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We analyse the dynamics of convolutional filters’ parameters of a convolutional
neural networks during and after training, via a thermodynamic analogy which
allows for a sound definition of temperature. We show that removing high
temperature filters has a minor effect on the performance of the model, while
removing low temperature filters influencesmajorly both accuracy and loss decay.
This result could be exploited to implement a temperature-based pruning
technique for the filters and to determine efficiently the crucial filters for an
effective learning.
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1 Introduction

Deep Learning and neural networks [2–4] are among the most successful tools in
machine learning. In recent years, the research was mainly driven by a practical point of
view, mostly towards the improvement of the performance of the networks, without making
a general effort towards a comprehensive theory to interpret and explain the results. Neural
networks have largely been used as black boxes, deep and complex models able to adapt more
and more precisely to data, making it more and more difficult to understand how this
learning occurs. The problem of explainability of deep learning algorithms has now become
an important issue to deal with in order to understand and guide the usage of this technology
([5, 6]). In this work, we would like to provide a physically inspired description of the
functioning of convolutional neural networks (CNN), continuing a study we initiated in [1],
where the thermodynamics language was successfully employed to establish a more stringent
analogy between thermodynamic systems and neural networks. Indeed, starting from the
visionary work by Jaynes [7] and Hopfield [8], the powerful machinery of thermodynamics
was already, from the very beginning, a driving force in trying to interpret the mechanism of
functioning of neural networks. Later on, after the interlude and successes of Boltzmann
machines, Hinton proposed a CNN version in [9]. More work on the interpretation of neural
networks via thermodynamics appears in [10, 11], where a modeling via the Fokker-Planck
equation is introduced and the steady states of two distributions are analyzed in connection
with the stochastic gradient descent (SGD) optimization. Along the same vein, in [12, 13]
more mathematical modeling on SGD comes via the Langevin equation and gravity
formalisms, in the weak field approximation, respectively. Also, a notable attempt to a
more geometrical modeling in machine learning via thermodynamic concepts appears in the
Lie group thermodynamic approach originally due to Souriau, see [14] and refs. therein.
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Besides theoretical interest, we exploit the thermodynamic
analogy to reduce the computational and storage cost of the
network by introducing a temperature-based pruning technique
for the filters. Pruning of CNN filter weights is a common
practice, since such layers carry the major computational cost in
the training of a CNN architecture. In particular, compared to
pruning weights across the network, filter pruning is a naturally
structured way of pruning without introducing sparsity ([15, 16]). In
Sec. 2, we will make a comparison between our temperature-based
pruning technique for the filters and the magnitude-based pruning
of [16].

In the present paper, we look at a neural network as a
dynamical system and we want to understand the dynamics
of its parameters during and after the training. We model the set
of parameters as non-quantum and non-relativistic particles and
we link the time evolution of the trajectories to concepts from
thermodynamics and molecular dynamics. In our experiments
we focus on CNNs and we study the behaviour of the parameters
of each filter of the CNN separately. Our experiments show how
the physical interpretation sheds light on the behaviour of this
system and forms the basis for future improvements of our
understanding of it.

In Sec. 1 we give some physical interpretation of stochastic
gradient descent during training and we introduce the analogy with
thermodynamics, in particular the concept of temperature (see
also [1, 10]).

In Sec. 2 we describe our key experiment, where we remove
filters depending on their temperature and look at the resulting
metrics of the model (accuracy and loss). We discover that “hot”
filters can be pruned without affecting the performance.

Inspired by this first result, in Sec. 3 we further deepen our
understanding through experiments regarding the dynamics of the
parameters at equilibrium. We discover that higher temperature for
the filter is due to weights oscillating more and reaching more
distant positions. Furthermore, we are also interested in discovering
the general characteristics of the dynamics under SGD and we find
out a double component dynamics for the weights.

Finally, in Sec. 5, we draw conclusions and we mention further
directions for the future.

1.1 Deep learning and thermodynamics

We review, compare and deepen the study of the
thermodynamic analysis of SGD in [1, 10].

1.1.1 Stochastic gradient descent (SGD)
In a problem of optimization, a standard technique to minimize

the loss function L is the gradient descent (GD) with respect to the
weights w, that are the parameters defining our model. The update
step in the space of parameters has the form:

w → w − η∇L w( ) (1.1.1)
where η is the learning rate and it is an hyperparameter of the

model, i.e., chosen during validation.
The gradient descent minimization technique is guaranteed to

reach a suitable minimum of the loss function only if such function

is convex. Since in real experiments involving neural networks the
loss function is usually a non-convex function, it is necessary to use a
variation of GD, namely, stochastic gradient descent (SGD). In SGD,
we do not compute the gradient of the loss function summing over
all training data, but only on a randomly chosen subset of training
samples, called minibatch, B. The update of the weights is obtained
as above (1.1.1), however by replacing the gradient of the loss
function

∇L � 1
M

∑M
i�1

∇Li with ∇BL ≔
1
|B| ∑

i∈B
∇Li

where M is the size of the dataset, while |B| is the size of the
minibatch, another hyperparameter of the model. The SGD update
step is:

w → w − η∇BL w( ) (1.1.2)
In SGD the samples are extracted randomly and the same

sample can be extracted more than once in subsequent steps.
This stochastic technique of learning allows to explore the
landscape of the loss function with a noisy movement around the
direction of steepest descent and this prevents the training dynamics
from being trapped in an inconvenient local minimum of the loss
function. We define as epoch the number of steps of training
necessary to cover a number of samples equal to the size of the
entire training set.

1.1.2 Stochastic differential equations and SGD
We briefly review the work [10], since we want to generalize

some concepts appearing there and make a comparison with our
work. In [10], Chaudhari and Soatto propose a model for the discrete
SGD updates via a stochastic differential equation (SDE). The
continuous time limit of SGD is expressed as the equation:

dw t( ) � −η∇L w( )dt +
���������
2ζ−1D w( )

√
dW t( ) (1.1.3)

whereW(t) is introduced to take into account the stochasticity of the
descent. In the original treatment by Ito ([17] and refs. therein),W is
modeling a Wiener process, as Brownian motion, and D(w), the
diffusion matrix, controls the anisotropy of the diffusivity in the
process. In our setting, it is the covariance matrix of the gradient of
the loss and, in the experiments with SGD, it shows a very low rank:
this is due to the highly non-isotropic nature of the gradient of the
loss functions typically chosen in CNNs (see also [13]).

In [10], ζ is called the temperature and it is defined as ζ � η
2|B|.

This parameter captures the amount of noise due to SGD: indeed,
small minibatch sizes or high learning rates cause SGD to produce a
“noisier” trajectory in the parameters’ space. The convergence of the
stochastic gradient algorithm to this continuous time stochastic
differential equation is proven in [17] (see [18] for a MCMC
sampling treatment).

Due to the anisotropy of the SGD, in [10], the authors argue that
what is effectively minimized during the training of the neural
network is not the original loss function L, but an implicit
potential ϕ exhibiting different critical points. The distribution ρ

of the weights is stated to evolve according to the following Fokker-
Planck equation, which is a deterministic partial differential
equation:
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zρ

zt
� ∇ ∇BL w( )ρ + ζ−1∇ D w( )ρ( )( )

with a unique steady-state distribution which satisfies zρss

zt � 0. The
term ∇(∇L(w)ρ) incorporates the dynamics due to the gradient
descent, while the term involving temperature ζ−1∇(∇(D(w)ρ))
models the stochasticity of the descent. The potential ϕ(w) is
implicitly defined in terms of the steady-state solution ρss:

ϕ w( ) � −ζ−1 logρss w( ), ρss w( ) � 1
Z ζ( )e

−ζϕ w( )

where Z(ζ) is a normalizing function, which resembles the partition
function from statistical mechanics. SGD hence implicitly
minimizes a combination of two terms: one “energetic” and the
other “entropic”. The steady-state of SGD dynamics is such that it
places most of its probability in regions of the parameter space with
small values of ϕ(w), while maximizing the entropy of the
distribution ρss(w). The entropic term captures the non-
equilibrium behaviour of SGD, which, precisely because of this, is
able to obtain a good generalization performance. We will make an
analogy between this double component potential and the double
component dynamics of the weights we find out in Sec. 3. As found
in [19], solutions of discrete learning problems providing good
generalization belong to dense clusters in the parameters space,
rather than to sharp local minima. Chaudhari and Soatto exploit this
observation and construct a loss that is a smoothed version of the
original loss. Instead of relying on non-isotropic gradient noise to
obtain out-of-equilibrium behavior, these well-generalizable
solutions are found by construction. That is the same aim of
[20], where a local-entropy-based objective function is proposed,
in order to favoring well-generalizable solutions lying in large flat
regions of the energy landscape, while avoiding poorly-generalizable
solutions located in the sharp valleys.

1.1.3 Temperature of a neural network
In [1], Fioresi, Faglioni, Morri and Squadrani introduce a

parallelism between the SGD dynamics of the weights and the
kinetic theory of a gas of particles. Indeed, it is not difficult to
imagine the large number of weights of the network as particles
interacting with each other. They compute the temperature ζ for
different layers of a convolutional architecture, by proposing an
operational definition of it through a thermodynamic analogy. First
of all, each parameter is thought as a particle with unitary mass and
its scalar value is considered as its position. The instantaneous
velocity of the parameter is defined as the difference between the
value of the parameter at one step of training and its value at the
previous step:

vi t( ) � wi t( ) − wi t − 1( )
Δt

The authors define the instantaneous temperature of the system
as the mean kinetic energy of the particles:

T t( ) � 1
kBN

∑N
i�1

1
2
mivi t( )2

where N is the number of particles, or of degrees of freedom, and kB
is a constant to match the desired units. The thermodynamic
temperature at equilibrium, i.e., at the equilibrium of accuracy

and loss, is then defined as the time average of T(t) over the
time steps:

T � 1
T ∑T

t�0
T t( )

where T is the total number of time steps over which we compute
the mean.

Given this definition of temperature, the authors measure it
directly on the layers of a modified LeNet architecture consisting of
two convolutional layers followed by two linear ones. Specifically,
they compute the temperature on the last epoch of training by
averaging over the time steps inside the epoch. Despite in the
literature the concept of temperature is introduced as
proportional to these parameters, the behaviour with respect to
this new measure of temperature is quite different. Different layers
exhibit significantly different behaviours in the dependence of η and
1
|B| from the temperature and no elementary function expresses the
temperature in terms of learning rate and batch size. In particular,
the linearity is satisfied only by the two final dense layers, whereas
the convolutional layers are characterized by a non-linear relation.

Furthermore, the authors compute the temperature of the filters
for the first convolutional layer and find out that the weights of
different filters have significantly different mean squared velocities.
Some filters keep a high and very dispersed distribution of their
parameter velocities, while other filters show an average low velocity
with a concentrated distribution (Figure 1). A possible interpretation
of this difference is the following. The filters which show a more
stable behaviour, the “colder” ones, are learning better, hence they
are most effective for the classification task, since, once the optimal
configuration of their parameters is discovered, they do not change
anymore. The filters which are less stable, the “hotter” ones, are not
learning: their weights do not contribute significantly to the

FIGURE 1
Temperature at equilibrium of the filters’ weights from the first
convolutional layer, after training on MNIST. The vertical dashed lines
divide one filter from the other. (See [1]).
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classification task. We plan to test the validity of our analysis in the
next section.

The concept of temperature is necessarily an abstraction in
the case of neural networks, but it leads to the analysis of the
velocities of the weights and this allows to do interesting
reasonings about the architecture, beyond the analogy. In the
following, we exploit this theoretical framework to investigate
the behaviour of the weights of the filters during and after the
training.

2 Pruning experiment

In this section we describe our main experiment and we
interpret it in the light of the treatment of our previous section.

2.1 The architecture

The architecture we use is quite simple and consists of
4 convolutional layers, separated by a dropout and a 2 × 2 max
pooling layers (Figure 2).

Differently from [1, 10], we decide not to apply batch
normalization to the ReLU activations of the convolutional
layers, since it influences the distribution of the weights by
normalizing them and we do not want this bias in our
experiments. We optimize the network with SGD and, in
particular, we use Adam optimizer with a starting learning rate
of 0.001 and a dropout percentage of 0.1. We also make a
comparison between trainings with a regularization decay of
0.001 and without it. Essentially, for both cases we draw the
same conclusions on the dynamics of the weights: the only
difference is due to the fact that the regularization confines the

dynamics of the weights and lowers their velocities, with no
considerable effects on performance.

We train this simple model on MNIST for 200 epochs, by
maintaining the default split between train and test provided by
Keras, and we consider the last 150 epochs as the equilibrium ones.
As we can see from Figure 3, after 50 epochs accuracy and loss have
reached their optimal values and continue slightly oscillating
around them.

In Table 1, we show the final accuracy and loss on both the
training and the test set, with or without regularization (accuracy
and loss are obtained by averaging on 10 different trainings of the
same model and computing standard deviation).

We also train the same model on CIFAR10 with worse
performance. This is due to the fact that CIFAR10 dataset is
more heterogeneous than MNIST, hence our simple algorithm is
not suitable for the more complex classification task. Then, we shall
focus on the results obtained on MNIST; however, we will also make
a comparison with the CIFAR10 experiments in Sec. 4, which
confirm our findings.

2.2 Temperature-based pruning technique

The first experiment consists in looking at how the accuracy and
the loss of the model get modified if we remove some filters, i.e., set
their weights and biases equal to zero, depending on their
temperature at equilibrium. We present the results obtained from
the training on MNIST, in presence of regularization. To measure
the equilibrium temperature of the filters, we take the squared
velocities of the weights over the last 150 epochs and for each
weight we compute the time average on the epochs. Then, for each
filter, we compute the mean on the total number of weights of those
average velocities. Instead of focusing on the time steps inside the

FIGURE 2
Architecture of our model.
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last epoch of training, as in [1], we think that it is more
representative to work between equilibrium epochs. Indeed, due
to the SGD mechanism, the evolution of the velocities between time
steps could be influenced by the fact we are looking at a different
batch of data at each step. In Figure 4, we show the distribution of
temperature for the 12 filters of the first convolutional layer,
resulting from one of the 10 trainings. The distribution of hot

and cold filters changes from training to training but it is
qualitatively the same.

We now proceed with a description of our experiment, whose
results are summarized in Table 2. If we set to zero the weights and
biases of the two “hottest” filters, we get small variations of accuracy
and loss, which respectively become 96.87% ± 2.77% and 0.12 ± 0.12.
If, instead, we set to zero the parameters of the two “coldest” filters,
accuracy and loss become respectively 75.70% ± 11.44% and 2.00 ±
1.01. We conclude that the removal of the two “coldest” filters leads
to a bad performance, while removing the two “hottest” ones does
not cause a significant drop in the accuracy.

We now perform a different experiment: we remove all the
filters except the three “hottest” ones. We obtain that the
performance of the model gets drastically worse: the accuracy
is 24.44% ± 8.72% while the loss is 4.00 ± 1.40. Then, we also look
at the metrics after removing all the filters except for the three
“coldest” ones. The accuracy becomes 44.06% ± 18.55% and the
loss becomes 4.00 ± 2.15. In this case, the performance of the
model gets clearly worse since we are evaluating a model with
only 3 filters in the first layer, but it is generally better than the
one resulting from the evaluation of the model with only the
three “hottest” ones, thus reinforcing the conclusions from our
previous experiment.

In Table 2, we present the performance of the model, removing
filters depending on their temperature.

FIGURE 3
Accuracy and loss on the test set of MNIST, with regularization.

TABLE 1 Accuracy and loss on the test set with or without regularization.

Model With regularization Without regularization

Test Accuracy 98.94% ± 0.06% 98.80% ± 0.13%

Test Loss 0.041 ± 0.002 0.084 ± 0.022

Training Accuracy 99.85% ± 0.02% 99.41% ± 0.04%

Training Loss 0.0047 ± 0.0005 0.028 ± 0.004

FIGURE 4
Distribution of the filters’ equilibrium temperature for the first
layer, after training with regularization on MNIST. This is the result for
one of the 10 trainings.

TABLE 2 Accuracy and loss on the test set after cropping different filters from
the first CNN on MNIST, in case of regularization. Average and standard
deviation are computed for 10 trainings.

Model Test accuracy Test loss

Original model 98.94% ± 0.06% 0.041 ± 0.002

Without the two “hottest” filters 96.87% ± 2.77% 0.12 ± 0.12

With only the three “hottest” filters 24.44% ± 8.72% 4.00 ± 1.40

Without the two “coldest” filters 75.70% ± 11.44% 2.00 ± 1.01

With only the three “coldest” filters 44.06% ± 18.55% 4.00 ± 2.15
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We then repeated our experiments without regularization,
obtaining the Table 3.

We discover that “cold” filters have now an even greater role
in the performance of the model, as “hot” filters, on the other
hand, are of negligible importance. Hence, in absence of
regularization, we have a more marked distinction between
“cold” and “hot” filters, than in the regularization case. We
will further discuss this difference and its interpretation in our
next section.

It is interesting to compare our pruning technique to the one
proposed in [16]. The authors in [16] prune filters depending on
the sum of the absolute kernel weights, i.e., their l1-norm. The
filters with the smallest norms are pruned, together with the
resulting feature maps and with the filters in the next
convolutional layer corresponding to those feature maps. This
pruning technique is based on the fact that the smaller is the sum
of the absolute values of the weights, the weaker are their
activations compared to the other filters in that layer. All
convolutional layers of the architecture are pruned by directly
eliminating the weights of the filters with the smallest norms and
then the model is retrained. The final performance after
retraining the pruned model is better with respect to the
initial one before pruning. Differently from them, we stress
that we evaluate the performance of the model after pruning
but we do not further train the pruned model to obtain the initial
performance back. Indeed, by now, our study simply wanted to
attest the validity of our reasoning about temperature as a
pruning criterion, but next step is to effectively eliminate the
pruned filters from every layer of the architecture and try both
further training the model and training it from scratch without
the pruned filters. What is more, as we will largely show in the
next Section, “cold” filters are generally characterized by smaller
l1-norm with respect to “hot” filters and they are precisely the
ones we maintain and do not prune away. This is a major
difference with the work in [16] and it is worth to further
investigate it in the future. By now, we possibly link this
difference to the fact that we are working on a much simpler
architecture. However, our two pruning methods both follow
from the observation of a disparity among the filters of the same
CNN, either in the magnitude or in the temperature.

3 Analysis of the dynamics

In this section, we provide some insight into the result described
in the previous section by linking the temperature of the filters to the
dynamics of their weights. We first examine the trajectories of the
weights and the behaviour of their velocities, then we establish a
parallel of our findings with the work [10], as described in the first
section.

3.1 Trajectories of the weights

In Figure 5, we show the trajectory for the 25 weights of the
“coldest” and “hottest” filters of the first convolutional layer, for one
of the trainings with regularization. Due to the presence of the
regularization decay, which is the same for each filter, the weights
remain stable along the epochs. However, if we look at the behaviour
of their velocities at equilibrium (Figure 6), we notice that the
weights vary from epoch to epoch in a noisy way and this is
linked to the stochasticity of the training. In particular,
differently from the “coldest” filter, we see that the “hottest” filter
shows quite a large oscillation behaviour just after equilibrium is
reached, which does not allow it to converge to a stable pattern soon.
This means that the “hottest” filter employs more time to stabilize its
weights to low velocities and, even when the metrics of the model
have reached equilibrium, its weights continue to vary considerably.
This is a way to see in which sense “hotter” filters influence less the
total performance of the model: even when their weights highly
oscillate, loss and accuracy remain stable around their equilibrium
values and seem not being affected by that oscillation. This suggests
that the 12 filters are not all necessary to the learning and this is
confirmed in fact by our temperature pruning based experiments:
the removal of the “hottest” filters will not produce a significant
change in accuracy and loss.

We discover that high temperature, which means high mean
squared velocity, is not simply associated to a drift preventing
weights from stabilizing, but it is also linked to a larger
oscillation of the weights around their stable configuration. The
dynamics of the weights is indeed characterized by two components:
a drift and an oscillation, remembering the double component

FIGURE 5
The trajectory of the weights from the “coldest” (on the left) and the “hottest” (on the right) filters in case of regularization.
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FIGURE 6
The behaviour at equilibrium for the velocities of the “coldest” (on the left) and “hottest” (on the right) filters, in case of regularization.

FIGURE 7
The trajectory of the weights and the behaviour of the velocities at equilibrium from the “coldest” filter, in absence of regularization.

FIGURE 8
The trajectory of the weights and the behaviour of the velocities at equilibrium from the “hottest” filter, in absence of regularization.
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potential introduced in [10] we recalled in Sec. 1. However, in case of
regularization, since the velocities are very low, the oscillation is very
small.

If we repeat the same study on a training without regularization,
the movement of the weights is less confined and shows greater
oscillation, but we encounter the same relation between temperature
and performance, as for the regularization case. In Figure 7 and
Figure 8, we show the trajectories and velocities of the weights from
the “coldest” and “hottest” filters of the first layer. As a consequence
of what we have just said, without regularization, the temperature for
the filters is generally higher and, differently from Figure 4, its
distribution covers a larger range (Figure 9).

Indeed, with respect to the regularization case, now the filters
differ much more in the trajectories of their weights. Some filters
stabilize and reach low equilibrium temperature, even if higher with
respect to the “cold” filters of the regularization case, while the others
maintain high temperature, since most weights continue to diffuse

or highly oscillate. What is more, since there is no regularization
decay, the velocities of the weights do not exponentially decay along
the equilibrium epochs as in Figure 6, but they remain the same.

3.2 Pattern of filters

We now look at the pattern learnt by the filters by simply
printing their values at the last epoch. We can see that, in case of
regularization, the filters are qualitative similar in the sense that they
share a similar pattern, which is a mix of colours (Figure 10). This is
due to the confinement of the dynamics. On the contrary, in absence
of regularization, some filters are characterized by a clear contrast in
colour, while others exhibit a mixed pattern (Figure 11). Without
regularization, the difference between the filters is more
pronounced; since the weights are not confined, the filters are
free to reach different final configurations. Indeed, with respect
to the regularization case, each filter covers a different range of
values for the weights. As a consequence, we see an higher difference
in temperature among the filters. Moreover, the three “coldest”
filters contribute more to the performance of the model with respect
to the three “coldest” of the regularized training (Tables 2, 3). With
regularization, indeed, the weights can not move as much and the
temperature of the filters is restricted to a smaller range. Hence, the
weights necessary to optimally learn are distributed among a greater
number of “cold” filters.

However, our general conclusions apply to both cases, with and
without regularization. Cold filters reach their stable configuration
and those are useful to the classification tasks, as our Tables 2, 3
show. Hot filters either are still moving or show a more oscillating
behaviour, hence they do not reach a stable configuration when
instead the macroscopic quantities of accuracy and loss do: those are
the filters that can be safely removed without changing the accuracy
of our model.

Overall, this study shows that, given the dataset and the model,
only a certain number of filters per layer is really necessary to the
learning process. Then, we can treat the number of filters as an

FIGURE 9
Distribution of the filters’ equilibrium temperature for the first
layer, after training without regularization on MNIST. This distribution
comes from one of the 10 trainings.

FIGURE 10
The patterns of the filters from the first convolutional layer on MNIST, in presence of regularization.
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hyperparameter of the model and we can use the temperature as a
criterion to decide what is the minimum number of filters needed for
the classification task.

3.3 The two components of the dynamics

As we briefly stated in the last section, we discover that the
dynamics of the weights is characterized by two components, one
takes into account the drift or translation and the other one the
oscillation. In accordance with the introduction of a two terms
potential by Chaudhari and Soatto in [10], we could link the
component of the dynamics describing the translation (or drift)
to the minimization of the “energetic” term of the potential, while
the other component captures the noisy movement due to the
“entropic” term. We stress again that the noisy movement is due
to the stochasticity of the descent.

We study the dynamics of the weights by computing their mean
squared displacement in time.

For each shift of epochs, we measure how much each weight has
displaced in average from its initial position. We compute the MSD
(mean square displacement) for the weights of each filter separately

and we concentrate on the last 150 equilibrium epochs. As in [10],
we would initially expect that, when convergence is reached, because
of the noisy oscillations, the weights are characterized by Brownian
motion around their stable position. However, we find out that, even
at equilibrium, the weights are characterized by a slow drift.

In the theory of Brownian motion, the MSD is linked to time
through the following expression:

MSD � 2dDt

where d is the dimensionality of the system andD is the diffusion
constant. In our case, the dimensionality of the system is just 1, since
every weight can be seen as a random walk in 1 dimension. In the
case of Brownian motion, the mean squared displacement is linearly
proportional to time and this is valid asymptotically, while at the
beginning of the dynamics the relation is quadratic. In our case, the
random walk is not a simple random walk, since the displacement at
each step is not necessarily unitary and there is no equal probability
to go in a direction or in the other. The dynamics of the weights is
indeed subject to the minimization of a potential depending on all
the other weights and, at every step of training, the update of the
weight also depends on where it is located in the parameters’ space.
Nevertheless, the same relation links the MSD to time and we have a
different diffusion constant for each weight.

In Figure 12, we show the log plot of the mean squared
displacement for the 25 weights of a filter of the first layer, in
case of regularization. We also show the log plot of the mean
displacement as an additional study of the dynamics of the
weights. To better observe the behaviour of the displacement in
time, we superimpose a linear and a quadratic trends in dashed black
lines. We can see that, for large shifts in time, log (MSD) and log
(epochs) are connected by a quadratic relation, that is, the mean
squared displacement is quadratic in time. Accordingly, we can see
that the mean displacement is linear in time. The oscillatory
behaviour of the curve for some of the weights arises when the
weight displaces only of a small quantity along the 150 epochs.

FIGURE 11
The patterns of the filters from the first convolutional layer on MNIST, in absence of regularization.

TABLE 3 Accuracy and loss on the test set after cropping different filters from
the first CNN on MNIST, in absence of regularization.

Model Test accuracy Test loss

Original model 98.80% ± 0.13% 0.084 ± 0.022

Without the two “hottest” filters 98.52% ± 0.32% 0.94 ± 0.36

With only the three “hottest” filters 19.60% ± 5.66% 5.23 ± 1.61

Without the two “coldest” filters 65.40% ± 13.77% 2.83 ± 2.22

With only the three “coldest” filters 88.88% ± 6.86% 0.62 ± 0.48
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Then, at equilibrium, the weights do not exhibit pure Brownian
motion, but they are characterized by a drift and this occurs for both
“cold” and “hot” filters. Indeed, the linearity in time of the mean
displacement indicates a translational dynamics. However, this drift
is small and it is not detectable by simply looking at the trajectory of
the weights over the epochs (Figure 5).

Exactly as Chaudhari and Soatto claim in [10], it seems that, at
equilibrium, the weights do not simply move noisily around the final
stable configuration, but their dynamics has a deterministic
component that makes them move in a certain direction.
However, differently from [10], we are not modeling the overall
dynamics of all the weights of the network, but we concentrate only
on the study of the weights of each filter.

Obviously, the drift occurs in a noisy way, since the descent is
stochastic and the weights oscillate. If we discard the drift and only
observe the mean squared displacement due to the noisy component

of the dynamics, we discover that it is linear in time as for Brownian
motion. In Figure 13, we show the MSD after subtracting the square
of the mean displacement due to the drift. The mean displacement
due to the drift is computed as (�vΔt)2, where �v is the weight’s mean
velocity over the equilibrium epochs and Δt is the shift in epochs.
We trace back the noisy behaviour on the right to the fact that the
mean is done on a smaller number of points and that the oscillation
of the weights is very small.

The distinction between a drift and an oscillation component
leads us to defining a new and more precise temperature for the
filters, which is proportional to the mean kinetic energy due to only
the noisy dynamics. We obtain the new mean kinetic energy by
subtracting the mean of �vi over the weights to the original mean
kinetic energy. In Figure 14, we show the new temperature
distribution for the filters of the first layer, in case of
regularization. We notice that, comparing the new temperature

FIGURE 12
The log plot of the MSD and MD as function of the epochs for a filter of the first layer, in case of training with regularization on MNIST.

FIGURE 13
The log plot of the MSD due to only the noisy component of the
dynamics.

FIGURE 14
Distribution of the filters’ equilibrium temperature after
subtracting the drift component from the dynamics. The filters are the
ones of the first layer after training with regularization on MNIST and
this distribution comes from one of the 10 trainings.
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distribution to the original one in Figure 4, there are only minor
changes. This is due to the fact that the drift is very slow.

We obtain similar results on the training without regularization.
In this case, the weights which reach a stable value have a very small
drift, whereas the weights which do not stabilize show a larger drift.
These findings confirm our pruning technique based on the
temperature on the filters.

4 Results on CIFAR10

In this section we report some results on CIFAR10 dataset to
validate our conclusions on the MNIST dataset. We train the model
on CIFAR10 for 1000 epochs and we consider the last 700 as the
equilibrium ones. We get essentially the same results as before for
the dynamics of the weights of the filters. With regularization, the
weights do not displace much from the initial position. At
equilibrium, they slightly oscillate around their stable position
and slowly drift. Without regularization, this also applies, but the
oscillation is higher and some of the weights, usually from “hot”
filters, diffuse to distant positions.

If we remove filters depending on their temperature, we obtain
again that “hot” filters contribute less to the performancewith respect to
the “cold” ones (Tables 4, 5). However, with respect to the experiments
on MNIST, in case of regularization the elimination of the “hot” filters
causes now a considerable drop in the performance. This proves that all
12 filters are now necessary to the learning. This is reasonable, since the
images in CIFAR10 showmuchmore variety than those inMNIST, but
we are training the same model on it. As described in the previous
sections, regularization allows to maintain all filters more or less stable.
If all filters are needed for the classification, regularization makes them

all learning a pattern. Without regularization, instead, some filters (the
“coldest”) learn a pattern, while others do not (the “hottest”). In fact, if
we remove the “hottest” filters, the performance is nearly the same, as
for MNIST.

5 Conclusion

We present a stringent thermodynamic analogy for SGD
modeling in Deep Learning algorithms for classification tasks
and a comparison with the literature. Our physically-guided
understanding of neural networks allows us to present a
temperature-based pruning technique on CNNs filters.
Removing “hottest” filters does not significantly change the
performance of the model, while removing “coldest” filters
results in a significant drop in accuracy. Furthermore, for the
future, we can also think of an additional training loop which
supervises the temperature of the filters and stops optimizing the
filters whose velocities do not decrease.

We show that physical reasoning based on thermodynamics,
condensed matter physics and molecular dynamics can greatly
improve our understanding of neural networks and allows us to
propose new techniques, like temperature pruning filters, that we
believe can improve the performance of machine learning
algorithms.
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TABLE 4 Accuracy and loss on the test set after cropping different filters from
the first CNN on CIFAR10, in case of regularization. Average and standard
deviation are computed for 10 trainings.

Model Test accuracy Test loss

Original model 63.96% ± 0.42% 1.038 ± 0.011

Without the two “hottest” filters 42.50% ± 7.85% 1.72 ± 0.35

With only the three “hottest” filters 11.62% ± 2.74% 3.98 ± 0.94

Without the two “coldest” filters 31.48% ± 5.72% 2.48 ± 0.54

With only the three “coldest” filters 16.38% ± 2.23% 2.90 ± 0.60

TABLE 5 Accuracy and loss on the test set after cropping different filters from
the first CNN on CIFAR10, in absence of regularization.

Model Test accuracy Test loss

Original model 66.57% ± 0.65% 1.040 ± 0.022

Without the two “hottest” filters 64.90% ± 1.72% 1.08 ± 0.05

With only the three “hottest” filters 12.30% ± 3.00% 5.20 ± 1.36

Without the two “coldest” filters 52.34% ± 3.61% 1.57 ± 0.15

With only the three “coldest” filters 23.74% ± 5.60% 3 ± 0.53
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