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Around 1880, Lie introduced an idea of invariance of the partial differential
equation (PDE) under one-parameter Lie group of transformation to find the
invariant, similarity, or auto-model solutions. Lie symmetry analysis (LSA) provides
us an algorithm to search for point symmetries for solving related linear systems
for infinitesimal generators. Actually, point symmetries lead us to one-parameter
family of solutions from a known solution. LSA is a program that provides us the
exact solutions for the non-linear differential equations (DEs) in analogy of the
program designed by Galois for algebraic polynomial equations. In this paper, we
have carried out the LSA for computing the similarity solutions (symmetries) of the
non-linear short pulse equation (SPE) for the cases when h(u) = eu, k(u) = uxx,
h(u) � eu

n
, and k(u) = uxx. In addition, an optimal system of one-dimensional sub-

algebra has been set up. The reductions and invariant solutions for the generalized
SPE are calculated corresponding to this optimal system as well. Reductions
reduce the non-linear PDE or system of PDEs into non-linear reduced ordered
ODE or system of PDEs. This helps to solve these systems of PDEs to reduced
form. Graphical behavior of the transformed points of the 1-parameter solution
functions have drawn.
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1 Introduction

Galois used the group theory to discuss the solvability of algebraic polynomial equations.
Sophus Lie used the same idea foe differential equations and devised a comprehensive
program now known as Lie symmetry analysis (LSA). In his attempt, he also developed the
theory of Lie groups with broad applications in many areas of mathematics, physics, and in
applied sciences [1, 2]. [3] have explained the procedure of symmetry reductions and exact
solutions for the non-linear PDEs using three different methods that are direct, classical, and
non-classical. [4] used LSA for systems of non-linear PDEs including the solutions, for
system of non-linear coupled PDEs in real physical application, for the unsteady liquid and
gas flow in long pipelines, for approximated long wave equations in shallow water and for the
general dispersive long-wave equation.

Non-linear short pulse equation (SPE) represents the propagation of ultra-short pulses
(light pulses) in optical fibers of silica [5]. Propagation of pulses in optical fibers was first
depicted by the cubic non-linear Schrodinger equation (NLSE) which are used to provide the
actual fiber connections and refer new systems of fiber communication to attain very high
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data transmission [6, 7]. Research studies on a large scale have been
performed for the propagation of ultra-short pulses (very narrow
pulses) that permit high quality fast data transmission [6, 8]. In case
of short pulses (or ultra-short pulses), the rationality of NLSE lacks
due to the breakdown, [9]. Also, the higher order terms that are
involved in cubic NLSE cause difficulties, see Figure 1, for the
behavior of NLSE as an output [10]. Therefore, determined the
SPE which provides more accurate approximation of the solution of
Maxwell’s equation in non-linear media rather than the NLSE [6].
The SPE has vast applications in many applied fields such as systems
of impulse, mechanics, neural networks, and in many other fields of
sciences. Determined the symmetries of SPE and travelling wave
solution by parametric representation and power series process,
respectively, [11]. Evaluated the symmetry reductions and
conservation laws by using the direct method for SPE, [12].
Authors also determined the Lie symmetries for SPE through the
non-local system. Established the results for well-posedness of
solutions which are bounded for homogenous IBVP and Cauchy
problem connected with SPE, [5]. Matsuno constructed multiple
exact solutions by using the direct method for three novel PDEs
related with generalizations of SPE that are integrable, [13]. He gave
the parametric representation of multi-soliton solutions of
generalized SPE. LSA has been used by many mathematicians to
explore the results related to the exact solutions of non-linear PDEs
which depict physical phenomena [14]. Discussed the class of non-
linear PDEs having an arbitrary order [15]. Authors estimated the
determining equations for non-classical symmetries by using
compatibility of original equations with invariant surface
conditions.

In this article, we have discussed the LSA for one of the modified
form of SPE and see graphical behavior of the functions depending
upon 1-parameter (ϵ) Lie groups. The non-linear SPE is as follows:

uxt � αu + 1
3
β u3( )xx, (1)

where u(x, t) is the magnitude of electric field. α and β are the real
parameters. Considering the SPE of the following form

uxt � αh u( ) + 1
3
βk3 u( ), (2)

where we let the general functions h(u) and k(u) as:

• h(u) = eu and k(u) = uxx,
• h(u) � eu

n
for n ∈ N, (n > 1) and k(u) = uxx.

It is worth mentioning that the case h(u) = un and k(u) = uxx for
Eq. 2 has been recently discussed in the article [16]. We will find Lie
point symmetries corresponding to the aforementioned cases and
the optimal system with reductions and see their graphical behavior
corresponding to the Lie symmetries.

2 Results

In the present section, we give our main results with
computations.

2.1 Lie symmetries of SPE for the case of
h(u) = eu and k(u) = uxx

Eq. 2 becomes

uxt � αeu + 1
3
βu3

xx, (3)

Consider the one parameter Lie group of point transformations for
Eq. 3.

x* � x + ϵλ x, t, u( ) + O ϵ2( ),
t* � t + ϵμ x, t, u( ) + O ϵ2( ),
u* � u + ϵ] x, t, u( ) + O ϵ2( ), (4)

where ϵ ∈ R is the group parameter.The group generator of (4) is
defined in the following vector form as:

W � λ x, t, u( ) z

zx
+ μ x, t, u( ) z

zt
+ ] x, t, u( ) z

zu
, (5)

where λ, μ and ] are infinitesimal functions of group variables. The
second prolongation of the infinitesimal generator along with
coefficients has the following form:

Pr 2( )W � W + ]x
z

zux
+ ]t

z

zut
+ ]xx

z

zuxx
+ ]xt

z

zuxt
+ ]tt

z

zutt
,

]xx � DxDx ] − λux − μut( ) + λuxxx + μuxxt,
]xt � DxDt ] − λux − μut( ) + λuxtx + μuxtt.

(6)

where Dx and Dt are the total derivatives.
Apply the second prolongation of the infinitesimal generator Eq.

5 onto Eq. 3. Then, in order to calculate symmetry of Eq. 3, we have
the equation of the following form:

Pr 2[ ]W uxt − αeu − 1
3
βu3

xx( )|uxt�αeu+1
3 βu

3
xx
� 0. (7)

Solving this equation

FIGURE 1
Pulse propagation in NL-dispersive optics.
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−α]eu − β]xx u2( )xx + ]xt[ ]|uxt�αeu+1
3 βu

3
xx
� 0. (8)

Substitute the values of ]xx, ]xt and Eq. 3 which leads to an under-
determined system of equations given as:

μxx � 0, μxu � 0, μuu � 0, λuu � 0, μu � 0, λu � 0,
λtu � 0, μx � 0, ]uu � 0, ]xu � 0, ]xx � 0, ]tu � 0,
λt � 0, λxx � 0,

−α]eu + ]xt + α ]u − λx − μt( )eu � 0,

−2
3
]u + 5

3
λx − 1

3
μt � 0.

(9)
The solution of the aforementioned determining equations gives

the coefficient functions in the form of

λ x( ) � 1
5
c1′x + c3′,

μ t( ) � c1′t + c2′,
] x, t, u( ) � −6

5
c1′.

(10)

c1′, c2′ and c3′ are arbitrary constants. Thus, the Lie algebra of the
infinitesimal symmetries for the case n = 1 is

W1 � 1
5
xzx + tzt − 6

5
zu,

W2 � zt,
W3 � zx.

(11)

Theorem 3.1 The set of these generators is closed under the one
parameter Lie groups Hϵ

i which are generated by infinitesimal
generators Wi for i = 1, 2, and 3 are given in the following table.
The entries give the transformed points exp(ϵWi)(x, t, u) = (x*,
t*, u*).

Hϵ
1 : x, t, u( ) → e

1
5 ϵx, eϵt, u − 6

5
ϵ( ),

Hϵ
2 : x, t, u( ) → x, t + ϵ, u( ),

Hϵ
3 : x, t, u( ) → x + ϵ, t, u( ).

(12)

where ϵ ∈ R is the group parameter.Theorem 3.2 If u � B(x, t)
satisfies Eq. 3, then, u(i)(i = 1, 2, and 3) are solutions of Eq. 3:

FIGURE 2
For u(1) � −6

5 ϵ[cos(e−
1
5 ϵx + e−ϵt)] and ϵ =0.000005.

FIGURE 3
For u(1*) � −6

5 ϵ[cos(ϵ−
1
5 ϵx) + sin(e−ϵt)] and ϵ = 0.000005.

FIGURE 4
For u(2) = x3+2(t − ϵ) and ϵ = 0.000005.
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u 1( ) � −6
5
ϵB e−

1
5 ϵx, e−ϵt( ),

u 2( ) � B x, t − ϵ( ),
u 3( ) � B x − ϵ, t( ).

(13)

where ui � Hϵ
i .B

i(x, t), (i = 1,2, and 3), ϵ≪ 1 is any positive number.
The Eq. 13 provides a class of solutions for Eq. 3 depending upon

the parameter ϵ and general function Bi where (i = 1, 2, 3). The
Figures 2–5 show the graphical view of the functions ui, (i = 1, 2, 3)
where ui attained from Lie symmetry groups Wi. These graphs are
formed by letting different general functions in place of Bi in Eq. 13.
The graphs are constructed from the maple.

For first equation in Eq. 13, letting the general trigonometric
function in place of B(x, t)

u 1( ) � −6
5
ϵ cos e−

1
5 ϵx + e−ϵt( )[ ], (14)

along-with ϵ = 0.000005 and abscissa x = −5 to 5, ordinate t = −5 to 5.

u 1( ) � −0.000006 cos e−0.000001x + e−0.000005t( )[ ]. (15)
Figure 2 shows the graphical behavior of Eq. 15.letting another

general value of function B(x, t) � cos(ϵ−1
5 ϵx) + sin(e−ϵt). The

function becomes

u 1*( ) � −0.000006 cos e−0.000001x( ) + sin e−0.000005t( )[ ]. (16)
Figure 3 shows the graphical view of Eq. 16.
For second equation of Eq. 13, considering a general function

B(x, t) � x3 + 2(t − ϵ) for the same values of ϵ = 0.000005 and
aforementioned coordinates for Eq. 14.

u 2( ) � x3 + 2 t − 0.000005( ), (17)

Figure 4 shows its graphical view.
For last equation of Eq. 13, we let a general logarithmic function

B � 2t ln(x − ϵ) and for similar values of ϵ, x, and t coordinates.

u 3( ) � 2t ln x − 0.000005( ). (18)
Its graph is in Figure 5.

2.2 Optimal system of subalgebras

In this part, we will find the optimal system of one dimensional
Lie subalgebras for Eq. 3 by using the adjoint representation. The
corresponding commutator table and the adjoint table are as follows:
Commutator Table: Adjoint Table:

Let us take a generator

W � β1W1 + β2W2 + β3W3, (19)
Case No.1 For β1 ≠ 0, the generator turns to

W � W1 + β2W2 + β3W3. (20)
Applying Adjeβ2W2 on Y gives

W′ � W1 + β3W3, (21)
furthermore, proceeding in the same way

W″ � Adje5β3W3 W3( ) � W1, (22)
which successively makes the coefficients β2 and β3 equal to 0and
implies that W ≃ W1.Case No.2 Without loss of generality, here we
take β1 = 0 and β2 = 1, the generator becomes

W � W2 + β3W3, (23)
Now, act Adjeβ3W3 on the aforementioned W,

W′ � W2 + β3W3, (24)
Subcase No.2.1 If β3 < 0, then

W′ � W2 −W3. (25)
Subcase No.2.2 If β3 > 0, then

W′ � W2 +W3. (26)

FIGURE 5
For u(3)=2t ln (x − ϵ).

[.,.] W1 W2 W3

W1 0 0 0

W2 W2 0 0

W3
1
5W3 0 0

Adj W1 W2 W3

W1 W1 W2 W3

W2 W1 − ϵW2 W2 W3

W3 W1 − 1
5 ϵW3 W2 W3

Frontiers in Physics frontiersin.org04

Mobeen Munir et al. 10.3389/fphy.2023.1149019

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1149019


Case No.3 For β1 = β2 = 0 and β3 = 1. Thus, in the meanwhile we
haveW ≃W3.Case No.4 Let consider β1 = 0 = β3 and β2 ≠ 0. In this
case, the generator is W ≃ W2.

The optimal system of one-dimensional subalgebras admitted by
Eq. 3) is as follows:

W �
W1,
W2,
W3,
W2 ± W3.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (27)

2.3 Reductions and invariant solutions

2.3.1 Reduction by W2

The invariants for corresponding characteristic equation are as
follows:

x � a, u � b, (28)
where a and b are arbitrary constants.

The invariant solution can be written in the form of b = f(a),
implies that

u � f a( ), (29)
substituting this value in Eq. 3), we obtain

0β f″ a( )( )3 + 3αef a( ) � 0. (30)
The solution of this reduced equation for β = 1 is given in the

form of solution set as.

∫ f a( ) ∓ 1������������
6 −3αeb( ) − k1

√ db − x − k2 � 0,

∓ 6k1 arctan
����������������������
−3I35

6 − 33
1
3 −αef a( )( )13 + 1

k21

√
k1⎛⎝ ⎞⎠ − x − k2 � 0,

∓ 6k1 arctan
��������������������
3I3

5
6 − 33

1
3 −αef a( )( )13 − 1

k21

√
k1⎛⎝ ⎞⎠ − x − k2 � 0.

2.3.2 Reduction by W3

The corresponding characteristic equation to this generator is as
follows:

dx

1
� dt

0
� du

0
, (31)

this gives two invariants

t � a1, u � b1, (32)
where a1 and b1 are arbitrary constants. It implies

u � f t( ), (33)
putting this in Eq. 3, we obtain

αeu � 0, (34)
which gives a trivial solution for u = f(x).

2.3.3 Reduction by W1

The characteristic equation is

5
dx

x
� dt

t
� −5

6
du, (35)

solving this, we obtain corresponding invariants of the form

r � t

x5
, s � eux6, (36)

from this

u � ln x−6f tx−5( )[ ], (37)
where we obtain

ux � − 1
xf r( ) 5rf′ r( ) + 6f r( )[ ],

uxx � f r( ) 25r2f″ r( ) + 6f r( ) + 30rf′ r( )[ ] − 25r2f′2 r( )
x2f2 r( ) ,

uxt � f r( ) −5rf″ r( ) − 5f′ r( )[ ] + 5rf′2 r( )
x6f2 r( ) .

(38)

substituting these derivatives into Eq. 3, we obtain

3f5 r( ) −5rf″ r( ) − 5rf′ r( )[ ] + 15rf4 r( )f′2 r( ) − 3αf7 r( )
+β f r( ) 6f r( ) + 25r2f″ r( )[[ + 30rf′ r( )] − 25r2f′2 r( )]3
� 0.

(39)
Thus, non-linear PDE (3) reduces to a non-linear ODE.

2.3.4 Reduction by W2 + W3

The invariants that we gain by solving characteristic equation
are as follows:

a3 � x − t, u � b3, (40)
a3 and b3 are arbitrary constants. The invariant solution
corresponding to them is u = f (a3). Inserting this solution into
Eq. 3 will give us a non-linear ODE of the form

3f″ a3( ) + β f″ a3( )( )3 + 3αef a3( ) � 0. (41)

2.3.5 Reduction by W2 − W3

The invariants corresponding to characteristic equation for this
case are a4 = x + t and b4 = u. Furthermore, its invariant solution is
given as u = f (a4). Therefore, the Eq. 3 will be converted into an
ODE of the form

3f″ a4( ) − β f″ a4( )( )3 − 3αef a4( ) � 0. (42)

2.4 Determining lie symmetry of SPE for the
case h(u) � eu

n
and k(u) = uxx (n > 1)

The equation becomes

uxt � αeu
n + 1

3
βu3

xx. (43)

The one-parameter Lie group of transformations and the second
prolongation with coefficients are given in Eqs 4, 6, respectively for
Eq. 43. Let the generator be

Z � λ x, t, u( )zx + μ x, t, u( )zt + ] x, t, u( )zu, (44)
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Therefore, we have

Pr 2[ ]Z uxt − αeu
n − 1

3
βu3

xx( )|uxt�αeun+1
3 βu

3
xx
� 0, (45)

simplification gives the following equation:

−αn]eunun−1 − β]xxu2
xx + ]xt � 0, (46)

which is solved for the values of ]xx and ]xt, will give us the equation
involving derivatives of infinitesimals with respect to dependent and
independent variables and also the derivatives of dependent variablew.r.to
independent variables. Substituting Eq. 43 and comparing the values of
coefficients on both sides gives an under-determined system of equations

μxx � 0 μxu � 0, μuu � 0, λuu � 0, μu � 0, λu � 0,
λtu � 0, μx � 0, ]uu � 0, ]xu � 0, ]xx � 0, ]tu � 0,

λt � 0, λxx � 0, −2
3
]u + 5

3
λx − 1

3
μt � 0,

−αn]eunun−1 + ]xt + α ]u − λx − μt( )eun � 0.

(47)
To solve this system, we consider ] as:

] � L t( )x +Mu +N t( ), (48)
which satisfies the aforementioned equations and then by solving the
aforementioned system, we obtain

λ x( ) � c2,
μ t( ) � c1,

] x, t, u( ) � 0.
(49)

c1 and c2 are any arbitrary constants. The infinitesimal generators
for the one-parameter of Lie groups of transformations admitted in
Eq. 43) are given by

Z1 � zt,
Z2 � zx.

(50)

These symmetry generators give us the symmetry groupsQϵ
i for i =

1, 2:

Qϵ
1 � x, t + ϵ, u( ),

Qϵ
2 � x + ϵ, t, u( ). (51)

If u = R (x,t) is a solution of Eq. 43), then ui for i = 1, 2, and 3 and ϵ≪
1 also satisfies Eq. 43,

u 1( ) � R x, t − ϵ( ),
u 2( ) � R x − ϵ, t( ). (52)

Commutator Table:also,
Adjoint Table.

Proposition 5.1: The generators Z1 = zt and Z2 = zx form a two-
dimensional abelian Lie symmetry algebra.

2.5 Optimal system, reductions and invariant
solutions

Considering a generator Z = b1Z1 + b2Z2. This generator will
established a set of optimal system comprising of Lie algebra

Z � Z1, Z2, b1Z1 + b2Z2{ } (53)
where b1, and b2 are arbitrary constants. The reduction of PDE Eq.
39 by using the generator Z1 leads to an invariant solution u = f (c1).
The reduced non-linear ODE will be

3αeu
n + βu′′3 � 0 (54)

The reduction through Z2 generates a trivial case for Eq. 39.

3 Conclusion

In this paper, we have carried out the LSA for computing the
similarity solutions (symmetries) of the non-linear SPE for the cases
when h(u) = eu and k(u) = uxx and h(u) � eu

n
and k(u) = uxx in SPE

(2). In addition, an optimal system of one-dimensional subalgebra
has been set up. The reductions and invariant solutions for the
generalized SPE are calculated corresponding to this optimal system
as well. The graphs are formed by the maple for the functions
obtained from the transformed points of one-parameter Lie groups.
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