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COSINE-200 is the next phase experiment of the ongoing COSINE-100 that aims
to unambiguously verify the annual modulation signals observed by the DAMA
experiment and to reach the world competitive sensitivity on the low-mass dark
matter search. To achieve the physics goal of the COSINE-200, the successful
production of the low-background NaI(Tl) detectors is crucial and it must begin
from themass production of the ultra-low backgroundNaI powder. A clean facility
for mass-producing the pure-NaI powder has been constructed at the Center for
Underground Physics (CUP) in Korea. Two years of operation determined efficient
parameters of the mass purification and provided a total of 480 kg of the ultra-
pure NaI powder in hand. The potassium concentration in the produced powders
varied from 5.4 to 11 ppb, and the maximum production capacity of 35 kg per
2 weeks was achieved. Here, we report our operational practice with the mass
purification of the NaI powder, which includes raw powder purification, recycling
of the mother solution, and recovery of NaI from the residual melt after crystal
growth.
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1 Introduction

Considerable evidence points to the existence of dark matter that could represent
27% of the Universe’s total mass or energy [1–5]. One of the most promising candidates
for dark matter is the Weakly Interacting Massive Particles (WIMPs), which many
experimental groups have extensively searched in the last few decades [6–13]. Despite
attempting to find dark matter particles in numerous experiments, only the DAMA
collaboration has claimed the observation of a dark matter signal through an annual
modulation signal observed in the low-energy signal region [8, 14–16]. However, there
have been long-standing questions about this claim because no other experimental
searches have observed similar signals [17]. Besides, possible spurious effects have been
widely investigated, but none provides a convincing explanation of the modulation
signal observed by DAMA/LIBRA [18, 19].

The COSINE-100 experiment has been operating at Yangyang underground laboratory
in Korea with a total of 106 kg of low-background NaI(Tl) detectors during the last 6 years
[6, 7, 20–24]. Although many exciting results were published, reaching an unambiguous
assumption on the annual modulation signal of the DAMA experiment is far from
conclusive [25, 26]. It is mainly due to the observed background rate in the COSINE-
100 detectors, which is 2.5 times higher than the background of the DAMA detectors [21,
27]. To take on the challenge in the world’s competitive searches for low-mass dark matter
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and reach a definitive conclusion of the DAMA/LIBRA experiment
results, we are preparing the COSINE-200 experiment as the next
phase of the COSINE-100 [17, 28]. The main goal of the COSINE-
200 is to develop 200 kg of ultra-low background NaI(Tl) crystals
with a background level lower than those of the DAMA/LIBRA. To
reach the physics goal of COSINE-200, we have been developing
technology for the low-background NaI(Tl) detector that includes
the mass production of ultra-low background NaI powder, crystal
growing techniques, and detector assembly [17, 28, 29]. The first
step is preparing the ultra-low background NaI powder, in which the
potassium concentration must be below 20 ppb and the lead
concentration less than 1 ppb. An activity level of 210Pb was as
low as 0.01 mBq/kg in NaI(Tl) crystal grown with NaI powder
containing 1 ppb of lead [17]. Radioactivity-wise, commercially
available Astro-grade NaI powders from Sigma-Aldrich are
suitable for ultra-low background NaI(Tl) crystal synthesis [17,
30]. Still, their extremely high-cost demands independent
development of mass purification technology. We have
investigated a recrystallization technique to purify the NaI
powder at a reasonable price [31]. The lab-scale procedure
provided a satisfactory performance of the potassium and lead
reduction. Based on successful lab-scale experiments, the mass
purification facility was established at the Institute for Basic
Science (IBS) in Daejeon, Korea [29]. For the last 2 years, we
optimized operational parameters for the mass production of
ultra-low background NaI powder. The yield efficiencies for the
chemical process were balanced versus the products’ purity. The
processing conditions were adapted to recycle the mother solution
and recover NaI from the melt residual after the crystal growth.
Using developed technology, we have produced about 480 kg of the
low-background powder with a production capability of 35 kg per
2 weeks. Using the purified NaI powder, the radioactive background
was reduced at least twice in a small size of NaI(Tl) crystal relative to
the COSINE-100 crystals [32]. This report summarizes our
experience, describes the mass purification facility, optimized raw

powder purification, and the recovery of NaI from the mother
solution and residual melt.

2 Materials and methods

We use NaI powder from Merck (99.99 (5)% purity, Optipure®)
as an initial material. The potassium contamination in the specially
ordered powder is below 1 ppm. High resistance, 18.2 MΩ cm de-
ionized (DI) water is a solvent to dissolve the NaI powder. We use
absolute ethanol (~200 proof, HPLC grade, ACS) from Scharlau to
wash the recrystallized NaI crystals. Hydrophilic PTFE membrane
filters with 1.0 μm pore size from Advantec are used to separate the
recrystallized NaI crystals from the mother liquor.

The mass production facility of the ultra-low background NaI
powder is shown in Figure 1A. It consists of two main reactors
(Figures 1B,C), a Nutsche filter unit (Figure 1D), two receivers
(Figure 1E), and a conical dryer (Figure 1F). The operation of the
whole system, including temperature control through the oil
circulation system, is performed by the main controller in
Figure 1G. The feed tank (Figure 1B) is used for powder
dissolution and pre-processing to prevent oxidation of the iodide
ions. Two main reactors in Figures 1B,C are connected, utilizing the
polypropylene (PP) pipes that transfer the NaI solution from the
feed tank to the mixing tank (Figure 1C), as shown in Figure 1A. A
cartridge filter is installed in the middle of the PP pipelines to
remove the insoluble impurities from the solution. The mixing tank
performs the recrystallization using the temperature dependence of
the NaI solubility in the water [33]. We evaporate water from the
NaI solution until it becomes oversaturated at 110 ℃ (Figure 2A),
then cool the mixing tank down to 30 ℃ while stirring the solution
(Figure 2B). In this process, pure NaI crystals grow without
agglomeration, while soluble impurities remain in the mother
solution. The crystals are separated from the mother solution by
the PTFE membrane filter (Figure 2C). The crystals are washed with

FIGURE 1
(A) Mass purification facility, (B) Feed tank for dissolving the NaI, (C) Mixing tank for boiling solution and recrystallization process, (D) Filter unit for
separation of NaI crystal andmother liquor, (E) Receiver tanks for collecting vapor frommixing tank and dryer, (F)Conical dryer for the NaI powder drying,
(G) Main controller to control all the equipment.
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chilled ethanol to rinse off the remaining mother liquor and
impurities from the crystal surface. The washed crystals are dried
in the conical dryer (Figure 2D). The produced powders are packed
in HDPE bottles and stored in the desiccators to avoid moisture
absorption. The details of the facility and recrystallization procedure
are described elsewhere in [29].

Radiopurity in the raw and purified powders and the mother
solution from the purification process is measured by an inductively
coupled plasma mass spectrometry (ICP-MS) and high-purity
Germanium (HPGe) detector [34]. The water content in the
produced powders is measured by the Karl-Fisher titrator. The
purity and moisture content of the final product are always
checked batch by batch.

3 Results

3.1 Raw powder purification

The main goal of our purification is to reduce internal
potassium (K) contamination to less than 20 ppb. Table 1 and

Tables 2 show the representative measurements from the raw
powder purification process by ICS-MS and HPGe, respectively.
As shown in Table 1, most of the potassium contamination from
the raw powder was filtrated and concentrated in the mother
solution. Potassium and lead concentrations in the purified
powders were reduced by 20 and 80 times, resulting in final
amounts of 11 ppb and 0.5 ppb, respectively. Significant
reduction of Sr and Ba below the ppb level may indicate a
reduction of radium, which belongs to the same family group
of the periodic table. With a single crystallization procedure with
about 40% yield efficiency, the purity of the produced powder
became similar to the Astro-grade powder. The impurity
concentrations in the mother solutions were increased
approximately twice as in the raw powder. Twenty days of
HPGe counting using 1.2 kg of purified powder sampled in the
Marinelli beaker reported only upper limits for 226Ra, 228Ac,
228Th, and 40K, as seen in Table 2.

To improve production capacity while maintaining the high
quality of the product, we continually performed the raw
powder purification with slightly different initial charges and
recovery yields, as summarized in Table 3. Although the powder
charge was increased from 40 kg to 64 kg, the purified product
had similar purities from batch to batch. However, a high
recovery yield of 58% provided considerable contamination
of K, about 38 ppb. In case of the recovery yields were less
than 50%, the purified powder contained consistently low
contamination, especially K, about 10 ppb. To keep the
consistent and high quality of the product, we ascertained a

FIGURE 2
(A) Boiling of solutionwith stirring, (B)Recrystallized NaI crystal withmother liquor, (C) Filtrated andwashedNaI crystal on the filter unit, (D)DriedNaI
powder in the conical dryer.

TABLE 1 Representative ICP-MS results of raw and purified powders vs. Astro-grade powder’s purity. Uncertainties are given at 90% C.L, and upper limits are given
at 95% C.L.

Description K Fe Sr Ba Pb Th U

ppb ppb ppb ppb ppb ppt ppt

Astro grade 5 ± 3 110 ± 20 0.3 ± 0.1 0.6 ± 0.1 0.8 ± 0.5 <6 <6

Merck-raw powder 250 ± 90 33 ± 6 19 ± 1 3.0 ± 0.4 40 ± 2 <6 <6

Purified powder (20–5) 11 ± 1 <10 0.3 ± 0.1 0.9 ± 0.1 0.5 ± 0.1 <6 <6

Mother solution (20–5) 550 ± 120 <200 38 ± 2 9 ± 1 60 ± 4 <6 <6

TABLE 2 Representative HPGe result of purified powder from raw powder
purification. The upper limits are given at 90% C.L.

226Ra (238U) 40K 228Ac 228Th

<0.56 mBq/kg <5.64 mBq/kg <1.10 mBq/kg <0.71 mBq/kg
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50% yield efficiency at maximum for our purification process.
Routine purification works have made our experience proficient
for the last 2 years. Compared to the initial investigation shown
in Ref. [29], we obtained consistently stable products with the
required background level using the same purification facility.
With the above-optimized purification parameters, the process
took 2 weeks. Recrystallizing the raw powder took about three
working days with 70 kg of the initial charge, and another seven
working days were required to dry the wet crystals. With
40–50% recovery efficiency, 30–35 kg of purified powder
could be produced in a cycle.

3.2 Mother solution recovery

After the purification process, the mother solution is the
remaining product with concentrated impurities from the initial
material. In the optimized purification process, 50% of the initial
charge was collected as the purified dry product. Another 35% of NaI
remained in the mother solution, and 15% was washed out with
ethanol, as shown in Figure 3. In three cycles of the raw powder
purification, the amount of NaI collected as the mother solution was
enough for further recycling.We recovered this mother solution in the
same manner but reduced the target recovery efficiency from 50% to
35% due to the relatively high impurity level in the mother solution.
As summarized in Table 4, the recovered crystals from the mother
solution contained higher impurities than those obtained from the
raw powder purification. The K contaminations varied from
18 to <50 ppb, proportional to the initial impurities in the mother
solution.When the K content in the initial mother solution was higher

than 1,000 ppb, reaching 20 ppb of K was challenging with a single
treatment. In this case, an additional recrystallization cycle of the
powder was necessary to reach our goal of purity. However, the
following recrystallization of the crystals recovered from the first
mother solution (MS-1) was inefficient in production rate. Thus, the
rational K level in the initial solution must be lower than 1 ppm.

As shown in Figure 3, after the separation of crystals from theMS-
1, the second mother solution (MS-2) contained about 50% NaI and
accumulated most impurities. The MS-2 mostly had K content over
1 ppm. Double recrystallization would be unavoidable to recover this
NaI remained. We did not consider recycling the MS-2 due to low
recovery efficiency compared to the workforce required.

3.3 Residual melt recovery

We designed a large-size Kyropoulos grower to synthesize
120 kg NaI(Tl) crystal ingot [17]. In this grower, about 200 kg of
NaI powder was loaded and melted in the quartz crucible.
Crystal-growing trials using Merck raw powders were
performed a couple of times with partial success. After pulling
out the crystal ingot, many residues remained in the quartz
crucible. Typical impurities in the residual melt after growing
were approximately twice as high as that in the loaded powder
due to the segregation effect. Nevertheless, the recovery of the
residual melts was successfully made by achieving satisfactory
purity levels, as summarized in Table 5. The K concentration in
the produced powders varied from 8 to 11 ppb. The purity of
recovered NaI from the melt is expected to be much purer if we
use the purified powder for mass crystal growth.

TABLE 3 The ICP-MS results of purified powders in different batches of raw powder purification. Uncertainties are given at 90% C.L, and upper limits are given at
95% C.L.

Sample no. Initial
charge

Recovery
yield

K
ppb

Fe
ppb

Sr
ppb

Ba
ppb

Pb
ppb

Th
ppt

U
ppt

20-5 40 kg 44% 11 ± 1 <10 0.3 ± 0.1 0.9 ± 0.1 0.5 ± 0.1 <6 <5

20-7 50 kg 41% 10 ± 1 <10 0.1 ± 0.1 0.3 ± 0.1 <0.3 <3 <5

20-8 50 kg 39% 6.4 ± 0.1 <10 0.1 ± 0.1 0.7 ± 0.1 <0.3 <3 <5

21-5 53 kg 42% 5.4 ± 0.3 <10 0.2 ± 0.1 0.4 ± 0.1 0.5 ± 0.1 <5 <3

21-8 60 kg 58% 38 ± 2 <10 0.4 ± 0.1 0.3 ± 0.1 0.5 ± 0.1 <7 <7

22-5 64 kg 35% 11 ± 1 <7 0.4 ± 0.1 1.6 ± 0.2 0.9 ± 0.5 <100 <20

The overall range of impurities within
35%–44% recovery yield (min/max)

5.1/12 <7/<10 0.1/0.5 0.2/1.8 <0.3/1.4 <3/<100 <3/<20

FIGURE 3
Material balances in the NaI recovery cycle.
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The process of recovering NaI from the collected residual melt
differed from the original purification method because the melt
contained a significant amount of insoluble quartz particles and
dust. Before the usual operation, the NaI melt dissolved in water
was filtered with the PTFE membrane filter. Considering the
evaporation of iodine during the crystal-growing process, a
three times higher dose of hydrogen iodide (HI) was introduced
to reach pH 3.5. All other processes of recrystallization and target
recovery efficiency were the same as raw powder purification.

3.4 Water content measurement

Sodium iodide is highly hygroscopic, and its chemical interaction
withmoisture produces NaOHwhen heated and causes corrosion of the
quartz crucible used in the growing crystal [35]. Keeping the water
content below 1,000 ppm in the produced powder was crucial. All
recrystallized powders were dried in two-step processes. In the first

step, the wet powder was dried at 65℃ to avoid agglomerating the NaI
powders with water inside the dryer. Then the temperature was
increased to 130 ℃ to dry the powder completely. The vapor
released from the drying process was extracted with a vacuum
pump. Initially, we used a chemical resistance air pump with
relatively low pressure to protect the pump from corrosive vapor. As
seen in Figure 4, reachingmoisture content below 1,000 ppm in the dried
powders with the previous set-up was impossible. We improved our
drying system by introducing a high-pressure rotary pumpwith traps for
corrosive vapor during the high-temperature drying process. We
achieved the water content to less than 1,000 ppm with modified set-up.

4 Discussion

A facility for mass production of the ultra-pure NaI powder for the
COSINE-200 experiment operates well with extensive parameter
optimization. The purification of raw NaI powder, the recycling of

TABLE 5 The ICP-MS result of residual melt recovery experiment in different batches of mass production. It is marked as (RM) for the naming, and the Initial
solution is the residual melt solution after dissolving melt and filtration of the quartz particles. The Wet crystal samples were taken after recrystallization and
washing with ethanol. Uncertainties are given at 90% C.L, and upper limits are given at 95% C.L.

Sample no. Material Recovery
yield

K
ppb

Fe
ppb

Sr
ppb

Ba
ppb

Pb
ppb

Th
ppt

U
ppt

21–12 (RM) Initial sol 730 ± 10 20 ± 2 10 ± 1 8.0 ± 0.6 143 ± 12 <7 <7

Wet cryst 53% 8 ± 1 <10 0.4 ± 0.1 0.3 ± 0.1 5 ± 1 <7 <7

21–13 (RM) Initial sol 540 ± 20 N/A 10 ± 1 5.1 ± 0.2 95 ± 10 <7 <7

Wet cryst 40% <50 N/A 0.1 ± 0.1 <0.1 <0.3 <7 <7

22–1 (RM) Initial sol 390 ± 10 N/A 8 ± 1 6.4 ± 0.2 40 ± 4 <4 <4

Dry powder 44% 8 ± 1 <7 0.1 ± 0.1 0.3 ± 0.1 0.7 ± 0.1 <4 <4

22–4 (RM) Initial sol 570 ± 10 N/A 15 ± 2 6.7 ± 0.5 5 ± 1 <4 <4

Dry powder 48% 11 ± 4 <7 0.1 ± 0.1 0.3 ± 0.1 <0.3 <4 <4

TABLE 4 The ICP-MS result of the mother solution recovery experiment in different batches of mass production. It is marked as (M) for the naming. In this
experiment, the Initial solution means the initial mother solution and the Wet crystal means recrystallized and washed crystal. If the purity is not accepted, then
additional recrystallization is required, so the purity was confirmed first by ICP-MS before drying and then dried thoroughly. The wet crystal consists of 73% ± 2%
NaI and extra water and ethanol, so the impurity concentration is calculated as 73%NaI. Uncertainties are given at 90% C.L, and upper limits are given at 95% C.L.

Sample no. Material Approx.
recovery yield

K
ppb

Fe
ppb

Sr
ppb

Ba
ppb

Pb
ppb

Th
ppt

U
ppt

21–7(M) Initial sol 470 ± 10 N/A 34 ± 1 7.3 ± 0.2 56 ± 1 <7 <7

Wet cryst ~55% <50 N/A 1.2 ± 0.1 0.2 ± 0.1 2.0 ± 0.1 <7 <7

21–11(M) Initial sol 610 ± 30 16 ± 1 40 ± 2 10 ± 1 88 ± 12 <7 <7

Wet cryst ~55% 18 ± 1 <7 1.0 ± 0.1 0.2 ± 0.1 4.5 ± 0.3 <7 <7

22–2(M) Initial sol 1,010 ± 150 8 ± 1 16 ± 1 15 ± 1 86 ± 4 <4 <4

Dry powder ~45% 21 ± 2 <7 0.2 ± 0.1 0.7 ± 0.1 1.0 ± 0.1 <4 <4

20–3(M) Initial sol 1,170 ± 120 39 ± 2 33 ± 2 12 ± 1 60 ± 2 <6 <5

Dry powder ~35% 44 ± 5 14 ± 1 1.0 ± 0.1 0.4 ± 0.1 2.0 ± 0.1 <6 <5

21–4(M) Initial sol 330 ± 40 N/A 20 ± 1 6.3 ± 0.2 41 ± 4 <5 <3

Wet cryst ~35% <40 N/A 0.4 ± 0.1 0.1 ± 0.1 1.2 ± 0.1 <5 <3
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the mother solution, and the recovery of NaI from the residual melt
were performed in parallel. We have produced about 480 kg of low-
background powder with a successful reduction of the internal
contamination that is pure enough for the COSINE-200 detectors.
The optimized parameters with a stable operation process have
provided a maximum 35 kg powder production capacity in 2 weeks,
but there is still room for improvement. If we increase the volume of the
dryer twice, then two recrystallization cycles can be performed in a week
in the same manner and dried together in the bigger dryer. The
production capacity will be increased up to 70 kg in 2 weeks while
keeping the powder quality. With improved capacity, successive double
crystallization can help to reach a potassium level much lower than
5 ppb using the above-described facility. We can smoothly provide the
ultra-low background NaI powder for the mass production of the
NaI(Tl) crystals for the COSINE-200 experiment.
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