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This paper presents a method based on orthogonal arrays of constructing pure
quaternary quantum error-correcting codes. As an application of the method,
some infinite classes of quantum error-correcting codes with distances 2, 3,
and 4 can be obtained. Moreover, the infinite class of quantum codes with
distance 2 is optimal. The advantage of our method also lies in the fact that the
quantum codes we obtain have less items for a basis quantum state than
existing ones.
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1 Introduction

Quantum systems are more fragile than classical systems. When quantum
information travels across a noisy channel, errors are unavoidable [1–3]. The
primary tool to deal with different types of quantum noises is quantum error-
correcting codes (QECCs) [1, 2, 4, 5]. They play an important role in quantum
information tasks, such as in entanglement purification, quantum key distribution,
fault-tolerant quantum computation, and so on [6–8]. Since its discovery, code
construction has come a long way [9–16]. Plenty of binary QECCs have been
obtained, some of which from classical error-correcting codes (CECCs) [16–19].
Relatively speaking, there are still less studies on quaternary QECCs. We are
motivated by the fact that CECCs are one-to-one connected to orthogonal arrays
(OAs) [20]. It would be interesting to see if OAs can reciprocate and help QECCs,
especially, quaternary ones. Therefore, the main aim of this work is to construct
quaternary QECCs from OAs.

If L is an r × N array with elements from S = {0, 1, . . ., s − 1} and every r × k subarray of L
contains each k-tuple based on S as a row with same frequency, then the array is said to be an
orthogonal array of strength k (for some k in the range 0 ≤ k ≤ N). We will use OA (r, N, s, k)
to denote such an array [21]. The theory of OAs has been developed significantly since the
seminal work of Rao [22]. In particular, in recent years many new methods for constructing
strength k OAs have been proposed, and a lot of new classes of OAs have been presented
[23–29]. An OA (r, N, s, k) is said to be an irredundant orthogonal array (IrOA), if every row
in any r × (N − k) subarray is unique [20]. If all of a pure quantum state’s reductions to k
qudits are maximally mixed, it is said to be k-uniform. And this state consists of N
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subsystems with d levels. A connection between a k-uniform state
and an irredundant orthogonal array (IrOA) was established by
Goyeneche et al. [20]. For simplicity, the normalization factors are
omitted from this paper.

Lemma 1. [20] If L �
s11 s12 / s1N
s21 s22 / s2N
..
. ..

.
/ ..

.

sr1 sr2 / srN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ is an IrOA(r, N, s, k), then the

superposition of r product states,

|Φ〉 � |s11s12 . . . s1N〉 + |s21s22 . . . s2N〉 +/ + |sr1sr2 . . . srN〉
is a k-uniform state.

By using this connection in Lemma 1, a lot of k-uniform states
have been constructed from OAs [20, 30–37]. This kind of k-
uniform states is closely related to QECCs [12, 20]. Usually,
quantum information theory benefits from OAs [38–43]. These
new developments in OAs and uniform states provide a higher
possibility to construct infinite classes of QECCs from OAs [35, 36].

In this work, we present a method based on OAs of constructing
pure quaternary QECCs. As an application of the method, some infinite
classes of QECCs with distances 2, 3, and 4 can be obtained. We know
that quantum bound reflects the optimality of QECCs and is a key
parameter to judge whether a construction method is effective or not.
Moreover, the resulting infinite class of quantum codes with distance 2 is
optimal. The advantage of our method also lies in the fact that the
constructed QECCs have less items in each basis state than existing ones.

This paper is organized as follows. After introducing symbols,
definitions, and required lemmas in Section 2, Section 3 presents the
main results. The conclusion is drawn in Section 4.

2 Preliminaries

We introduce several symbols, definitions and lemmas used in
this paper.

Let Fn
4 denote the n dimensional space over a Galois field

F4 � F2(ω) � {0, 1,ω, �ω � ω2}, ω2 = ω + 1. For the convenience of
codeword expression, we use F4 � {0, 1, 2, 3}. AT is the transposition of
matrix A. (s) � (0, 1, . . . , s − 1)T1×s, and 0r and 1r represent the r × 1
vector of 0s and 1s, respectively.We define the Kronecker productA⊗ B
and the Kronecker sum A ⊕ B as A ⊗ B � (aij · B)mu×nv and
A ⊕ B � (aij + B)mu×nv, respectively, if A � (aij)m×n and B �
(brs)u×v with entries from a finite field with binary operations (+
and ·). Here, aij + B denotes the u × vmatrix with elements aij + brs (1 ≤
r ≤ u, 1≤ s ≤ v). And if necessary, matrixA can always be viewed as a set
of its row vectors. The strength of an orthogonal array L is denoted by
t(L). We also use a k-strength OA to denote an OA of strength k for k ≥
0. Let (C4)⊗N � C4 ⊗ C4 ⊗/⊗ C4︸							︷︷							︸

N

.

Definition 1. [44] Suppose Sl = {(u1, . . ., ul)|ui ∈ S, i = 1, 2, . . ., l}. The
number of positions in which two vectors v = (v1, . . ., vl), u = (u1, . . .,
ul) ∈ Sl differ from one another is defined as the Hamming distance
HD(u, v) between them. Let HD(L) represents all possible values of the
Hamming distance between two distinct rows of an OA L. The
minimal distance of a matrix A means the minimal Hamming
distance between its distinct rows and denoted by MD(A).

Let k ≥ 1 and Ak represent the additive group of order sk which
consists all k-tuples of elements from A. The typical vector addition is

used as the binary operation. If
Ak

0 � {(x1, x2, . . . , xk): x1 � / � xk ∈ A}, Ak
0 is a subgroup of Ak

of order s, and Ak
i , i = 1, . . ., sk−1–1 will be used to denoted its cosets.

Definition 2. [44] Let D be an r × c matrix with elements fromA. For
every r × k submatrix of D, its rows are seen as entries of Ak. If in the
submatrix each setAk

i , i=0, 1, . . ., s
k−1–1, is represented equally frequently,

then the D is said to be a difference scheme of strength k. We use Dk(r, c, s)
to denote such a matrix. When k = 2, we denote Dk(r, c, s) by D(r, c, s).

Definition 3. [29] Let L be an OA(r, N, s, k). Suppose the rows of L
can be partitioned into u submatrices {L1, L2, . . ., Lu} such that each Li
is anOA(ru,N, s, k1) with k1 ≥ 0. Then the set {L1, L2, . . ., Lu} is called
an orthogonal partition of strength k1 of L. In particular, {L1, L2, . . .,
Lu} is called a strength k1 orthogonal partition of a space F

n
p if L � Fn

p .

Definition 4. Let D = Dk(r, c, s). A set of difference schemes {D1, D2,
. . ., Du} is called a k1-strength orthogonal partition of D, if Di⋂Dj = ø
for i ≠ j and ⋃u

i�1Di � D.

Lemma 2. [44] If su2 (mod 4), and s ≤ k, then the difference
scheme Dk(s

k−1, k + 1, s) exists.

Lemma 3. [34] If L = OA(sk, N, s, k), then MD(L) = N − k + 1.

Lemma 4. [45] (1) Let D = Dk(r, c, s). Then D ⊕ (s) = OA(rs, c, s, k).
(2) Let D = Dk (m, n, s) and L = OA (r, N, s, k) for k = 2, 3. Then

D ⊕ L = OA (mr, nN, s, k).

Lemma 5. [36] (Expansive replacementmethod) Assume that LA is a k-
strength OAwith s levels in factor 1 and that LB is a k-strength OAwith s
rows. After building a one-to-one mapping between the levels of factor
1 in LA and the rows of LB, we may construct an OA of strength k by
substituting each level of factor 1 in LA with the matching row from LB .

Lemma 6. [44] For a prime power s ≥ 2, anOA(sk, s + 1, s, k) exists if
s ≥ k − 1 ≥ 0.

Lemma 7. [12] If the reductions of all states in a subspace Q of
(Cs)⊗N to any given k parties are equal, then Q is an ((N,K,k + 1))s
QECC, and vice versa. Furthermore, if any state in Q is k-uniform,
then Q is pure, and vice versa.

We can also define a QECC ((N,K,k + 1))s according to Lemma
7, where N denotes the code length, K is the dimension of the
encoding state, k + 1 denotes the distance, and s denotes the levels
number. For s = 2, it is simply ((N, K, k + 1)).

Lemma 8. [46] (quantum Singleton bound) If K > 1 in an ((N,K,k +
1))s then K ≤ sN−2k. Similarly, a pure ((N,1,k + 1))s satisfies 2k ≤ N.

Definition 5. A QECC such that the equality in Lemma 8 holds is
called optimal.

3 Construction of ((N,K,k + 1))4 QECC

This section provides a construction method of quaternary
quantum error-correcting codes (QECCs) from orthogonal arrays
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(OAs). In Theorem 1, we use Lemma 4 (2) to construct QECCs with
distance 2. Theorems 2 and 3 produce QECCs with distances 3 and
4 from the OAs with orthogonal partitions. In Theorem 4, we study
the existence of QECCs with any distance by using a special
construction of OAs.

Theorem 1. For every N ≥ 2, there is a QECC ((N,K,2))4 for
each integer 1 ≤ K ≤ 4N−2 where the ((N, 4N−2, 2))4 code is
optimal.

Proof. When N ≥ 5, a difference scheme D = DN−1(4
N−2, N, 4)

exists by Lemma 2. Let L = D ⊕ (4) = OA (4N−1, N, 4, N − 1). By

Lemma 3,MD(L) = N − (N − 1) + 1 = 2. SetD �
d1
d2
..
.

d4N−2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. Let Li =

di ⊕ (4) = OA (4, N, 4, 1) for i = 1, 2, . . ., 4N−2. Then t (Li) = 1,

MD (Li) = N.
From Lemma 1, L1, L2, . . . , L4N−2 can generate 4N−2 1-uniform

states |φ1〉, |φ2〉, . . . , |φ4N−2〉. They can be used as a set of orthogonal
basis to generate a subspace Q of (C4)⊗N. Thus Q is an optimal
((N, 4N−2, 2))4 code by Lemma 7 and Definition 5.

In addition, for any integer 1 ≤ K ≤ 4N−2–1, if QK is
the subspace spanned by |φ1〉, . . ., |φK〉, then it is a
((N,K,2))4 code.

When 1 < N < 5, we can construct the following QECCs
((N, 4N−2, 2))4.

When N = 2, an optimal ((2,1,2))4 code can be generated with a
basis |φ〉 = |01〉 + |12〉 + |23〉 + |30〉.

When N = 3, takeD(4, 3, 4) �
0 0 0
0 1 2
0 2 3
0 3 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
d1
d2
d3
d4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. Let Ai = di

⊕ (4) and A �
A1

A2

A3

A4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. Obviously, A and Ai are OAs for i = 1, 2, 3, 4.

From Lemma 3,MD(A) = 2, and by Lemma 7, an optimal ((3,4,2))4

QECC can be obtained from A1, . . ., A4.

When N = 4, take D(4, 2, 4) �
0 0
0 1
0 2
0 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
d1
d2
d3
d4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. Then

B4(i−1)+j = di ⊕ ((4) (j − 1) ⊕ (4)) is an OA (4, 4, 4, 1) for i, j =

1, 2, 3, 4 and B �
B1

B2

..

.

B16

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � D(4, 2, 4) ⊕ F2

4 is an OA (64, 4, 4, 2). By

simple calculation, we have MD(B) = 2. By Lemma 7, an optimal

((4,16,2))4 QECC can be obtained from B1, . . ., B16.
Remark. The quantum codes obtained by Theorem 1 have less

items in a basis state than existing ones. For example, every basis
states of the ((3,4,2))4 code has four items. It has far less number of
items for a basis state than the ((3,4,2))4 in [13]. Compared with the
codes [[N,N − 2,2]]4 in [47] forN = 9 + 6mwith 0 ≤m ≤ 165, we have
the codes for all N ≥ 2.

Theorem 2. Suppose L is an OA(r, N, 4, 2) with MD(L) ≥ 3.
A QECC ((N,K,3))4 exists, if there are vectors b1, b2, . . ., bK in

ZN
4 that fulfill HD(bu, bv) ≥ 3 and |HD(bu, bv) − HD(L)|≥ 3

for u ≠ v.

Proof: Let X �
X1

X2

..

.

XK

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, where Xu = 1r ⊗ bu + L for 1 ≤ u ≤ K.

BothX and Xu are 2-strength OAs. Let x1 = bu + l1, x2 = bv + l2 ∈X for
l1, l2 ∈ L. Then we can compute the Hamming distance (HD)
between x1 and x2 and the minimum distance (MD) of X.

(1) HD (x1, x2) = MD(L) ≥ 3, if u = v, l1 ≠ l2.
(2) HD (x1, x2) = HD (bu, bv) ≥ 3, if u ≠ v, l1 = l2.
(3) If u ≠ v and l1 ≠ l2, we have HD (x1, x2) ≥HD (bu + l2, x2) − HD

(bu + l2, x1) or HD (x1, x2) ≥HD (bu + l2, x1) − HD (bu + l2, x2),
hence HD (x1, x2) ≥|HD (bu, bv) − HD(L)|≥ 3.

Therefore, MD(X) ≥ 3. We can obtain K states from {X1, X2,
. . ., XK} and Lemma 1. Let Q be a subspace of (C4)⊗N with the K
states to be an orthogonal basis. Thus Q is a QECC ((N,K,3))4 by
Lemma 7.

Theorem 3. There exists a QECC ((3p, 4p−n+1, 3))4 with
4n−1+2

3 ≤p≤ 4n−1
3 for n ≥ 3 and with 3 ≤ p ≤ 5 for n = 2.

Proof. Let {D1, D2, D3, D4} be orthogonal partition of the
difference scheme D (16, 3, 4) = (016, (4) ⊕ 04, 04 ⊕ (4)) and
{L1, L2, . . . , L4p−n } be an orthogonal partition of strength two of Fp

4 .
Let Yi denote the ith row of Fp−n

4 with 4n−1+2
3 ≤p≤ 4n−1

3 for n ≥ 3. Take

M �

D1 ⊕ L1

..

.

D1 ⊕ L4p−n

D2 ⊕ L1

..

.

D4 ⊕ L4p−n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

M1

..

.

M4p−n

M4p−n+1
..
.

M4p−n+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Li = (a1, . . . , an, ((an+1, . . . , ap) + 14n ⊗ Yi)) for i = 1, 2, . . .,
4p−n and (a1, a2, . . ., ap) is an OA (4n, p, 4, 2).

Because Dj is a 2-strength difference scheme and Li is a 2-
strength OA, it follows from Lemma 4 that Mk = Dj⊕ Li is a 2-
strength OA for k = 1, 2, . . ., 4p−n+1. Letm1 = d1 ⊕ l1,m2 = d2 ⊕ l2 ∈Mk

for d1, d2 ∈ Dj, l1, l2 ∈ Li. Then we have

HD m1, m2( ) �
3 ·HD l1, l2( ), if d1 � d2,
p ·HD d1, d2( ), if l1 � l2,
3 −HD d1, d2( )( ) ·HD l1, l2( ) + p −HD l1, l2( )( )·

HD d1, d2( ), if d1 ≠ d2, l1 ≠ l2.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Therefore,MD (Mk) ≥ 3 andMk is an IrOA for any k. Furthermore,

M is an OA and has strength two because it is equal toD(16, 3, 4) ⊕ F
p
4

after row permutations. Similarly, we can obtain MD(M) ≥ 3. From
Lemma 1, M1, M2, . . ., M4p−n+1 can generate 4p−n+1 states. They can be
used as a basis to form a subspace Q of (C4)⊗3p. From Lemma 7, Q is a
QECC ((3p, 4p−n+1, 3))4.

Similarly, when 3 ≤ p ≤ 5 and n = 2, we can construct a
((3p, 4p−1, 3))4 QECC.

Example 1. Let the following + be the operation in F4.

Let D1 �
0 0 0
0 1 2
0 2 3
0 3 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, D2 �
0 0 3
0 1 1
0 2 0
0 3 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, D3 �
0 0 2
0 1 0
0 2 1
0 3 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,
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D4 �
0 0 1
0 1 3
0 2 2
0 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. In Theorem 3, we take 3 ≤ p ≤ 5 and n = 2. Let

(a1, a2, . . ., ap) be an OA (16, p, 4, 2) and Li=(a1, a2, (a3, . . ., ap)
+ 116 ⊗ Yi), where Yi denotes the ith row of Fp−2

4 for i = 1, 2, . . .,
4p−2. Then {L1, L2, . . . , L4p−2 } is an orthogonal partition of strength 2 of
F
p
4 . We can obtain QECCs ((9, 42, 3))4, ((12, 43, 3))4 and

((15, 44, 3))4. With 6 ≤ p ≤ 21 for n = 3, Theorem 3 produces
QECCs ((18, 44, 3))4, ((21, 45, 3))4, . . . , ((63, 419, 3))4.

Theorem 4. If an OA(4n, p, 4, 3) exists for p > n ≥ 3, then there is a
((4p, 4p−n+1, 4))4 QECC.

Proof. This can be proved in the same way as Theorem 3.

Example 2. Let D1 = (016, (4) ⊕ 04, 04 ⊕ (4), (4) ⊕ (4)), D2 = (016, (4) ⊕
04, 04⊕ (4), 1 + (4)⊕ (4)), D3 = (016, (4)⊕ 04, 04⊕ (4), 2 + (4)⊕ (4)), D4 =
(016, (4)⊕ 04, 04⊕ (4), 3 + (4)⊕ (4)). Then the difference schemeD3(64, 4,
4) = (064, (4) ⊕ 016, 04 ⊕ (4) ⊕ 04, 016 ⊕ (4)) has a 3-strength orthogonal
partition {D1,D2,D3,D4}. Take p = 5, 6 and n = 3 in Theorem 4. Let (a1,
a2, . . ., ap) be an OA(64, p, 4, 3) and Li=(a1, a2, a3, (a4, . . ., ap) + 164 ⊗
Yi), where Yi denotes the ith row of Fp−3

4 for i = 1, 2, . . ., 4p−3. Then
{L1, L2, . . . , L4p−3 } is an orthogonal partition strength 3 of F

p
4 . By

Theorem 4, two new QECCs ((20, 43, 4))4 and ((24, 44, 4))4 can be
obtained.

Theorem 5. Let LN denote an OA(r, N, 4, k). Let Y �
[0s ⊕ LN1 , (s) ⊕ LN2 ] for s ≤ 4 and N1 + N2 ≤ N. If MD(Y) ≥ k +
1, then there exists an ((N1 +N2, s, k + 1))4 QECC.

Proof. Let Yi � [LN1 , i − 1 + LN2 ] for i = 1, 2, . . ., s. Since Yi is
isomorphic to Y1, Yi is an OA and t (Yi) = k. And we have

Y �
Y1

Y2

..

.

Ys

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. If MD(Y) ≥ k + 1, then Yi is an IrOA (r, N1 + N2,

4, k). By Lemma 7, an ((N1 +N2, s, k + 1))s QECC exists.

Example 3. As illustrations for small size codes, we obtain ((6,2,3))4,
((7,4,3))4 and ((5,4,3))4.

Take an OA (32, 7, 4, 2) = (a1, a2, . . ., a7) in [48]. For the case s =
2, take Y = (02 ⊕ (a5, a6), (2) ⊕ (a2, a3, a4, a7)). Then MD(Y) = 3.
Application of Theorem 5 yields a new ((6,2,3))4 code.

Let s = 4 and Y = (04 ⊕ (a4, a5, a6), (4) ⊕ (a1, a2, a3, a7)). Then
MD(Y) = 3. By Theorem 5, we can construct a ((7,4,3))4 code in [47].

Let L5 = (a1, a2, . . ., a5) be anOA (16, 5, 4, 2) andY= (04⊕ (a2, a3), (4)
⊕ (a1, a4, a5)). Then MD(Y) = 3 and we obtain an optimal ((5,4,3))4 code
from Theorem 5. Every basis states of the ((5,4,3))4 code has 64 items.
Compared to ((5,4,3))4 in [14], it includes less items for its base states.

Theorem 6. Let L = OA(r, N, 4, k) with MD(L) ≥ k + 1. We can
construct a QECC ((N,K,k + 1))4 if there are vectors b1, b2, . . ., bK in

ZN
4 such that MD

1r ⊗ b1 + L
1r ⊗ b2 + L

..

.

1r ⊗ bK + L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠≥ k + 1.

Proof: Let M �
M1

M2

..

.

MK

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

1r ⊗ b1 + L
1r ⊗ b2 + L

..

.

1r ⊗ bK + L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. Evidently,

MD(M) ≥ k + 1 and Mi is an OA (r, N, 4, k). By Lemma 7,
there is a QECC ((N,K,k + 1))4.

Example 4. For N = 7 and r = 32, take L = OA(32, 7, 4, 2) in [48].
We can get b1, b2, . . . , b10 ∈ Z7

4 which meet the requirements in
Theorem 6 where b1 = (0000000), b2 = (0001103), b3 =
(0011332), b4 = (0012030), b5 = (0013200), b6 = (0020021), b7 =
(0022113), b8 = (0023323), b9 = (0030210), b10 = (0031313). Then we
can construct a new ((7,10,3))4 QECC, which is better than the code
((7,4,3))4 in [47].

Theorem 7. If m is an integer satisfying 4m−1 + 3 < 2d ≤ 4m + 3, then
there exists a QECC ((nd, 1, d))4 for 2m(d − 1) ≤ nd ≤ (4m + 1)m.

Proof: Let q = 4m. From Lemma 6, there exists LB = OA (qd−1, q +
1, q, d − 1). By Lemma 3,MD (LB) = q − d + 3.When the q levels, 0, 1,
. . ., q − 1, are replaced respectively by distinct rows of Zm

4 , we can
construct LC = OA (qd−1 (q + 1)m, 4, d − 1). Removing the last 0, 1, 2,
. . ., (q − 2d + 3)m columns from LC, an L =OA (qd−1, nd, 4, d − 1) for
2m (d − 1) ≤ nd ≤ (4m + 1)m can be obtained and MD(L) ≥ d. By
Lemma 7, the desired QECC ((nd, 1, d))4 exists.

Remark. When m = 1, two optimal QECCs ((2,1,2))4 and
((4,1,3))4 can be obtained.

Example 5. By giving different values to d in Theorem 7, some new
QECCs with larger distances can be obtained, which are listed in
Table 1.

Theorem 8. Construction of new codes ((16,1,6))4, ((24,1,8))4,
((23,81,5))4, ((15,4,5))4, ((14,16,4))4, ((23,4,7))4, ((20,256,4))4 and
((6,1,4))4 from Lemma 7.

TABLE 1 Some new QECCs with larger distance by Theorem 7.

d m QECC nd

5 2 ((nd, 1, 5))4 16 ≤ nd ≤ 34

6 2 ((nd, 1, 6))4 20 ≤ nd ≤ 34

7 2 ((nd, 1, 7))4 24 ≤ nd ≤ 34

8 2 ((nd, 1, 8))4 28 ≤ nd ≤ 34

9 2 ((nd, 1, 9))4 32 ≤ nd ≤ 34

10 3 ((nd, 1, 10))4 54 ≤ nd ≤ 195

32 3 ((nd, 1, 32))4 186 ≤ nd ≤ 195

33 3 ((nd, 1, 33))4 192 ≤ nd ≤ 195

34 4 ((nd, 1, 34))4 264 ≤ nd ≤ 1028

100 4 ((nd, 1, 100))4 792 ≤ nd ≤ 1028

109 4 ((nd, 1, 109))4 864 ≤ nd ≤ 1028

127 4 ((nd, 1, 127))4 1008 ≤ nd ≤ 1028

128 4 ((nd, 1, 128))4 1016 ≤ nd ≤ 1028

129 4 ((nd, 1, 129))4 1024 ≤ nd ≤ 1028

130 5 ((nd, 1, 130))4 1290 ≤ nd ≤ 5120
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Proof: An IrOA (48, 16, 4, 5) with MD = 6 obtained by using
product of two OA (28, 16, 2, 5)s in [49] and an IrOA (412, 24, 4, 7)
with MD = 8 obtained by using product of two OA (212, 24, 2, 7)s
in [49] can generate two new QECCs ((16,1,6))4 and ((24,1,8))4
respectively. By using product of two OA (4608,23,2,4)s obtained
from the ((23,9,5)) QECC in Example 7 in [15], we can get an OA
(46082, 23, 4, 4) with an orthogonal partition {C1, C2, . . ., C81} of
strength 4 which can generate a new QECC ((23,81,5))4.

An IrOA (48, 15, 4, 5) with an orthogonal partition {A1, A2, A3,
A4} of strength 4, an IrOA (48, 14, 4, 5) with an orthogonal partition
{B1, B2, . . ., B16} of strength 3, an IrOA (412, 23, 4, 7) with an
orthogonal partition {E1, E2, E3, E4} of strength 6 and an IrOA (412,
20, 4, 7) with an orthogonal partition {F1, F2, . . ., F256} of strength
3 produce four new QECCs ((15,4,5))4, ((14,16,4))4, ((23,4,7))4 and
((20,256,4))4 respectively. In particular, an IrOA (64,6,4,3) in [48]
yields an optimal QECC ((6,1,4))4 in [50].

4 Conclusion

Binary QECCs have been widely studied, but the research on
quaternary QECCs is still rare. In the study, from OAs we construct
a large number of pure quaternary QECCs, some of which are
optimal. The advantage of the method presented is that the quantum
codes we obtain have fewer items for a basis quantum state
compared with the existing ones. In future, we intend to
construct more optimal QECCs with the distance ≥ 3 and
investigate the q-ary QECCs for other prime powers and non-
primes q from OAs.
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