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We investigate the synchronization transition of the Shinomoto-Kuramoto model
on networks of the fruit-fly and two large human connectomes. This model
contains a force term, thus is capable of describing critical behavior in the
presence of external excitation. By numerical solution we determine the
crackling noise durations with and without thermal noise and show extended
non-universal scaling tails characterized by the exponent 2 < τt < 2.8, in contrast
with the Hopf transition of the Kuramoto model, without the force τt = 3.1(1).
Comparing the phase and frequency order parameters we find different
synchronization transition points and fluctuation peaks as in case of the
Kuramoto model, related to a crossover at Widom lines. Using the local order
parameter values we also determine the Hurst (phase) and β (frequency)
exponents and compare them with recent experimental results obtained by
fMRI. We show that these exponents, characterizing the auto-correlations are
smaller in the excited system than in the resting state and exhibit module
dependence.
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1 Introduction

The critical brain hypothesis has been confirmed experimentally many times since the
pioneering electrode experiments in [1]. Power law (PL) distributed neuronal avalanches
were shown in neuronal recordings (spiking activity and local field potentials, LFPs) of
neural cultures in vitro [2–4], LFP signals in vivo [5], field potentials and functional magnetic
resonance imaging (fMRI) blood-oxygen-level-dependent (BOLD) signals in vivo [6, 7],
voltage imaging in vivo [8], 10–100 and single-unit or multi-unit spiking and calcium-
imaging activity in vivo [9–12]. Furthermore, source reconstructed magneto- and
electroencephalographic recordings (MEG and EEG), characterizing the dynamics of
ongoing cortical activity, have also shown non-universal PL scaling in neuronal long-
range temporal correlations [13, 14]. Optical methods, like light-sheet microscopy with
GCaMP zebrafish larvae [15] or calcium imaging recordings of dissociated neuronal cultures
[16] also show PL scaling.

From a theoretical point of view the hypothesis is also very attractive as critical systems
possess optimal computational capabilities as well as provide efficient long range
communications, memory and sensitivity [17–28].
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Homogeneous critical systems exhibit universal scaling behavior
and many experiments claim indeed a mean-field class behavior of
the branching process [29, 30] generated by self-organized criticality
[31]. However, neural systems are very non-homogeneous, thus it is
natural to expect non-universal behavior, known in statistical
physics within the field of quenched disordered models [32, 33].
Indeed some experiments [13, 14, 16] show that the measured
exponents are not universal, significantly different from the
mean-field class ones of the branching process.

Furthermore, external sources can move the system away from
criticality [34, 35] or tune it to other classes, like the isotropic
percolation [16, 36] or to tricritical points [37]. More complex
models than the two-state branching process, can also exhibit hybrid
type of phase transitions, like threshold models [38], models with
inhibitory nodes [39] or models with oscillatory units [40].
Subsystems can also show different scaling behavior and may be
within different distances from criticality [41].

For quenched disordered models it has recently been shown [42,
43], that even for weak time dependence the semi-critical, dynamical
scaling, which occurs in an extended control parameter region of
criticality, in the so called Griffihts Phases [44] (GP), remains stable.
Furthermore, even when the network dimension is high, one does not
find the usual mean-field behavior, but in the presence of modules a GP
[36, 38, 45–48] or Griffihts effects [49] and a different, sometimes
logarithmically slow scaling at the critical point [32].

The big advantage of critical universality is that more realistic
models for the brain, like the integrate and fire models [50], can also
show the same criticality as simpler ones like in a recent work [51],
which derives Hopf bifurcation criticality or in a more experimental
study [52] of neural cultures agreement with isotropic percolation
avalanche size distributions is obtained. But of course the directed
percolation criticality [53, 54], which occurs in branching processes
[1] is the main example for the universality principle [55]. Therefore,
the study of simpler models, for which numerical analysis can be
done are very useful for the brain science [28, 33].

Recently thresholdmodels and Kuramoto type ofmodels have been
analyzed on different, available connectome networks and GP behavior
was reported [33, 43, 56–59]. This behavior is also called as frustrated
synchronization [60–62] and has been analyzed within the framework
of a Kuramoto like models, albeit lacking quenched self-frequencies.

From the experimental directions the different behavior in
modules of brains of the mouse [41], by phenomenological
renormalization-group analysis of the spectrum of electrode
spikes, and humans [63], via Hurst and β exponents analysis of
fMRI; quasi-critical (off-critical) scaling like behavior has been
shown. Here we attempt to model this using the
Shinomoto–Kuramoto (SK) model on connectomes of the fruit-
fly (FF) and humans. This is an extension of the Kuramoto model
[64], which itself does not have an external source, that can describe
the resting state critical behavior at the Hopf transition towards a
model with a periodic external driving force, thus may be
appropriate to characterize criticality with an excitation [40].

2 Models and methods

In this Section we introduce the synchronization model,
followed by an overview of different connectome graphs, on

which we run the numerical analysis. Finally we discuss the
method of local synchronization to dig into the details of the
spatio-temporal simulations of these brain systems.

2.1 The Shinomoto–Kuramoto (SK) model

We consider an extension of the Kuramoto model [64] of
interacting oscillators sitting at the nodes of a network, whose
phases θj(t), j = 1, 2, . . . N evolve according to the following set
of dynamical equations

_θj t( ) � ω0
j + K∑

k

Wjk sin θk t( ) − θj t( )[ ]
+ F sin θj t( )( ) + ϵηj t( ).

(1)

Here, ω0
j is the so-called self-frequency of the jth oscillator, which is

drawn from a Gaussian distribution with zero mean and unit
variance. The summation is performed over adjacent nodes,
coupled by the Wjk matrix. Up to this point we have the classical
Kuramoto model [64]. In the Shinomoto extension [65], we have a
Gaussian annealed noise term ηj(t), with an amplitude ϵ, and to
describe excitation, a site dependent periodic force term,
proportional to a coupling F.

Sakaguchi [66] was the first to study the periodically forced
Kuramoto model. In numerical simulations, however, he found that
the state of forced entrainment was not always attained: macroscopic
fractions of the system self-synchronized at a different frequency
from that of the drive, indicating that this sub-population had
broken away and established its own collective rhythm.
Analytically improvements were provided in [67–69] and found a
rich phase space of the SK model.

Recently, in [40] the avalanche behavior of the SK equation was
investigated, albeit with site independent self-frequencies ω0

j � ω.
The authors explored the phase diagram, besides the forceless Hopf
transition a so-called saddle node invariant cycle (SNIC) and a
hybrid type of bifurcation were compared. In a very recent
publication [48], this numerical analysis has been continued on
Erdős–Rényi (ER) and hierarchical modular networks, motivated by
brain research. Considering quenched ω0

j-s with bi-modal frequency
distributions the authors claim the emergence of Griffiths effects by
the broadening of the synchronization transition region.

Here we study the SK model using quenched ω0
j-s with and

without annealed noise ηj(t) on real connectomes. In particular we
test if the chaoticity, generated by the quenched ω0

j-s generates the
same phase transition behavior and avalanches as with the presence
of the stochastic noise. We measured the Kuramoto phase order
parameter:

z t( ) � r t( )exp iθ t( ) � 1/N∑
j

exp iθj t( )[ ], (2)

by increasing the sampling time steps δt = 0.01. Here 0 ≤ r(t) ≤ 1
gauges the overall coherence and θ(t) is the average phase. The set of
Eq. 1 was solved by the steppers Runge–Kutta-4 (RK4), for the noisy,
or by the Bulrisch–Stoer [70, 71] (BS) for the noiseless cases, because
in the presence of noise the adaptive BS fails to work. Here and in
earlier studies [58] we found that stronger stochastic noise makes the
results non-reliable, while application of other steppers slows down
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the numerical solution. For the noisy cases we also tried the
Euler–Maruyama solver [72], which has a stronger mathematical
foundation for stochastic differential equations. This had to be
restricted to testing purposes only, as this first-order solver is
orders of magnitude slower than the RK4 for the same precision.

We integrated the set of equations numerically for 103–104

independent initial conditions, by different ω0
j-s and sample

averages of the phases

R t( ) � 〈r t( )〉 (3)
and of the variance of the frequencies

Ω(t) � 〈 1
N

∑N
j�1

(�ω(t) − ωj(t))2〉 (4)

were calculated, where N denotes the number of nodes.
In the steady state, which we determined by visual inspection of

R(t) and Ω(t), we measured their half values and the standard
deviations: σ(R(t)), σ(Ω(t)) in order to locate the transition points. In
the paper we plotted the σ(R), σ(Ω) values, obtained by sample and
time averaging in the steady state. Note, that σ(R) is just a the so-
called SK order parameter employed by [73] for discrete version of
oscillatory models and is also used in [40] for the SK model. In case
of the Kuramoto equation the fluctuations of both order parameters
show a peak, albeit at different Kc′ (for phases) and Kc (for
frequency) values in the case of the KKI-18 connectome [56].
For graph dimensions 3 < d < 4, found for the human
connectomes [78], a crossover transition is expected for R and
phase transition forΩ. In the case of the FF, d > 5 [59], thusKc ≃ Kc′,
which is expected for real phase transitions at large sizes, where both
order parameters converge to a finite value in the infinite size
limit [59].

2.2 Connectome graphs

The connectome is defined as the structural network of neural
connections in the brain [74]. For the fruit-fly connectome, we used the
hemibrain data-set (v1.0.1) from [75], which has NFF = 21,662 nodes
and LFF = 3,413,160 edges, out of which the largest single connected
component contains N = 21,615 and L = 3,410,247 directed and
weighted edges. The number of incoming edges varies between
1 and 2,708. The weights are integer numbers, varying between
1 and 4,299. The average node degree is 〈k〉 = 315.129 (for the in-
degrees it is: 157.6), while the average weighted degree is 〈w〉 = 628. The
adjacency matrix, visualized in [59] where one can see a rather
homogeneous, almost structureless network, however it is not
random. For example, the degree distribution is much wider than
that of a random ER graph and exhibits a fat tail. The analysis in [59]
found a weight distribution p(w) with a heavy tail and assuming a PL
form, an exponent −2.9 (2) could be fitted for the w > 100 region.

The human brain has ≈ 1011 neurons, which current imaging
techniques cannot comprehensively resolve at the scale of single
neurons. We used graphs on the coarse-grained, level with ≈ 106

nodes obtained by diffusion tensor imaging [76]. This method has
generally been found to be in good agreement with ground-truth
data from histological tract tracing [77]. Inferred networks of
structural connections were made available by the Open

Connectome Project and previously analyzed by [78]. These
graphs are symmetric, weighted networks, where the weights
measure the number of fiber tracts between nodes. The network
topology study found a certain level of universality in the topological
features of the ten large human connectomes investigated: degree
distributions, graph dimensions, clustering and small world
coefficients. These can be observed in Tables 3 and 4 of [78].
Therefore, two networks, called KKI-18, and KKI-113 were
selected to be the representatives in further studies. The graphs,
downloaded in 2015 from the Open Connectome project repository
[79], were generated via the MIGRAINE pipeline [80], publicly
available from [81]. KKI-18 comprises a large component with N =
804,092 nodes connected via 41,523,908 undirected edges and
several small disconnected sub-components, which were ignored
in the modeling. Similarly, the extracted largest connected
component of KKI-113 contains 799,133 nodes connected by
48,096,500 undirected and weighted edges. The large number of
nodes is because of other parcellations closer to voxel resolution
being used. For instance, there are approximately 1.8 million voxels
in the brain mask of a 1 mm resolution standard-aligned MRI. The
graphs exhibit a hierarchical modular structure, because they are
constructed from cerebral regions of the Desikan–Killany–Tourville
parcellations, which is standard in neuroimaging [82, 83] providing
(at least) two different scales.

The modularity quotient of a network is defined by [84].

Q � 1
N〈k〉 ∑

ij

Aij − kikj
N〈k〉( )δ gi, gj( ), (5)

the maximum of this value characterizes how modular a network
is, where Aij is the adjacency matrix, ki, kj are the node degrees of i
and j and δ(gi, gj) is 1 when nodes i and j are in the same
community, or 0 otherwise. However, this value is not
independent of the community detection method. If our
detection method produces lower modularity than the
maximum achieved by others, it means our algorithm needs to
be improved. Community detection algorithms based on
modularity optimization will get the closest to the actual
modular properties of the network. We calculated the
modularity using community structures detected by the
Louvain method [85], the results for each network were: QFF

≈ 0.631, QKKI−18 ≈ 0.913, QKKI−113 ≈ 0.915. The FF is a small-
world network, according to the definition of the coefficient [86]:

σW � CW/Cr

L/Lr
, (6)

because σFF = 9.5 is much larger than unity. Here CW denotes the
Watts clustering coefficient, and L the average path length. Cr and Lr
are the reference values of random networks with the same sizes and
average degrees. The same is true for the human connectomes, as
their σW is in the range between 400 and 1,000 [78].

The effective graph (topological) dimension of the FF, obtained
by the breadth-first search algorithm is d = 5.4 (5). This is defined by
N(r) ~ rd, where the number of nodes N(r) with chemical distance r
or less from the origin are counted and averages are calculated over
many trials. For the Open Connectome data, power-law fits in the
range 1 ≤ r ≤ 5 suggest topological dimensions between d = 3 and
d = 4 [78].
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As these structural connectome graphs exhibit heavy-tailed
weight distributions, probably as a result of learning, there exist
hubs, which could fully determine the behavior of neighboring
nodes and suppress the occurrence of critical behavior in the
models [56]. In reality, on top of the structural weights, there
exist inhibition/excitation mechanisms, which control the
dynamics of the neural system and provide a local homeostasis.
As we do not know the details of these mechanisms, in earlier studies
[33, 43, 56–59], the weight normalization scheme

Wjk′ � Wjk/∑
k

Wjk (7)

was applied to achieve this artificially. This way we equalize the
sensitivity of nodes of the incoming excitations. We do the same in
the simulations presented here.

2.3 Analysis of the local synchronization

As the connectomes are very heterogeneous, built up from
modules we also measured the local Kuramoto order parameter
Ri(t), defined as the partial sum of phases for the neighbors of node i

Ri t( ) � 1
Ni.neigh

∑
Ni.neigh

j

Aije
iθj t( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣, (8)

and the local Ωi(t) defined as

Ωi t( ) � 1
Ni.neigh

∑
Ni.neigh

j

�ω t( ) − ωj t( )( )2
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣. (9)

The local Kuramoto order parameter was initially suggested by [87,
88] to quantify the local synchronization of nodes, which allows us
to follow the synchronization process by mapping the solutions on
the connectome graphs.

The necessity of storing the states of the system at each time
step requires large amount of hard drive storage. Thus we
analyzed the local order parameters in a time period of
50 time-steps as stop time with time increment of dt’ = 0.1, in
the steady state. To study it in more detail we also separated the
networks into communities. Although, these communities
should be separated according to anatomical and/or functional
properties [89], we chose as a first approximation a community
detection method based on global optimization of the modularity
[85]. This method yielded 9 modules in FF network,
130 communities in KKI-113 and 134 modules in the giant
component of KKI-18. For detecting community structure that
is closer to the real anatomical functional communities just by
using the network topology, one might require other algorithms,
which analyze the network with more depth, or even using fuzzy
clustering methods [90, 91].

We studied the long-term persistence of the local order
parameters with the Hurst and β exponents. The Hurst exponent
measures the degree of self-similarity of a time series, based on the
assumption of an Ornstein–Ulenbeck process, that the measured
values will go back to its average in just a few time-steps. The Hurst
exponent is defined as follows:

E
Z n( )
S n( )[ ] � CnH, (10)

whereE is the expectation value of the rescaled range Z/S and Z(n) is
the cumulative deviate of the series until the first number of n data
points (n = (tmax − t0)/dt’), while S(n) is the sum of the standard
deviations until that point. We averaged the first local parameter
values within the communities and calculated the Hurst exponent
over the n points in the time period t, where Sj(n) � ∑Mj,comm

i Ri(t)
are community averages and Mj,comm is the number of nodes in the
community. We calculated the Hurst exponents for all communities.

Similarly, the power spectral scaling exponent, β, is used for
quantifying long range correlations in time series. The power
spectral density is the modulus of the Fourier transform, if the
spectrum of the process satisfies a power-law scaling relation:

S f( ) � ∑N
j�0

Ωj t( )e−2πifj/N

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

≈ 1/fβ, (11)

wherefj � ∑Mi,comm
j Ωi(t) and βmust be obtained by using a linear fit

to the logarithmic axes of the Fourier transform periodigram [63].

3 Force driven synchronization
transition

First we determined the synchronization transition behavior of
the Shinomoto–Kuramoto model on different connectomes by
calculating the global order parameters R and Ω as well as their
fluctuations as the function of the force control parameter, which
mimics the external excitation of the system. After that we measured

FIGURE 1
Order parameter dependence on F for the fruit-fly connectome
for the noisy (black bullet) and the noiseless (red boxes) cases at K =
1.3. The blue diamonds show the steady-state Ω values with noise.
Lower inset: Variances of R andΩ for the noisy case. Upper inset:
Time dependence of the noisy R(t), for F=0, 0.02, 0.03, 0.04, 0.07, 0.1,
0.2, 0.3, 0.4 (bottom to top curves).
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the crackling noise distributions within the neighborhood of these
transitions.

3.1 Global order parameters

We started the numerical analysis of SK on the fruit-fly
connectome at the global coupling value K = 1.3, which was
found to be asynchronous without a force in [59]. For each F
value we determined the steady state by following the evolution
of the control parameters starting from random initial θ-s via
visual inspection. Averaging was done over many independent
samples, corresponding to different initial ωj self-frequencies.
The transient regimes were short, in the range of 10–100 time
steps and we could not see PL growth as in case of the Hopf
transition of the Kuramoto model. But the Kuramoto order
parameter curves exhibit R(t) ∝ ln(t)x(K) type of growth (see
upper inset of Figure 1), as in case of activated scaling in
disordered systems [32].

To locate the transition we plotted the steady state values of
R and Ω and their fluctuations on Figure 1. The half values
provide estimates: Fc ≃ 0.22, for R and Fc′ ≃ 0.35 for Ω. One can
see smooth fluctuation peaks of σ(R) at F ≃ 0.05 and of σ(Ω) at F′
≃ 0.2. Thus, the two different order parameters seem to exhibit
different synchronization points. The frequency fluctuation
peak agrees roughly with Fc ≃ 0.22, but the phase fluctuation
peak occurs at a much lower value. This, in contrast with the
Hopf transition of FF and the random network, where
fluctuation peaks were roughly at the same position, where
we knew that the dimension is d > 4. Plotting the results on
log.-log. scale it turns out that the fluctuation growth can be
fitted by σ(R) ∝ F0.16(1) for F ≤ 0.05, while following the peak, for
F > 0.1, it decays as σ(R) ∝ F−1.3(2). Thus, we have susceptibility
like exponents γ′ = 0.16(1) ≠ γ = 1.3(2). Note, that in case of K =

2, when we started from a synchronous state by the addition of
the force we obtained a very narrow growth region of the
fluctuations, the decay is characterized by γ = 1.34(1) (see
Appendix).

As σ(R) is also called SK order parameter, which characterizes
the transition in excitable systems, its approach to zero as F increases
agrees with the SNIC transition result of [40], albeit that was
obtained in the synchronous phase. We have also run SK in the
synchronous phase of FF, using K = 2, where we found similar
results as in the asynchronous phase.

Results with and without a small noise with amplitude ϵ = 0.01
did not show observable differences, so the chaotic noise from the
quenched disorder is capable to compete with the ordering effect of
the force. We have also determined the σ(Ω(K, F)) for other K and F
values, as they are close to the half values estimates of the transitions.
As one can see on the inset of Figure 4 by increasing F the Kuramoto
transition fluctuation peak becomes smoother and moves to smaller
K values, similarly to the Widom line obtained in discrete brain
models [34, 35].

As the next step we performed the same analysis of the human
connectomes at K = 1, which is in the asynchronous phase without a
force [57]. Figure 2 shows the steady state values both for R andΩ in
case of K = 1 for KKI-113. Again the annealed noise does not modify
the results and seems to be unnecessary to produce a
synchronization transition. We estimated: Fc′ ≃ 0.4 and Fc ≃ 0.55
by the half values or R and Ω respectively. The fluctuation peaks of
the two order parameters are again far away from each other: F ≃
0.05 versus F′ ≃ 0.4. Again the fluctuation peak of Ω is close to
Fc′ ≃ 0.4.

For the connectome KKI-18 we enlarged the fluctuation peak
results on Figure 3, by comparing the noiseless and the noisy R
results. The smeared synchronization ‘peaks’ happen at similar
values as for KKI-113: F′ ≃ 0.05 and F ≃ 0.5 within numerical
precision. The transition points, estimated by the half values of R is

FIGURE 2
Order parameter dependence on F for the KKI-113 for the noisy
and the noiseless cases at K = 1. Inset: Variances of R and Ω for the
noisy case.

FIGURE 3
Fluctuations of R andΩ as the function of F for the KKI-18, for the
noisy and the noiseless cases at K = 1. Inset: Order parameter R for the
noisy and noiseless cases as well as Ω, denoted by the same symbols
as in the main figure.
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Fc ≃ 0.4 and of Ω is Fc′ ≃ 0.55. As before, the σ(R) peaks occur at
much lower force values, than the other transition point estimates
and the susceptibility exponents estimates have been estimated to be
γ′ = 0.15(3) and γ = 1.12(2).

3.2 Avalanche durations

We investigated avalanches similarly to the local field potential
experiments and as it was done in simulations of spike-like events
[40]. In critical systems avalanche sizes and durations exhibit PL
tails, characterized by the exponents p(S) ∝ S−τ and
p(Δ(t))∝Δ(t)−τt . However, we did not apply thresholds for the
individual variables θi(t), but for the global order parameter R(t).
This has the advantage of a much faster algorithm, allowing us to
consider larger statistics and the lack of ambiguity in the avalanche
definitions [95–97]. The disadvantage is that spatially independent
avalanches overlapping in time accidentally may be unified, thus
the duration times can be larger and we do not have information
on the spatio-temporal sizes, thus on the exponent τ. Still, we think
that investigating this coarse-grained description of avalanches,
which has also been measured in experiments, as a kind of
crackling noise [98] in the case of zebrafish larvae [15],
describes a possible critical behavior. Results of local
characterization of the synchronization will be shown in
Sections 3.3, 3.4, 4.2.

As in [40] here we also found that the choice of threshold T(F)
value did not change the scaling behavior of the duration
distributions if it was chosen within the fluctuation range Rmin <
T(F) < Rmax corresponding to F, that was determined numerically
after several runs on different initial conditions. For thresholds we
used the mean value of R(t), obtained in the steady state by sample
and time averaging up to tmax = 104. By the integration we used

uniform random distributions θi(0) ∈ (0, 2π) and the initial
frequencies were set to be _θi(0) � ω0

i . Following measurements of
the avalanche duration Δ(t) = ti − ti’, defined between subsequent
crossing of an up event: R(ti) > T and a down one: R(ti′)<T, we
applied a histogramming to determine the probability
distributions p(Δ(t)).

Figure 4 shows the PDF p (Δ(t)) results for the fruit-fly, in case of
K = 1.3, ϵ = 0.01 and different forces. We can see F dependent

FIGURE 4
Avalanche duration distributions on the fruit-fly connectome for
different forces, shown by the legends and at K = 1.3, ϵ = 0.01. Dashed
lines are PL fits for Δt > 100. The inset shows the steady state σ(Ω) as the
function of K, for excitation values F = 0.001, 0.0667, 0.1, 0.2, 0.3
(top to bottom).

FIGURE 5
Avalanche duration distributions on the KKI-113 connectome for
different forces, shown by the legends and at K = 1, ϵ = 0.01. Dashed
lines are PL fits for Δt > 20. The F=0.1 case veers down on the log.-log.
scale, but for F = 0.35 a more extended PL tail with exponent τt =
2.40(9) can be obtained. For F = 0.4, and F = 0.5 the slopes stabilize to
τt = 2.14(5).

FIGURE 6
Avalanche duration distributions on the KKI-18 connectome for
different forces, shown by the legends and at K = 1, ϵ = 0.01. Dashed
lines are PL fits for Δt > 20.
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extended PL tails, with continuously changing exponents: 2.1 < τt <
2.8, which are somewhat smaller, but close to the experimental value
reported for the zebrafish: τt = 3.0 (1) [15] and to the random field
Ising model duration values [99].

Similar results are obtained in case of the two human
connectomes as shown on Figures 5, 6. Furthermore, the results
do not change without the additive noise, or in case of a force in the
synchronized phase (see graphs in the Appendix).

3.3 Local order parameters snapshots

We have plotted with Wolfram Mathematica [100]
snapshots of the local order parameters of the FF at different
force values in increasing order for the average local parameters
(see Figure 7). The giant component of the graph was plotted
with 21,615 nodes, however with a very few 75,657 edges for
better visualization, where we sorted the links of each node by
their weights in a decreasing manner and then randomly chose

the first nr links, where nr is a random integer between 1 and
nm = 6. Since the graph is a modular small-world graph, this kind
of representation can be a close visual representation of the
actual network. The color coding on the figure is a logarithmic
(log3) binned scale between 0 and 1 (0.01, 0.03, 0.09, 0.27, 0.81,
1.) representing the Ri values of each node at time step, indicated
on the top left of each figure.

Top row plots are results without force, second row at F = 0.04,
third row at F = 0.1 and last row is at F = 1.0. Similarly to the β

exponent’s case, we notice that the average local parameter R is not
increasing linearly with the force at the same time-step. There is a
maximum around 0.1, thus it does not have a linear correlation with
the force. Without force the steady state has more fluctuations and
the communities are more observable through visualization. By
increasing the force every node comes into the same local state.

3.4 Hurst and β exponent results

The H and β exponents measure the self-similarity of a time series,
when power-law behavior (10), (11) can be observed. H and β values
lower than 0.5 describe anti-correlated signals. On the other hand, values
between 0.5 and 1 mean signals with long range correlations in time.

First, we separated the communities in all FF, KK-18, KKI-113
connectomes with the Louvain modularity optimizing algorithm.
Then, we calculated the H and β exponents for each community for
the local parameters. In case of the FF the results (see Figure 8) with
force could similarly be differentiated from the results without force
as in the [63] experiments with rest and task driven measures.
Simulation results without force seem to have longer correlations in
time, resembling to the fMRI measurements at the rest phase.

The same conclusion however cannot be found in the case of
the human connectomes (see Figure 9). It appears that even with

FIGURE 7
Here we see the evolution of the local order parameters Ri(t) of a
sub-graph of the fruit-fly connectome at different time steps: t = 12.6,
36.6. The upper row shows Ri map without a force, the lowest one
with F= 1.0. Color-coding at the bottom provides Ri(t) for all sub-
figures.

FIGURE 8
Hurst and β exponents of all fruit-fly connectome communities.
In the forceless case at the critical Hopf transition coupling, the H
exponent is the largest for every community. With forces these values
drop for each community. This shows a resemblance with the
rest and non-rest studies of different brain areas in [63], showing 〈H〉 ≈
1.0 at resting state and 〈H〉 ≈ 0.7 at task driven states.
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a relatively high force the exponents remain close to each other
and close to those of the “rest” phase. In the case of FF higher
force led to less “rest” in the system resembling more like task
driven behaviour.

Another very important result arose from the study of the two
different human connectomes, whereH exceeds the maximum value
of 1. It is due to the fact that the brain at criticality is characterized by
“crucial events.” Crucial events are defined as abrupt changes in the
signal amplitude, for example in electroencefalogramm (EEG)
signals [92]. The waiting time (τ) distribution between events
follows an inverse-power law ψ(τ) ≈ 1

τμ for τ → ∞. The
intermittency index μ is an important measure in the interval
1 < μ < 3, with H = (4 − μ)/2 and β = 3 − μ. The condition μ <
2 generates H > 1 with a possible maximum value H = 1.5. This is
due to the fact that some non-stationary correlation could emerge in

crucial events, leading to μ < 2, so that H exceeds the maximum
value of 1 [93, 94]. As we can see on Figure 9, H > 1 and β > 1 occur
in case of the human connectome results at certain communities, but
we did not find it in the case of the FF (see Figure 8).

4 Hopf synchronization transition
without force

We have rerun this analysis for the fruit-fly connectome using
the standard Kuramoto equation for different couplings, i.e., near
the Hopf synchronization transition discussed in [59].

4.1 Crackling noise analysis

Earlier mean-field type of phase transition was found at Kc

1.7(2). As we can see on Figure 10 the crackling noise duration
analysis results in faster than PL decays of p(Δt) for K < 1.4 and
an inflection point with up veering decays for K ≥ 1.65 couplings.
At K = 1.5 we can observe a PDF, with PL decay for 30 < t < 300,
which can be fitted by the exponent τt = 3.1(1). Note, that in [59]
an estimate for the synchronization transition Kc = 1.70(2) was
given, but in that work the RK4 solver was used mainly. Here the
more precise Bulrisch-Stoer stepper was applied, which moves
the p(Δ) tails slightly and provides a somewhat greater transition
point estimate.

As in [59] we do not find an extended scaling region with
non-universal exponents suggesting a GP. So, the crackling noise
exponent, presumably the mean-field class exponent of the Hopf
transition, describing the resting state, should be this value. This
is a rather large exponent and is difficult to reproduce by
simulations, because large systems are needed to see the
scaling region before an exponential cutoff. We assume that
this was not seen in [40], where N = 500 nodes were used.
Another reason might be that in [40] an annealed Kuramoto
model was simulated, lacking the quenched self-frequencies. Or
perhaps because [40] used thresholds of the θi(t) variables and

FIGURE 9
Hurst and β exponents of all human connectomes’ communities. KKI-113 is presented with and without force terms and KK-18 without the force
terms.

FIGURE 10
Avalanche duration distributions on the fruit-fly connectome
without force for K different couplings. The line shows a PL fit for the
K = 1.5 results, for Δt > 30.
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identified avalanches by estimating the spatio-temporal size of
the activity avalanches.

But indeed the scaling region we observe is rather narrow, even
though we know that the Kuramoto model exhibits a critical
synchronization transition here.

4.2 Hurst and β analysis of local variables

We cannot exclude the possibility that doing the avalanche analysis
on the local angles θi(t), would lead to a lack of PL-s as it was claimed in
[40]. Since identification of avalanches of local variables is a rather
difficult and ambiguous task, requiring careful binning, to check the
scaling of local phase and frequency data we performed auto-correlation
measurements and estimated the Hurst and β exponents as before.

The “no-force” result on Figures 8, 9 show strong auto-
correlations, indications of criticality as in the brain experiments
[63]. In fact the exponents are larger (close to 1), than in case of the
Shinomoto–Kuramoto model calculations. This suggests that the
external excitation results in a less correlated scaling behavior of the
neural systems than in the resting state. These results are in
agreement with the experimental findings of [63].

5 Conclusion

In conclusion our numerical analysis of synchronization models
on different connectome graphs show that in the case of excitation
we can find PL scaling of duration of the crackling noise of the
activity, defined by thresholds of R. By solving the Shinomoto-
Kuramoto model numerically we concluded that even without the
additive noise we can find similar synchronization transition as with
the full Langevin equation.

The observed PL tails exhibit some dependence on the amplitude of
the force, whichmay be related to GP heterogeneity effects, but can also
arise as the consequence of quasi-critical, scaling like behavior reported
in the discrete models of Ref. [35]. We estimated the extension of the
synchronization transition region by the fluctuations of R and Ω and
found an extended, smeared transition region. This makes it difficult to
define the transition points. We attempted it in two different ways: half
values and fluctuation peaks of the order parameters in the steady state.
In general, theFc′-s, obtained by the half values ofΩ are greater than the
Fc-s by the R-s and agree with the frequency fluctuation peaks. While
the phase fluctuations peaks were found to bemuch smaller both for the
FF and the human connectomes. This is very different from the
Kuramoto Hopf transition results [59]. The susceptibilty exponents
are γ′ = 0.16(2) and γ′ = 1.3(1), but for the K = 2 case we could not
measure γ′, because Fc � Fc′ ≃ 0 was found. The σ(Ω) results also show
accordance with the Widom line, the peaks are flattened and shift by
increasing the external force.

However, σ(R) also describes the transition of the SK order
parameter, introduced for excitable systems. Its decay seems to be
faster than the one obtained by the SNIC bifurcation at ω0

i � 1, ϵ =
0.275 [40]. We have not reached a region, showing hybrid phase
transition reported in [40], possibly by the lack of strong noise. We
avoided to apply strong noise, because that makes the numerical

solution less precise or very slow. A systematic finite-size scaling
study of this transition would be necessary to settle this issue.

In case of initial conditions with random phase variables the R(t)
curves at the transition point do not show PL growth as in case of the
Kuramoto model, but a logarithmic growth, similar to strong
random fixed points of models of statistical physics.

We also investigated the local order parameters and found
frustrated synchronization with Chimera like states, coexistence
of synchronized and asynchronous domains. Performing auto-
correlation analysis on the local order parameters we found
strong auto-correlation in the resting (Kuramoto) state at
criticality and somewhat weaker ones in presence of an external
force. In the latter case the H and β exponents take their maximal
values, where the fluctuations of R(t) are maximal, i. e., at the
transition.

We also investigated the module dependence of H and β by
decomposing the connectomes via community detection
algorithms. We observed variations amongst the communities
suggesting different levels of criticality, but the identification of
communities with real brain regions is a further task to be
completed. Our simulated H and β exponents are in agreement
with recent experimental findings [63].
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APPENDIX

Here we show avalanche duration PDF-s without noise in case of
the KKI-113 connectome on Appendix figure A1. One see only a
slight variation of the PL tail exponents around −2.2, but they are
close to the noisy case results.

Similarly, in case of the FF with the application of force in the
synchronized phase, i.e., K = 2 the PL tails fitted for t > 20 do not

differ to much, they can be characterized by an exponent −2.21(1) as
one can see on Appendix figure A2. The inset shows the rapid drop
of the SK order parameter as the function of the force and the
maximum both of σ(R), σ(Ω) are at F ≃ 0. Plotting the F dependence
of σ(R) on log.-log. scale a PL tail arises, characterized by the
exponent −1.34(1), which can be regarded a susceptibilty
exponent of the Kuramoto equations. However, σ(Ω) falls
exponentially fast as the function of F.

FIGURE A1
Avalanche duration distributions on the KKI-113 connectome for different forces, shown by the legends and at K = 1, without noise. Dashed lines are
PL fits for Δt > 20.

FIGURE A2
Avalanche duration distributions on the fruit-fly connectome for different forces, shown by the legends and at K = 2, ϵ= 0.01. Dashed lines are PL fits
for Δt > 100. The inset shows σ(R) by increasing F on log. log. scale. The line corresponds to a PL fit.
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