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In this paper, we consider three models of non-linear Schrödinger’s equations
(NLSEs) via It\̂{o} sense. Specifically, we study these equations forced by
multiplicative noise via the Brownian motion process. There are numerous
approaches for converting non-linear partial differential equations (NPDEs) into
ordinary differential equations (ODEs) to extract wave solutions. The majority of
these methods are a type of symmetry reduction known as non-classical
symmetry. We apply the unified technique based on symmetry reduction to
produce some new optical soliton solutions for the proposed equations. The
obtained stochastic solutions depict the propagation of waves in optical fiber
communications. The theoretical analysis and proposed results clarify that the
presented technique is sturdy, appropriate, and efficacious. Some graphs of
selected solutions are also depicted with the help of the MATLAB packet
program. Indeed, the structure, bandwidth, amplitude, and phase shift are
controlled by the influences of physical parameters in the presence of noise
term via It\̂{o} sense. Our results show that the proposed technique is better suited
for solving many other complex models arising in real-life problems.
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1 Introduction

The subject of non-linear waves has become increasingly important in layers of the
Earth’s magnetotail plasma [1], liquid crystals [2], fluid dynamics [3], gas–liquid [4], plasma
[5], birefringent fibers [6], and non-linear optics [7]. These waves describe so many complex
phenomena and are reflected in the form of deterministic or stochastic non-linear partial
differential equations (NPDEs), such as the resonant non-linear Schrödinger equation [8],
the Phi-4 equation and foam drainage equation [9], the system of ISALWs [10], and the (1 +
1)-dimensional Benjamin–Bona–Mahony and (2 + 1)-dimensional asymmetric
Nizhnik–Novikov–Veselov equations [11]. The study of the nature of these equations
and their applications has attracted the attention of many scientists [12–16].

A stochastic process is a mathematical representation of how a random phenomenon
might appear at any given time after it first occurs [17]. The Brownian motion (Wiener
process) is a physical process. It is a widely used stochastic process in a dispersive
environment. This process has been used in quantum mechanics, biophysics, modeling
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stockmarkets, and chemistry [18]. The Brownianmotion is the basic
example of both a martingale and a Markov process [17]. The
Brownian process gave rise to the study of continuous time
martingales. An Itô process is a stochastic process that has been
modified for Brownian motion [17]. There are numerous processes
that depend on particles moving stochastically in random potentials.
In particular, Brownian motion is a crucial method for stochastic
non-linear partial differential equations (SNPDEs). These equations
have a significant impact on a variety of natural science application
domains [16, 19]. There has been recent progress in the study of
stochastic stabilization and destabilization of deterministic systems
[20, 21].

The dynamics of optical soliton propagation in nanofibers,
quantum mechanics, magnetohydrodynamics, plasma physics,
and superfluids are primarily described by the non-linear
Schrödinger equation (NLSE). [22] investigated the perturbed
NLSE with Kerr law non-linearity in the existence of random
dispersion effect. [23] studied the stochastic higher-order
dispersive NLSE and the stochastic unstable NLSE. The
generalized Schrödinger-Boussinesq model, which depicts the
interaction of complex short-wave and real long-wave envelopes,
has been solved in new ways by [24]. This equation includes a
dynamical balance between the non-linear self-interaction and
linear dispersive spreading of the wave. In picosecond models,
the NLSE is considered a primary model to investigate pulse
propagation. This equation emerges in different physical settings
in hydrodynamics and fluid mechanics, depicting the evolution
of surface gravity water waves. In spite of the fact that the
symmetries of the Schrödinger model are of great importance
in solving several problems of quantum mechanics, it remains
indubitable that they are most beneficial in constructing their
exact solutions [25]. Due to the potential applications of the
NLSEs, the study of soliton solutions has been performed from
different perspectives [26–31]. The investigation of chiral non-
linear NLSEs in two dimensions are of great importance [32].
Indeed, the NLSE has also been taken into account as a model to
study the oceanic rogue waves brought on by a non-linear energy
transfer in the open ocean, deterministically and stochastically
[33, 34].

The stochastic effect of the NPDEs plays a key role in
illustrating many vital phenomena in various fields of applied
sciences, such as magneto-static spin waves, solid state physics,
electromagnetic wave propagation, biology, and fluid mechanics
[10, 23, 35]. In this paper, we consider three models of NLSEs
forced by multiplicative noise in the Itô sense. We first consider
the NLSE forced by multiplicative noise in the Itô sense, labeled
as NLS+, and given by [36]:

iut + uxx + 2γ | u|2u + σ u βt � 0. (1.1)
γ ∈ R − {0} is the non-linear coefficient, and u (x, t) is a complex-
valued function, whereas σ is the noise strength. The term uxx
denotes the effect of dissipation, and the term |u|2 u denotes the
non-linearity effect. The noise βt is the time derivative of the
Brownian motion β(t).

We second consider the NLSE forced by multiplicative noise in
the Itô sense, labeled as NLS−, and given by [36]:

iut + uxx − 2γ | u|2u + σ u βt � 0. (1.2)

We third consider the NLSE forced by multiplicative noise in Itô
sense labeled as the complex cubic NLSE with δ-potential and given
by [37]:

iut + 1
2
uxx − αδu − ρ | u|2u + σ u βt � 0. (1.3)

α, δ, ρ ∈ R − {0}; δ is the Dirac measure at the origin. The delta
potential is “attractive” for α < 0 whereas “repulsive” for α > 0 [38].
[39] studied the stability of solutions for Eq. 1.3. [40] investigated the
behavior of the flow through Eq. 1.3. [41] solved this model utilizing
the variational method. These authors considered this equation in
the absence of the noise term.

In the ongoing work, we produce some new stochastic
solutions for the aforementioned three models of NLSEs
forced by multiplicative noise in the Itô sense. Specifically, we
apply the durable technique [42] to produce these new
solutions. The proposed essential technique has various
advantages, including avoiding difficult and time-consuming
computations and providing precise solutions. This technique
is simple, reliable, and potent. Moreover, this solver can be
utilized as a box solver for a variety of other models. To the best
of our knowledge, no previous study has been
conducted utilizing this technique for solving these models
via Brownian motion process in the Itô sense. Specifically, in
a deterministic sense, most standard publications considered
the same models. In contrast to these publications, we
approached it in a stochastic manner. The acquired results
are very beneficial in optical fiber communications,
neuroscience, plasma physics, and applications of
energy. Finally, the presented technique can be applied to
solve many other physical systems inherently non-linear in
applied science.

The rest of the article is arranged as follows: Section 2 presents
the definition of the Brownian motion process; Section 3 introduces
some new stochastic solutions for the types of NLSEs forced by

FIGURE 1
Influence of stochastic refinement on soliton solution (3.4) for
k = 1.5, c = 1.9, and γ = 3.
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multiplicative noise in the Itô sense. It also presents an investigation
of the acquired solutions for the consideredmodels. Indeed, we show
the influence of the non-linear parameter on the behavior of
solutions. Finally, Section 4 gives a conclusion remark about the
acquired results.

2 Preliminaries

Here, we recall the definition of the Brownian motion
process. The noise βt is the time derivative of the Brownian
motion β(t) [43]. We only consider instances of spatially
continuous noise. A Brownian motion is a stochastic process

that is continuous in time. The main properties of Brownian
motion {β(t)}t≥0 are

(i) β(p), where p ≥ 0 is a continuous function of p.
(ii) For q < p, β(q) − β(p) is independent of increases,
(iii) β(p) − β(q) has a normal distribution with a mean of 0 and

variance p − q.

The white noise in time is the distributional derivative of the
Brownian motion _β � βt � dβ

dt. In the formal sense, it is delta-
correlated.

E _β p( ) _β q( )( ) � δp−q.

FIGURE 2
Trajectory of solution (3.4) with t for k = 1.5, c = 1.9, and γ = 3.

FIGURE 4
Trajectory of solution (3.16) with t for k = 1.1, c = −2.8, and γ = 1.

FIGURE 3
Trajectory of solution (3.4) with σ for k = 1.5, c = 1.9, and γ = 3.

FIGURE 5
Trajectory of solution (3.16) with σ for k = 1.1, c = −2.8, and γ = 1.
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δ is the Dirac mass. It is common to view white noise as a
mathematical idealization of events like sudden and enormous
fluctuations. Furthermore, there are many research works for
NPDEs via the Brownian motion process [44].

Theorem 2.1. [45] Assume that g: R → R is twice continuously
differentiable and βt is the Brownian motion. Then, for every t ≥
0, a.s.,

g βt( ) � g β0( ) + ∫t

0
g′ βs( )dβs + 1

2
∫t

0
g″ βs( )ds.

Definition 2.1. [45] An n-dimensional process,
βt � (β1t , . . . , βnt ), is a standard n-dimensional Brownian motion
if each βit is a standard Brownian motion and βit’s are independent of
each other.

The Itô differential is defined as

dg � g βt+dt, t + dt( ) − g βt, t( ).
This is the change in g over a small period of time dt.

3 Main results and discussions

Here, we consider three types of NLSEs forced by multiplicative
noise in the Itô sense. Specifically, we introduce some new stochastic
solutions for these models using the unified technique [42]. We also
provide the investigation of the acquired solutions for the considered
models.

FIGURE 6
3D plot for solution (3.4) with k = 1.5, c = 1.9, and γ = 2.

FIGURE 8
3D plot for solution (3.16) with k = 1.1, c = −2.8, and γ = 1.

FIGURE 7
2D plot for solution (3.16) with k = 1.1, c = −2.8, and γ = 1.

FIGURE 9
2D plot for solution (3.22) with k=0.6, α=0.3, δ=0.5, c=2.8, and
ρ = 1.
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3.1 NLS+

Using the transformation [36],

u x, t( ) � q ξ( ) ei kx+ct+σβ t( )( ), ξ � x + vt, (3.1)
where k, c, and v are constants, and we obtain

q″ + 2γ q3 − k2 + c( )q � 0, v � −2k. (3.2)
In view of the box solver [42], the solutions for Eq. 3.2 are
Family I is expressed as

q1,2 x, t( ) � ±

�����
k2 + c

γ

√
sech ±

�����
k2 + c

√
x + vt( )( ). (3.3)

Consequently, the solutions of Eq. 1.1 are

u1,2 x, t( ) � ±

�����
k2 + c

γ

√
sech ±

�����
k2 + c

√
x + vt( )( ) ei kx+ct+σβ t( )( ).

(3.4)
Family II is expressed as

q3,4 x, t( ) � ±

���������
35 k2 + c( )

36 γ

√
sech2 ±

��������
5 k2 + c( )

12

√
x + vt( )( ). (3.5)

Consequently, the solutions of Eq. 1.1 are

u3,4 x, t( ) � ±

���������
35 k2 + c( )

36 γ

√
sech2 ±

��������
5 k2 + c( )

12

√
x + vt( )( ) ei kx+ct+σβ t( )( ).

(3.6)
Family III is expressed as

q5,6 x, t( ) � ±

�����
k2 + c

2γ

√
tanh ±

��������− k2 + c( )
2

√
x + vt( )( ). (3.7)

Consequently, the solutions of Eq. 1.1 are

u5,6 x, t( ) � ±

�����
k2 + c

2γ

√
tanh ±

��������− k2 + c( )
2

√
x + vt( )( ) ei kx+ct+σβ t( )( ).

(3.8)

3.2 NLS−

Using the transformation [36],

u x, t( ) � q ξ( ) ei kx+ct+σβ t( )( ), ξ � x + vt, (3.9)
where k, r, and v are constants, and σ is the noise strength; we obtain

q″ − 2γ q3 − k2 + c( )q � 0, v � −2k. (3.10)
In view of the box solver [42], the solutions for Eq. 3.10 are
Family I is expressed as

~q1,2 x, t( ) � ±

��������
− k2 + c( )

γ

√
sech ±

�����
k2 + c

√
x + vt( )( ). (3.11)

Consequently, the solutions of Eq. 1.2 are

~u1,2 x, t( ) � ±

��������
− k2 + c( )

γ

√
sech ±

�����
k2 + c

√
x + vt( )( ) ei kx+ct+σβ t( )( ).

(3.12)
Family II is expressed as

~q3,4 x, t( ) � ±

����������
−35 k2 + c( )

36γ

√
sech2 ±

��������
5 k2 + c( )

12

√
x + vt( )( ).

(3.13)
Consequently, the solutions of Eq. 1.2 are

~u3,4 x, t( ) x, t( ) � ±

����������
−35 k2 + c( )

36γ

√
sech2 ±

��������
5 k2 + c( )

12

√
x + vt( )( )

ei kx+ct+σβ t( )( ). (3.14)
Family III is expressed as

~q5,6 x, t( ) � ±

��������
− k2 + c( )

2γ

√
tanh ±

��������− k2 + c( )
2

√
x + vt( )( ). (3.15)

Consequently, the solutions of Eq. 1.2 are

~u5,6 x, t( ) x, t( ) � ±

��������
− k2 + c( )

2γ

√
tanh ±

��������− k2 + c( )
2

√
x + vt( )( ) ei kx+ct+σβ t( )( ).

(3.16)

3.3 The complex cubic NLSEwith δ-potential

Utilizing wave transformation [37],

u x, t( ) � q ξ( ) ei kx+ct+κ+σβ t( )( ); ξ � μ x − w t( ), (3.17)
yields w = k from the imaginary part, while the real part yields

μ2q″ − 2ρ q3 − k2 + 2 c + αδ( )( )q � 0. (3.18)
In view of the box solver [42], the solutions for Eq. 3.18 are

FIGURE 10
3D plot for solution (3.22) with k=0.6, α=0.3, δ=0.5, c= 2.8, and
ρ = 1.
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FIGURE 11
Variations of solution (3.16) with k = 1.1, c = −2.8 and γ = 1, 3, 5, 7, and 9.
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Family I is expressed as

q̂1,2 x, t( ) � ±

���������������
− k2 + 2 c + αδ( )( )

ρ

√
sech ±

������������
k2 + 2 c + αδ( )√

x − w t( )( ).
(3.19)

Consequently, the solutions of Eq. 1.3 are

û1,2 x, t( ) � ±

���������������
− k2 + 2 c + αδ( )( )

ρ

√
sech ±

������������
k2 + 2 c + αδ( )√(

× x − w t( )) ei kx+ct+κ+σβ t( )( ). (3.20)
Family II is expressed as

q̂3,4 x, t( ) � ±

�����������������
−35 k2 + 2 c + αδ( )( )

36ρ

√
sech2 ±

���������������
5 k2 + 2 c + αδ( )( )√

2
�
3

√ x − w t( )( ).
(3.21)

Consequently, the solutions of Eq. 1.3

û3,4 x, t( ) x, t( ) � ±

�����������������
−35 k2 + 2 c + αδ( )( )

36ρ

√
sech2 ±

���������������
5 k2 + 2 c + αδ( )( )√

2
�
3

√(
× x − w t( )) ei kx+ct+κ+σβ t( )( ). (3.22)

Family III is expressed as

q5,6 x, t( ) � ±

���������������
− k2 + 2 c + αδ( )( )

2ρ

√
tanh ±

���������������− k2 + 2 c + αδ( )( )√
2

x − w t( )( ).
(3.23)

Consequently, the solutions of Eq. 1.3 are

û5,6 x, t( ) x, t( ) � ±

���������������
− k2 + 2 c + αδ( )( )

2ρ

√
tanh ±

���������������− k2 + 2 c + αδ( )( )√
2

x − w t( )( )
ei kx+ct+κ+σβ t( )( ) . (3.24)

3.4 Physical interpretation

The optical solitary waves for the NLSEs through the
Brownian motion process explain many interesting complex
phenomena in nanofibers, condensed matter physics,
Bose–Einstein condensation (BEC), liquid crystal fiber
material, and plasma physics. The Brownian process is a very
effective method for a variety of real random phenomena. This
process is a fundamental object in martingale theory. One of the
main building blocks of stochastic calculus and the key to
modeling stochastic systems is Brownian motion. It can be
utilized to create processes with a variety of characteristics
and behaviors. This process has been applied to the study of
perpetual inflation in physical cosmology and the motion of
particles in a fluid.

Most standard papers considered the proposed three models
of NLSEs in the deterministic case. In contrast to our approach,
we consider these models in the stochastic case, namely, forced by
multiplicative noise in the Itô sense. We have applied the robust
approach to these models and provided some vital stochastic
solutions. The main advantages of this approach over others are

that it avoids laborious and complicated computations and offers
a wider applicability for solving other equations of applied
science. Indeed, this approach can be utilized as a box solver
for scientists. To the best of our knowledge, the proposed
technique for solving the stochastic NLSEs has never been
used previously.

The influence of a noise parameter on the spread of soliton
solutions has recently drawn increasing attention in the last
decade due to its vital applications. In this regard, the results
are significant in explaining the wave propagation of NLSEs
emerging in various areas of physical perspective. For
example, hyperbolic secant solutions arise in the profile of a
laminar jet [46], whereas hyperbolic tangent solutions arise in the
magnetic moment and special relativity. Moreover, the acquired
solutions’ behavior, which might be soliton, explosive, rough,
periodic, or dissipative, based on the physical parameters of the
NLSEs, for example, at specific values of the wave number known
as critical values, the behavior of a wave changes from
compressive to rarefactive, and stability regions change to
unstable regions [47, 48]. The instability regions have
changed in the presence of wave increase extremely like huge
waves [49].

It was anticipated that the presented results could be
interpreted using the basics of spatiotemporal patterns, hot
plasma, femtosecond pulse, and modeling of deep water [50,
51]. Figure 1 shows the behavior of solution (3.4) in the
deterministic case (σ = 0) and stochastic case (σ = 2). In
stochastic case, the Brownian motion function β(t) is given
in more detail in [52]. This figure illustrates that with the
increasing noise term σ, the effectiveness of randomization
increases, as does the ability of quick wave collapse. Figures
2–5 demonstrate the influence of the intensive randomness
coefficient on structure, bandwidth, amplitude, and phase
shift. Figure 6 depicts enveloped waves for solution (3.4).
Figures 7, 8 depict dark waves for solution (3.16). Figures 9,
10 depict bright envelope waves for solution (3.22).

3.5 The influence of γ

Clarifying the influence of γ on the characteristics of the wave
modes is one of the main goals of this work. Figure 11 shows the
wave pictures of solution (3.16) for various values of γ. It is
observed that an increase in beta reduces the optical periodic
amplitude of solution (3.16) without any change in space or
direction. Additionally, this amplitude does not change or reverse
in any way.

4 Conclusion

The three models of stochastic NLSEs forced by
multiplicative noise in the Itô sense were the subject of the
current research. We have applied the consolidated and
efficient technique to produce some new vital stochastic
solutions for the presented three models. The suggested
approach is not only simple and direct but also succinct and
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suitable for producing vital new results. This approach can be
used as a box solver for mathematicians, physicists, and
engineers. Some 2D, 3D, and trajectory graphs are plotted to
show the behavior of stochastic solutions via the Brownian
motion process. The proposed technique can potentially be
used to implement further models that develop in the fields of
natural science.
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