activity in 2D cortex slices were shown to follow scale-free power laws. This discovery has
generated significant interest in the role and the importance of criticality in brain activity
[14–20]. Crucial events, as a manifestation of criticality, have been discussed in [21] using
Diffusion Entropy Analysis [22]. It was also hypothesized that an existence of crucial events
facilitates information transmission in various states of brain functioning [23, 24].
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Although the precise neuronal mechanisms leading to the
observed scale-free avalanche behavior is still uncertain after
almost 20 years since their discovery, the commonly agreed upon
paradigm is that this collective neuronal avalanche activity
represents a unique and specialized pattern of brain activity that
exists somewhere between the oscillatory, wave-like coherent
activity and the asynchronous and incoherent spiking. Central to
this claim of neuronal avalanches as a unique brain phenomena is
that they do not show either wave-like propagation or synchrony at
short scales, and thus constitute a new mode of network activity [12,
13] that can be phenomenologically described using the ideas of the
self-organized criticality [25, 26], and extended to the mean-field
theory of the self-organized branching processes (SOBP) [27–29].

However, despite the success of the SOBP theory in describing
neuronal avalanche statistical properties, i.e., replicating the power
law exponents based on the criticality considerations, the SOBP
theory provides no explanation about the physical mechanisms of
the critical behavior and its relationship to the development of the
observed collective neuronal “avalanche” behavior. Because similar
statistics can result from several mechanisms other than critical
dynamics [30–32], it is essential to have a physical model that
explains the relationship between the statistical properties and the
existence, if any, of critical neural phenomena arising from the
actual collective behavior of neuronal populations. While it is
generally accepted in that some form of critical phenomena is at
work, this has led to the presupposition of ad hoc descriptive models
[33–36] that exhibit critical behavior, but provide no insight into the
actual physical mechanisms that might produce such critical
dynamics. It has been suggested that the brain can be at the edge
of a synchronization phase transition [36–38], but the usual
agreement is that avalanches belong to the mean-field directed
percolation universality class, which does not seem to be
compatible with a synchronization transition, as synchronization
transitions do not fulfill spatial correlations observed in
experiments, and the exponents tend to differ from directed
percolation ones [20].

In this paper we show that the above important observational
phenomenon, the so-called “neuronal avalanches”, which have
been noted and studied for almost 2 decades, can be naturally
explained by the wave activity model. Our recently described
theory of weakly evanescent brain waves (WETCOW) originally
developed in [1, 2] and then reformulated in a general
Hamiltonian framework [39] provides a physical theory, based
on the propagation of electromagnetic fields through the highly
complex geometry of inhomogeneous and anisotropic domain of
real brain tissues, that explains the broad range of observed
seemingly disparate brain wave characteristics. This theory
produces a set of non-linear equations for both the temporal
and spatial evolution of brain wave modes that includes all
possible non-linear interaction between propagating modes at
multiple spatial and temporal scales and degrees of non-linearity.
This theory bridges the gap between the two seemingly unrelated
spiking and wave “camps” as the generated wave dynamics
includes the complete spectra of brain activity ranging from
incoherent asynchronous spatial or temporal spiking events, to
coherent wave-like propagating modes in either temporal or
spatial domains, to collectively synchronized spiking of
multiple temporal or spatial modes.

We further demonstrate that the origin of these “avalanche”
properties emerges directly from the same theory that produces this
wide range of activity and does not require one to posit the existence
of either new brain activity states, nor construct analogies between
brain activity and ad hoc generic “sandpile” models. Both temporal
and spatial scaling expressions analytically derived from non-linear
amplitude/phase evolutionary equations show excellent agreement
with the experimental neural avalanche probability spectra
reproducing not only general average power law exponent values
and falloffs in the vicinity of the critical point, but also finding some
very subtle but nevertheless clearly experimentally evident fine
details, like bumps in the transition region at the edge of the
power leg of the spatial probability spectra. Overall, the
quantitative theoretical analysis presented in the paper clearly
shows the relevance of the wave Hamiltonian framework to the
neuronal avalanche dynamics and suggests that instead of relying on
clever but ad hoc analogies between live brain tissues and lifeless
loose sand piles often used to construct a phenomenological
statistical description of the scaling exponents, both the origin of
the critical phenomena and the physics behind the neuronal
avalanches can be understood from the same non-linear wave
dynamics that is responsible for the wide range of activities in
the brain tissue, ranging from the linear coherently propagating
waves to the non-linear incoherent asynchronous spiking, including
in between the peculiar power law-like coherence of the neuronal
avalanches.

We emphasize that although the general WETCOW theory
describes complex interactions between modes, the explanation for
neuronal avalanches and their attendant scaling properties presented in
this paper are based on the analysis of a single wave mode with
completely arbitrary set of mode parameters. This includes arbitrary
amplitude, phase, frequency, and criticality. No interaction between
modes, except a general form of the third order non-linearity that
characterizes anharmonicity of the non-linear wave modes due to non-
resonant interaction of the linear modes, is needed to derive the scaling
result. Thus a key result of this paper is the demonstration that neuronal
avalanches and their attendant scaling properties are obtained within
the simplest form of the WETCOW theory where mode coupling is
ignored, but significantly without the ad hoc and physically implausible
assumptions typicallymade that the parameters of all network nodes are
either constant and the same for all nodes [36], sometimes even
including inter-mode coupling [38], or are generated from some ad
hoc artificial distributions [40], and require the addition of stochastic
noise properties [41], etc. This emphasizes generality and importance of
our derivation.

2 Weakly evanescent brain waves

Beginning from our non-linear Hamiltonian formulation of the
WETCOW theory [39], we have for an anharmonic wave mode

Hs a, a†( ) � Γaa†+ aa† βaa + βa†a
†− 2α aa†( )1/2[ ] (1)

where a is a complex wave amplitude and a† is its conjugate. The
amplitude a denotes either temporal ak(t) or spatial aω(x) wave
mode amplitudes that are related to the spatiotemporal wave field
ψ(x, t) through a Fourier integral expansions.
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ak t( ) � 1
2π
∫∞

−∞
ψ x, t( )e−i kx+ωkt( )dx, (2)

aω x( ) � 1
2π
∫∞

−∞
ψ x, t( )e−i kωx+ωt( )dt, (3)

where for the sake of clarity we use one dimensional scalar
expressions for spatial variables x and k, but it can be easily
generalized for the multi dimensional wave propagation as well.
The spatiotemporal wave field ψ(x, t) is a superposition of
multiple waves, that may include neuronal firings, membrane
sub-threshold oscillations, LFPs, etc. The frequency ω and the
wave number k of the wave modes satisfy dispersion relation D(ω,
k) = 0, and ωk and kω denote the frequency and the wave number
roots of the dispersion relation (the structure of the dispersion
relation and its connection to the brain tissue properties has been
discussed in [1]).

The first term Γaa† in Eq.1 denotes the harmonic (quadratic)
part of the Hamiltonian with either the complex valued frequency
Γ = iω + γ or the wave number Γ = ik + λ that both include a pure
oscillatory parts (ω or k) and possible weakly excitation or damping
rates, either temporal γ or spatial λ. The second anharmonic term is
cubic in the lowest order of non-linearity and describes the
interactions between various propagating and non-propagating
wave modes, where α, βa and βa† are the complex valued
strengths of those different non-linear processes. As it was shown
in [1, 2] the inverse proportionality of frequency and wave number
in the dispersion relation 6) results in the third order expressions for
the non-resonant coupling between multiple waves.

Distribution of various charges in brain tissue, including free
ionic charges (sodium, potassium, etc), bonded macromolecular
volume charges, membrane polarization and/or surface charges, etc.,
determines brain electrodynamics. The voltages and currents
measured in real brains are produced by those electrodynamic
processes that in the most general form can be represented by
the Maxwell equations together with state or motion equations for

the brain matter, particularly by a generalized Ohm’s law, that
describes electro-diffusive flow of charged particles through
inhomogeneous media (that may include both concentration and
voltage gradients). The neuron action potential itself is nothing
more than propagating non-linear electrostatic wave described by
the same electrodynamics formalism. A set of derivations that lead
to this description was presented in details in [1, 2, 39] and is based
on considerations that follow from the most general form of brain
electromagnetic activity expressed by Maxwell equations in
inhomogeneous and anisotropic medium

∇ · D � ρ, ∇ × H � J + zD
zt

0
zρ

zt
+  · J � 0.

Using the electrostatic potential E = −∇ψ, Ohm’s law J = σ ·E
(where σ ≡ {σij} is an anisotropic conductivity tensor), a linear
electrostatic property for brain tissue D = εE, assuming that the
scalar permittivity ε is a “good” function (i.e. it does not go to zero
or infinity everywhere) and taking the change of variables zx →
εzx′, the charge continuity equation for the spatial-temporal
evolution of the potential ψ can be written in terms of a
permittivity scaled conductivity tensor Σ = {σij/ε} as

z

zt
∇2ψ( ) � − · Σ · ∇ψ + F , (4)

where we have included a possible external source (or forcing) term F .
For brain fiber tissues the conductivity tensor Σmight have significantly
larger values along the fiber direction than across them. The charge
continuity without forcing i.e., (F � 0) can be written in tensor
notation as

ztz
2
i ψ + Σijzizjψ + ziΣij( ) zjψ( ) � 0, (5)

where repeating indices denote summation. Simple linear wave
analysis, i.e. substitution of ψ ~ exp(−i (k · r − Ωt)), where k is
the wavenumber, r is the coordinate,Ω = ω + iγ is the frequency and
t is the time, gives the following complex dispersion relation:

FIGURE 1
[Left] Comparison of the analytical expression (29) for the effective spiking frequency ωs =2π/Ts (red) and the frequency estimated from numerical
solution of Eq. 21 and Eq. 22 (blue) as a function of the criticality parameter γ/γc. In the numerical solution only γwas varied and the remaining parameters
were the same as parameters reported in [39] [Right] Spiking solutions for typical parameters producing temporal ((21) and (22), red) and spatial ((38) and
(39), blue) spiking profiles where some signal of width δts or δls was detected and surrounded by quiet area with the total effective period Ts or Ls.
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D Ω, k( ) � −iΩk2i − Σijkikj − iziΣijkj � 0, (6)
which is composed of the real and imaginary components:

γ ≡ IΩ � Σij
kikj
k2

ω ≡ RΩ � −ziΣijkj
k2

(7)

Although in this general form the electrostatic potential ψ, as well as
the dispersion relation D(Ω, k), describe three dimensional wave
propagation, we have shown [1, 2] that in anisotropic and
inhomogeneous media some directions of wave propagation are
more equal than others with preferred directions determined by the
complex interplay of the anisotropy tensor and the inhomogeneity
gradient. While this is of significant practical importance, in
particular because the anisotropy and inhomogeneity can be
directly estimated from non-invasive methods, for the sake of
clarity we focus here on the one dimensional scalar expressions
for spatial variables x and k that can be easily generalized for the
multi dimensional wave propagation as well.

The multiple temporal ak(t) or spatial aω(x) wave mode
amplitudes can be used to define the time dependent wave
number energy spectral density Πk(t) or the position dependent
frequency energy spectral densityΠω(x) for the spatiotemporal wave
field ψ(x, t) as

Πk t( ) � |ak t( )|2, Πω x( ) � |aω x( )|2, (8)
or alternatively we can add additional length or time normalizations
to convert those quantities to power spectral densities instead.

The network Hamiltonian form that describes discrete spectrum
of those multiple wave modes was presented in [39] as

H a, a†( )�∑
n

Hs an, a
†
n( )+∑

m≠n
anrnma

†
m + a†nrnm* am( )⎡⎣ ⎤⎦ (9)

where the single mode amplitude an again denotes either ak or aω, a
≡ {an} and rnm � RnmeiΔnm is the complex network adjacency matrix
with Rnm providing the coupling power and Δnm taking into account
any possible differences in phase between network nodes. This
description includes both amplitude R(a) and phase I(a) mode
coupling and as shown in [39] allows for significantly unique
synchronization behavior different from both phase coupled
Kuramoto oscillator networks and from networks of amplitude
coupled integrate-and-fire neuronal units.

The third order nature of the theory is of particular interest, and
provide the theory with a broad range of applicability. It has
distinctly different characteristics than the harmonic oscillator.
Of particular importance is the fact that the third order terms
become important when wave amplitudes are high enough but
only if or until higher order terms are absent or suppressed by
some physical mechanism. This suppression becomes significant in
incorporating the anisotropic inhomogeneous and resistive nature
of brain tissues. An important consequence derived in [1] is that the
inverse frequency–wave number proportionality of the linear wave
dispersion guarantees that the resonant terms higher than the third
order are not important and can be neglected and, at the same time,
the non-resonant third order terms (that are typically excluded
when compared to the resonant terms) should now be retained
resulting in the third order form of Hamiltonian 1). It is our
contention, and the subject of future studies, that the
anharmonic third order forms 1) and 9) are not brain specific

FIGURE 2
(Top) The avalanche durations distribution for all wave modes compared with the -2 exponent (Bottom) WETCOWmodes randomly distributed and
propagated on a 1,000 by 1000 grid. Two examples of temporal signal snapshots with different values of signal threshold are shown (color pallet encodes
the change of frequencies from the smallest (blue) to the largest (red). Localized regions of wave activity in the spatial domain are clearly evident.

Frontiers in Physics frontiersin.org04

Galinsky and Frank 10.3389/fphy.2023.1138643

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1138643


and can be used to describe oscillations and waves in active media
abundant in various areas of physics.

Although the Fourier integrals 2 used for expansion of the
spatiotemporal wave field ψ into a set of wave modes imply
presence of a large (actually infinite) number of modes in the
network Hamiltonian 9 the derivation of neuronal avalanches is
evident even without this generality of this coupling between modes
expressed by the coupling parameters rnm, as it was done in [39].
Thus we will consider an ensemble of non-interacting modes,
effectively setting rnm = 0, for the analysis of this paper. But
importantly we will not make any assumptions about parameters
of the single mode Hamiltonian form 1, assuming that all
parameters (Γ, βa, βa† , α) are arbitrary and do not carry any
mode dependence. This is a non-trivial point worth emphasizing,
as it is a departure from the extant literature wherein the ad hoc, and
physically implausible, assumption of the equivalence of network
nodes is made. Therefore, we will proceed with our analysis of a
single mode amplitude a suppressing all subscripts and indices, and
assuming that a denotes an where n may represent either an
arbitrary wave number k from a range of wave numbers k0 ≤ k ≤
k1 or an arbitrary frequency ω from a range of wave frequencies ω0 ≤
ω ≤ ω1.

3 Single anharmonic mode criticality

An equation for the non-linear oscillatory amplitude a then can
be expressed as a derivative of the Hamiltonian form

da

dt
� zHs

za†
≡ Γa + βa†aa

† + βaa
2 − αa aa†( )1/2, (10)

after removing the constants with a substitution of βa† � 1/2~βa† and
α � 1/3~α and dropping the tilde. As frequencies and wave numbers
for linear waves satisfy the dispersion relation 6), they are related
and the same Hamiltonian expression 1) can be used either for
temporal ak(t) or spatial aω(x) wave amplitudes. Therefore, we note
that although (10) is an equation for the temporal evolution, the
spatial evolution of the mode amplitudes aω(x) can be described by a
similar equation substituting temporal variables by their spatial
counterparts, i.e., (t, ω, γ) → (x, k, λ).

Splitting (10) into an amplitude/phase pair of equations using
a = Aeiϕ, assuming βa � β̃ae

−iδa , βa† � ~βa†e
iδa† , and scaling the

variables as

A � γ ~A, t � τ

γ
, ω � ~ωγ, (11)

gives the set of equations.

d ~A

dτ
� ~A + ~A

2
βa† cosΨa† + βa cosΨa − α( ) (12)

dϕ

dτ
� ~ω + ~A −βa† sinΨa† + βa sinΨa( ) (13)

where Ψa ≡ ϕ − δa, Ψa† ≡ ϕ − δa† .
These equations can further be cast into amore compact form by

defining

β � βa
βa†

( ) , u � eiδa

eiδa†
( ) , v � ieiδa

−ieiδa†( ) (14)

so that.

za � β · u � Xa + iYa (15)
zϕ � β · v � Xϕ + iYϕ (16)

where.

Ra � za| | �
�������
X2

a + Y2
a

√
(17)

Rϕ � zϕ
∣∣∣∣ ∣∣∣∣ � �������

X2
ϕ + Y2

ϕ

√
(18)

Φa � arg za( ) � arctan
Ya

Xa
(19)

Φϕ � arg zϕ( ) � arctan
Yϕ

Xϕ
(20)

whereupon (12) and (13) can be rewritten.

d ~A

dτ
� ~A + ~A

2
Ra cos ϕ −Φ( ) − α[ ], (21)

dϕ

dτ
� ~ω + ~ARϕ cos ϕ, (22)

where Φ = Φa − Φϕ.
A stationary (i.e., d ~A/dτ � dϕ/dτ � 0) solution of (21) and (22)

can be found from

−Rϕ

~ω
cos ϕ + Ra cos ϕ − Φ( ) − α � 0, (23)

as ϕe = ϕ0 ≡ const and ~Ae � ~ω/Rϕ cos ϕ0 ≡ const. This shows that for
α > Ra there exist critical values of ω̃ and Ae, where the stationary
solution disappears and is replaced by non-linear oscillations, such
that.

~ωc � Rϕ cos ϕc

α + Ra cos ϕc +Φ( ), ~Ac � ~ωc/Rϕ, (24)

ϕc � arctan
Ra sinΦ�������������

α2 − Ra sinΦ( )2
√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦, (25)

which can also be expressed in terms of critical value of one of the
unscaled variables, either ω or γ

ωc � γ~ωc, or γc �
ω

~ωc
, (26)

This stationary solution provides the locus of the saddle node on an
invariant circle bifurcation point at where the non-linear spiking
oscillations occur (as was shown both in [1, 2] and in [39]).

4 Effective spiking rate

The effective period T s of spiking solutions of (21) and (22) (or
its inverse–either the firing rate 1/T s or the effective firing frequency
2π/T s) can be estimated from (22) by substituting ~Ac for ~A
(assuming that the change of amplitude ~A is slower than the
change of the phase ϕ) as

T s � ∫2π
0

dϕ

~ω + ~ωc cos ϕ
� 2π�������

~ω2 − ~ω2
c

√ , (27)
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giving the unscaled effective spiking period Ts and the effective firing
frequency ωs

Ts � T s

γ
� 2π

ω
��������
1 − γ2/γ2c√ � 2π

ω
���������
1 − ω2

c/ω2
√ , (28)

ωs � 2π
Ts

� ω
���������
1 − ω2

c/ω2
√

, (29)

with the periodic amplitude ~A reaching the maximum ~Amax �
1/(α − Ra) and the minimum ~Amin � 1/(α + Ra) for d ~A/dτ � 0
when ϕ = Φ and ϕ = Φ + π respectively.

The expressions (28) and (29) are more general than typically
used expressions for the scaling exponent in the close vicinity |γ −
γc|≪ γc of the critical point [42–44]. They allow recovery of the
correct T limits both at γ → γc with the familiar T ~ 1/

�����
γc − γ

√
scaling and at γ ~ 0 with the period T approaching T0 as T ~ T0 + O
(γ2) ≡ 2π/ω +O(γ2), where T0 is the period of linear wave oscillations
with the frequency ω. In the intermediate range 0 < γ < γc the
expressions (28) and (29) show reasonable agreement (Figure 1)
with peak–to–peak period/frequency estimates from direct
simulations of system (12) and (13).

5 Temporal probability of single spike
detection

As the periodic solution of Eq. 21 and Eq. 22 in the 0≪ γ≪ γc range
looks like linear waves at γ close to zero, but transforms to spike as γ
increases, we can approximate the probability of detecting a single spike
by a ratio of a spike peak duration (recorded above some threshold) to a
total peak-to-peak time. Taking into account that the initial phase of
spiking solutions of Eq. 21 and Eq. 22 is a random variable uniformly
distributed on [0, 2π] interval, the probability that a spike (either positive
or the more frequently experimentally reported negative [12, 13]) with
duration width δts and with the total period between the spikes (Ts) will
be detected is simply δts/Ts–where the distance between spikes is

determined as the time interval needed for 2π radian phase change,
that is the effective spiking period Ts. Assuming initially that the spike
width δts does not change when approaching the critical pointωc, δts can
be approximated by some fixed fraction of the linear wave period, i.e., δts
~ π/ω, that gives for the probability density

P ω{ }
k ω,ωc( ) ~ ω−1

���������
ω2/ω2

c − 1
√

, (30)

for every wave mode with the wavenumber k. It should be noted that
the probability density P{ω}

k has no relation to, and should not be
confused, with the frequency energy spectral density Πω(x) (or with
the power spectral density).

Transforming the frequency dependence of the wavenumber
spectra P{ω}

k to the temporal domain (T = 2π/ω, Tc = 2π/ωc)

∫∞
ωc

P ω{ }
k ω,ωc( )dω � ∫Tc

0

P ω{ }
k

2π
T
,
2π
Tc

( ) 2π

T2 dT

� ∫Tc

0

P T{ }
k T, Tc( )dT,

(31)

gives for the temporal probability density P{T}
k

P T{ }
k T, Tc( ) ~ T−2

���������
1 − T2/T2

c

√
, (32)

hence the scaling of the temporal probability density P{T}
k follows the

power law with -2 exponent with additional
�������
1 − T/Tc

√
falloff in

close vicinity of the critical point in agreement with temporal scaling
of neuronal avalanches reported in [12, 13].

6 Multi-mode avalanche probability

The above single wave mode analysis shows that the probability
density P{T}

k for any arbitrary selected wave mode k with arbitrary
chosen threshold follows a power law distribution with -2 exponent,
therefore, a mixture of multiple wave modes that enters into the

FIGURE 3
[Left] Analytical probability density spectra as a function of brain waves criticality parameter S/Sc show excellent agreement with the experimental
avalanche data [Right, from [12, 13]] reproducing not only the overall shape of the spectra with the -3/2 power exponent at the initial scale free part of the
spectra and the steep falling edge in the vicinity of the critical point, but also reproduce the fine details such as the small bump-like flattening of the
spectra at the transition from -3/2 leg to the steep falling edge that is clearly evident in experimental spectra.
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spatiotemporal wave field ψ(x, t) with different amplitudes and
different thresholds will again show nothing more than the same
power law distribution.

To clearly demonstrate that the probability density function P{T}
k

of finding a spike reflects the avalanche duration distribution we
conducted a simple numerical experiment using a procedure that
replicates the original experimental method of computing neuronal
avalanches employed in the original papers by Beggs and Plenz [12,
13]. We used 106 wave modes with arbitrary parameters and
computed avalanches by cutting the temporal series with a
threshold (converting the event to a single dot or “spike”), then
binning the signal using a time equal to the average inter-spike
interval. After that, an avalanche duration is given by the time
between two empty bins. Figure 2 compares the avalanche
distribution for all wave modes with the -2 exponent.

Similar proof of equivalence of the single mode probability
density function P{T}

k and a probability density of a multi-mode
avalanche event obtained by the method replicating the
experimental demarcation of the quiescence, that we will
denote as pa(T), can be also derived using simple analytical
considerations. The probability Pa

0≤T′≤T+ΔT that an avalanche
happens at any time between 0 and T + ΔT, where ΔT is some
small binning interval used by the above experimental method,
can be expressed as

Pa
0≤T′≤T+ΔT � ∫T+ΔT

0

pa T′( )dT′ � ∫T
0

pa T′( )dT′
+∫T+ΔT
T

pa T′( )dT′ ≈ Pa
0≤T′≤T + pa T( )ΔT.

(33)

Since the probability

P T{ }
kj

T, Tcj( )ΔT � ]jT−2
���������
1 − T2/T2

cj

√
ΔT, (34)

(where ]j is an arbitrary mode specific proportionality constant)
describes the probability of finding a signal for a single mode j (j =
1 . . .N) in a time interval between T and T + ΔT, the probability that
the condition for detection of a multi mode avalanche is recorded in
the same interval can be expressed as

pa T( )ΔT � 1 − P0 T − ΔT( )[ ] × P0 T( )
where P0 T( ) �∏N

j�1
1 − P T{ }

kj
T, Tcj( )ΔT( ) (35)

where all wave modes are assumed to be independent. The second
factor P0T) represents the probability that there is no signal for any
of the modes detected between T and T + ΔT. The first factor (1 − P0
(T −ΔT)) makes sure that no avalanche was recorded in the previous
ΔT bin, that is a signal for at least one mode has been found in the
interval between T − ΔT and T.

An expansion of Eq. 35 in the leading order of ΔT gives for the
avalanche probability density pa(T)

pa T( ) ≈ T−2∑N
j�1

]j
���������
1 − T2/T2

cj

√
, (36)

that is the avalanche probability density pa(T) shows the same T−2

scaling as the probability density of finding signal for a single mode.
If additionally the criticality parameters Tcj for all wave modes kj

are assumed to be the same (Tcj ≡ Tc) then the avalanche
probability density scaling takes exactly the same form as the
single mode probability density

pa T( ) ~ P T{ }
k T( ) ~ T−2

���������
1 − T2/T2

c

√
. (37)

7 Spatial spike detection probability

Due to the reciprocity of the temporal and spatial
representations of the Hamiltonian form Eq. 1 equations for the
spatial wave amplitude have the same form as the temporal
equations Eq. 21 and Eq. 22

d ~A

dξ
� ~A + ~A

2
Ra cos ϕ −Φ( ) − α[ ], (38)

dϕ

dξ
� ~k + ~ARϕ cos ϕ, (39)

under similar scaling (the spatial equivalent of Eq. 11) of the wave
amplitude, the coordinate, and the wave number

A � λ ~A, x � ξ

λ
, k � ~kλ. (40)

In the spatial domain, this leads to the critical parameters ~Ac and. ~kc

~kc � Rϕ cos ϕc

α + Ra cos ϕc +Φ( ), ~Ac � ~kc/Rϕ, (41)

ϕc � arctan
Ra sinΦ�������������

α2 − Ra sinΦ( )2
√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦, (42)

Although our simple one dimensional scaling estimates do not
take into account the intrinsic spatial scales of the brain, e.g.,
cortex radius of curvature, cortical thickness, etc., nevertheless,

FIGURE 4
Analytical probability density spectra multiplied by a (S/Sc)3/2 as a
function of brain waves criticality parameter S/Sc plotted for several
values of the phase shift Φ.
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even in this simplified form the similarity between spatial and
temporal non-linear equations suggests that the non-linear
spatial wave behavior will generally look like spiking in the
spatial domain where some localized regions of activity are
separated by areas that are relatively signal free and this
separation will increase near the critical point. Exactly this
behavior was reported in the original experimental studies of
the neuronal avalanches [12, 13], where it was stated that the
analysis of the contiguity index revealed that activity detected at
one electrode is most often skipped over the nearest neighbors.
Interestingly, this experimental observation of near critical non-
linear waves was presented as an indicator that the activity
propagation is not wave-like. But we see here that they are
directly explained within the context of the WETCOW wave
model. Of significant practical importance will be the effects of
the intrinsic spatial scales of the brain that will certainly affect
the details of the spatial critical wave dynamics and so their
inclusion will be important for more completely characterizing
the details of brain criticality and will be the focus of future
investigations.

Using the spatial equations Eq. 38 and Eq. 39 similar scaling
results can be obtained for the wave number k and the linear spatial
dimension L probabilities for every wave mode with the frequency
ω as.

P k{ }
ω k, kc( ) ~ k−1

��������
k2/k2c − 1
√

, (43)
P L{ }
ω L, Lc( ) ~ L−2

��������
1 − L2/L2

c

√
, (44)

where L is the linear spatial scale related to the wave number as k =
2π/L.

The linear spatial dimension of the avalanche L is related to its
area S on a 2 dimensional surface as L � �

S
√

, hence

∫Lc
0

P L{ }
ω L, Lc( )dL � ∫Sc

0

P L{ }
ω

�
S

√
,
��
Sc

√( )
2
�
S

√ dS

� ∫Sc
0

P S{ }
ω S, Sc( )dS,

(45)

P S{ }
ω S, Sc( ) ~ S−3/2

�������
1 − S/Sc√

, (46)

hence the spatial probability scaling for the size S follows the power law
with -3/2 exponent again with additional

�������
1 − S/Sc

√
falloff in close

vicinity of the critical point, that is also in agreement with experimentally
reported spatial scaling of neuronal avalanches [12, 13].Wewould like to
mention that the non-linear anharmonic oscillations described by the
(21) and (22) only exists for frequencies and wave numbers that are
above the critical frequency ωc or the critical wave number kc values that
definemaximal possible temporal Tc or spatial Lc scales of the non-linear
oscillations. If the finite system sizes are below those maximal values the
cutoffs will be defined by the system scales.

We would like emphasize again the generality of our analysis that
makes no assumptions about parameters used in Hamiltonian form Eq.
1, and hence in the equations Eq. 21 and Eq. 22 or (38) and (39),
analytically deriving scaling valid for a wide (and arbitrary) range of
those parameters. This is in striking difference from analyses and results
based on oversimplified ad hoc numerical studies of synchronization in
networks [36, 38]. Those typical numerical analysis studies consider
networks of completely identical individual nodes sometimes even
globally connected with completely identical weights. Therefore, all
these studies require artificial (and significantly high levels of) noise
added to each node just to be able to impose some range of scales into
the system. This is an artificial and, as demonstrated here, unnecessary
complication. The consequence of such models is that they are capable
of obtaining something that resembles scale free behaviorwith exponent
values that are in general rather vague and strongly noise dependent.

FIGURE 5
Examples of complete wave mode trajectory snapshots for two randomly selected parameters and initial conditions. The trajectories was randomly
selected from an ensemble of 106 WETCOW modes used for generation of probability distributions of Figure 6.
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Without this sufficiently strong noise those studies of course are not
capable to show any scale free behavior. It is essential to realize that such
models are thus highly dependent on the noise properties, and less so on
the actual properties of the brain tissue itself as in the WETCOW
theory, which is the critical link to practical applications of any brain
activity theory. By contrast, no externally induced stochasticity in the
form of additional noise term is required for our analysis.

Another important point is that for deriving scale free exponents in
our approach we do not require to know the details of the coupling
between nodes, essentially viewing all nodes as completely non-
interacting. Presence of interactions in the form of (9) will not
modify our analysis, and will not require any of the common ad hoc
assumptions of identical global coupling between nodes [38]. When
coupling between some of the nodes in (9) is sufficiently strong and these
nodes are completely synchronized, we can always replace this subset of
completely synchronized nodes by a single node and continue again with
the same presented in this paper “coupling-independent” node analysis.

8 Effects of criticality on spike length

The assumption of the fixed spike duration δts used in Eq. 30 and
32 (or the spike length for spatial spiking in Eq. 43 and Eq. 44) can be
improved by estimating the scaling of the spike width as a function
of the criticality parameter from the amplitude equation (we will use
the temporal form of the equation Eq. 21 but the spatial analysis with
equation Eq. 38 is exactly the same).

Dividing equation Eq. 21 by ~A and taking an integral around
some area in the vicinity of the amplitude peak ~Amax we can write

∫~A+

~A−

1
~A
d ~A � ∫τ+

τ−

dτ∫Φ+

Φ−

~ωc

Rϕ

Ra cos ϕ −Φ( ) − α

~ω + ~ωc cos ϕ
dϕ, (47)

where τ± = τmax ± δτ, and τmax is the location of spiking peak.
Neglecting the spike shape asymmetries, i.e., assuming that τ±
correspond to symmetric changes in both the amplitudes

FIGURE 6
Plots of spatial (A) and temporal (B) probability density spectra obtained by binning oscillatory signal of ensemble of 106 WETCOWmodes randomly
distributed and propagated through cortical tissue. Two examples of temporal signal (dots or “spikes”) snapshots with different values of signal threshold
are shown in (C) and (D) (color pallet encodes the change of frequencies from the smallest (blue) to the largest (red).
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~A± � ~A(τ±) � ~Amax − δ ~A, and the phases Φ± = Φ(τ±) = Φ ± δΦ, we
can then estimate the spike duration δts ≡ (τ+ − τ−)/γ as

δts � 1
γ
∫Φ+δΦ

Φ−δΦ

1 − R cos Φ( ) + cos ϕ − Φ( )( )
~ω + ~ωc cos ϕ

dϕ, (48)

where, similar to the spiking period estimation in Eq. 28, we again
assume that the main contribution comes from the change of the
oscillation phase, hence ~Ac can be substituted for ~A. For δΦ some
fixed value that is smaller or around a quarter of the period (i.e., δΦ
≲ π/2) can be chosen, and R = ω̃cRa/Rϕ.

An expression (48) can be evaluated in closed form but we do not
include it here and instead plotted the final spatial probability density
spectra P(S/Sc), similarly obtained from the expression for δls/Ls again
substituting L � �

S
√

and dL � dS/(2 �
S

√ ), for several values of the Sc
parameter (Figure 3), as well as for several values of the phase shift Φ
(Figure 4). The spectra clearly show again the same power law
dependence with -3/2 exponent as was reported in [12, 13] followed
by a steep falloff sufficiently close to the critical point. What is
interesting, however, is that the spectra for Φ = π/2 (and this is the
phase shift value used for spiking solutions reported in [1, 2, 39])
recover even the fine structure of the scaling and clearly show the small
bump at the end of the scale free part of the spectra where the local
probability deflects from the initial -3/2 power exponent and flattens
first before turning in to the steep falloff. These small bumps are evident
in all experimental spectra [12, 13] shown in Figure 3 as well.

9 Conclusion

Brain activity in general and neuronal avalanches in particular show
an abundance of very complex and strangely organized activity patterns.
Understanding the nature and the origin of cascades of synchronized
activity in the cortex has multiple implications to understanding of
organization of cortical functioning. Although originally neuronal
avalanches were detected in vitro using multi-electrode arrays in 2D
slices of cultivated cortex cultures [12, 13], there are now multiple
experimental data of in vivo avalanche recordings [45–47] involving
optical recordings as well [48].

One of the properties of the WETCOW wave modes is that the
anisotropy structure of brain conductivity as well as the structure of brain
inhomogeneity favors their propagation in the outer regions of the cortex
(see, for example, Figure 2 of [1, 2]). Neuronal avalanches are measured
in the most external layer of the cortex and, usually, introducing the
electrodes deeper in the cortical columns will eliminate the scale-free
distributions. Therefore, it seems to be an interesting problem to check
the whole-brain scale free distribution in the region of typical
propagation of WETCOW wave modes. To do this numerical
experiment we generated an ensemble of 106 WETCOW modes
distributed and randomly propagating through inhomogeneous and
anisotropic cortical tissue. Figure 5 shows two randomly selected
snapshots of wave mode trajectories that were generated using the
procedure described in details in [1] and propagate in the surface-like 2D
manner in the external layer of the cortex. Using the same procedure,
that replicates the original experimental neuronal avalanche detection
method, that is thresholding and then binning the wave signal into dots
or “spikes”, we again see that the WETCOW modes show scale free
behavior as shown in Figure 6.

In summary, in this paper we have presented an analysis of temporal
and spatial probability density spectra that are generated due to the
critical dynamics of the non-linear weakly evanescent cortical wave
(WETCOW) modes [1, 2]. The Hamiltonian framework developed for
these WETCOW modes in [39] is advantageous in that it explicitly
uncovers the reciprocity of the temporal and the spatial dynamics of the
evolutionary equations. Therefore, in the non-linear regime sufficiently
close to the critical point the spatial behavior of the wave modes displays
features similar to the properties of their non-linear temporal dynamics
that can be described as spatial domain spiking, with localized regions of
wave activity separated by quiescent areas, with this spatial spiking
intermittence increasing near the critical point. Similar spatial behavior
was observed experimentally in neuronal avalanches, when activity
detected at one electrode was typically skipped over the nearest
neighbors. This was interpreted as evidence that avalanche spatial
intermittency is not wave-like in nature [12, 13]. Our results
demonstrate the contrary, however: the spatial patterns are the direct
result of non-linear interactions of weakly evanescent cortical waves.

Both temporal and spatial scaling expressions analytically estimated
from the non-linear amplitude/phase evolutionary equations show
excellent agreement with the experimental neuronal avalanche
probability spectra reproducing not only the general average power
law exponent values and falloffs in the vicinity of the critical point, but
also finding some very subtle but nevertheless clearly experimentally
evident fine details, like bumps in the transition region at the edge of the
scale free part of the probability spectra.

In a more general way these results may be applicable not only to
neuronal avalanches but to many other physical systems that involve
wave processes as they show that a system of wave modes interacting
through all possible combinations of the third order non-linear terms
described by a general wave Hamiltonian necessarily produces
anharmonic wave modes with temporal and spatial scaling
properties that follow scale free power laws.
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