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This paper examines the analysis of entropy generation in the flow of an MHD
Prandtl fluid over a nonlinear stretching sheet. Heat transfer is developed
through a convectively heated sheet. The impacts of nonlinear radiation and
nonlinear mixed convection are considered. The resulting nonlinear systems are
computed for the unique solutions of velocity and temperature profiles. Effects
of thermal radiation, the Prandtl number, Prandtl fluid parameters, and the Biot
number are discussed. Results for the Nusselt number and skin friction
coefficient are analyzed. The impact of the radiation parameter is to improve
the rate of heat transport to the flow region. It is stated that temperature
distribution increases for greater values of θf. We state that the fluid
temperature decreases with the increasing importance of the Prandtl number
Pr. Growth in the Prandtl number decreases the rate of thermal diffusion. It
shows that the magnitude of drag forces decreases for larger values of Prandtl
fluid parameters. Furthermore, curvature and mixed convection parameters
boost the flow and heat transfer rate near the cylinder wall. The entropy
generation grew up rapidly with larger values of magnetic and Brinkman
numbers. The temperature ratio parameter and Prandtl fluid parameters
reduce the entropy generation rate. These parameters are also used to
control the entropy generation process.
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1 Introduction

In recent years, non-Newtonian fluid with boundary layer approximation over the
moving surface has gained considerable attention due to its extensive applications. In [1], the
Couette flow of a viscoelastic fluid with thermal convection was studied. In [2], the
micropolar fluid flow in a channel was analytically investigated. In [3], the flow and heat
transfer of a viscoelastic electrically conducting fluid over a stretching/shrinking sheet was
reported. In [4], the exact solution of a rate-type fluid in a circular duct was developed.
Coupled flow and heat transfer of a Maxwell fluid over a stretching sheet was discussed in [5,
6], where the mixed convection flow of power-law fluids past an inclined sheet was explored.
The effects of shear flow and power-law viscosity on the temperature field were also
considered. MHD boundary layer stagnation point flow of a Jeffrey fluid over a moving
sheet was analyzed in [7].
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Convective heat transfer has great interest among researchers,
both theoretical and practical, and also has many applications in
engineering and geophysical fields. Initially, in [8], the convective
heat transfer flow over a moving sheet was reported. In [9], the
convective heat transfer over a stretching/shrinking surface was
numerically examined. In [10], the steady flow of double-diffusive
mixed convection boundary layer flow through convective boundary
conditions was numerically reported. The flow of a Maxwell fluid
due to constantly moving radiative surfaces with the convective
condition was reported in [11, 12],where numerical analysis over a
continuous stretching sheet with nonlinear thermal radiation was
performed. In [13], the flow of a nanofluid in the existence of
nonlinear thermal radiation was numerically analyzed. In [14], the
three-dimensional flow of a Jeffrey nanofluid subject to thermal
radiation effects was explored. In [15], the analysis of MHD flow and
heat transfer with nonlinear radiation in a viscoelastic fluid was
performed. The study of three-dimensional magnetohydrodynamics
with thermophoresis and Brownian motion aspects was extended
in [16].

In the present study, we explore the entropy generation in the
flow of an MHD Prandtl fluid with nonlinear thermal radiation.
Although the stretching problems are explored extensively for
linear thermal radiation, much less emphasis has been given to
the flow problems with nonlinear thermal radiation. Such
information is further scarce when heat transfer through
convective conditions is considered. The radiation effect in
the flow of a pseudo-plastic nanofluid was examined in [17].
The MHD stretched flow of a nanofluid in the presence of
buoyancy and thermal radiation was analyzed in [18]. A
salient feature of radiation in nanofluid flow over an unsteady
stretching sheet was reported in [19, 20],where the thermal
radiation effect in time-dependent MHD flow with variable
viscosity was analyzed. The hydromagnetic flow of a second-
grade fluid in the presence of thermal radiation was examined in
[21]. The effect of thermal radiation in the flow of a micropolar
fluid was considered in [22, 23],where entropy generation in
nonlinear radiative flow in the direction of a variable thick
surface was reported. A mathematical model for entropy
generation with variable fluid properties was examined in
[24]. The impact of mixed convection and nonlinear radiation
was further considered. The results of surface drag forces,
entropy generation rate, heat/mass transfer, and the Bejan

number were presented numerically in [25], where the
entropy generation in an MHD micropolar nanofluid was
analyzed using a nonlinear stretching sheet.

We explore the nonlinear effects of radiation, mixed convection,
and stretching sheet with an MHD [26–31] Prandtl fluid and heat
transfer on entropy generation. The first objective of the current
article is to venture further into the regime of the nonlinear stretched
flow of the Prandtl fluid with convective heat transfer [32–41]
effects. Thus, the Prandtl fluid dealt with the nonlinear flow of
thermal radiation. Our second objective is to consider the nonlinear
mixed convection in the entropy generation by nonlinear stretching.
Having such an incentive in mind, the reason here is to model first
the appropriate problem and then compute it. Nonlinear radiation
properties are also incorporated. Governing differential systems are
solved for the unique solution of velocity and temperature fields.
Velocity, temperature, and entropy generation are sketched and
examined for different emerging parameters. The local Nusselt
number and skin friction coefficient are studied by graphical
illustrations and tabular values.

2 Mathematical construction

We consider the 2D flow of an MHD Prandtl fluid over a
stretching sheet. The flow is induced by using a nonlinear stretching
sheet. The x- and y-axis are taken along and perpendicular
correspondingly. Furthermore, the effects of nonlinear radiation,
mixed convection, and convective condition are considered. The
Cauchy stress tensor for the Prandtl fluid is given by
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where A and C are the material parameters and A1 is the first
Rivlin–Erickson tensor. The boundary layer equations containing
the stability of mass, linear momentum, and energy can be written as
follows:
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with the subjected boundary conditions

Uw x( ) � ]
L

4
3
x

1
3, v � 0, − k

∂T

∂y
� h Tf − T( ) aty � 0,

u → 0, T → T∞ as y → ∞ . (5)
In the aforementioned expressions, ] = (μ/ρ) is the kinematic

viscosity, μ is the dynamic viscosity, k is the thermal conductivity of

TABLE 1 Homotopic convergence for various orders of approximations when
a =0.4, θf =1.03, R =0.2, Pr=1.0, Bi =0.3, hf =−0.9, and hθ =−1.7.

Order of approximation −f′′0) −θ′0)

1 1.1525 0.1889

5 1.2043 0.1683

10 1.2046 0.1620

15 1.2047 0.1596

20 1.2047 0.1587

25 1.2047 0.1583

30 1.2047 0.1581

35 1.2047 0.1581
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the fluid, ρ is the fluid density, T is the fluid temperature, cp is the
specific heat, qr � −16σ*T3

3k*
∂T
∂y is the radiative heat flux, k* is the mean

absorption coefficient, σ* is the Stefan–Boltzmann constant, and Bi
is the Biot number.

Setting

u � υ

L
4
3
x

1
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2
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3
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3
,
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3
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(6)

equation 2 is identically satisfied, and Eqs.3−5) give

αf′′′ − f′2 + 2
3
ff′′ − βf′′2f′′′ −Mf′ + λ 1 + βtθ( )θ � 0, (7)
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3
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f � 0, f′ � 1, θ′ � −Bi 1 − θ( ) at η � 0,
f′ → 0, θ → 0 as η → ∞,

(9)

where prime denotes the differentiation with respect to η, f is the
dimensionless stream function, θ is the dimensionless temperature,
and θf is the temperature ratio parameter; the dimensionless
numbers are

α � A

μC
, R � 16σ*T3

∞
3kk*

, β � A]
2ρL4C3

, Bi � h

k
,Pr � μcp

k
,

Ek � Uw x( )
cp Tf − T∞( ). (10)

Here, α and β are the dimensionless Prandtl parameters, R is the
radiation parameter, Bi is the Biot number, and Pr is the Prandtl
number.

The local Nusselt numberNux and skin friction coefficient Cf are
defined as follows:

Nux � xqw

k Tf − T∞( ), Cf � τw
ρU2

w

, (11)

FIGURE 1
f′(η) versus α.

FIGURE 2
f′(η) versus β.

FIGURE 3
f′(η) versus R.

FIGURE 4
f′(η) versus θf.
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where ρ is the fluid density, τw is the surface shear stress, and qw is
the surface heat flux. These quantities are defined by

qw � −k ∂T

∂y
( )

y�0
+ qr( )w, τw � A

C

∂u

∂y
+ A

6C3

∂u

∂y
( )3

. (12)

The dimensionless Nusselt number and skin friction
coefficient are

Re1/2x Nux � − 1 + Rθ3f( )θ′ 0( ), (13)

RexCf � αf′′ 0( ) + β

3
f′′ 0( )( )3, (14)

where Rex � Uw(x)L
υ is the local Reynolds number.

3 Entropy generation

This sector is associated with the influence of the MHD Prandtl
fluid with heat transfer on entropy generation. The local volumetric
rate of entropy generation is defined as
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k

T2
∞

∂T

∂y
( )2

+ 16σ*T3
∞

3k*
∂T

∂y
( )2[ ] + σB2

0u
2

T∞

+ μ

T∞

A

C

∂u

∂y
( )2

+ A

6C3

∂u

∂y
( )4[ ].

(15)

The aforementioned equation is the combination of three
different phenomena. The first is heat transfer, the second is
due to the magnetic field, and the third one is due to viscous
dissipation of Walter’s B fluid. The characteristic entropy
generation rate is defined as

_S
′′′
0 � k ΔT( )2

l2T2
∞

. (16)

Thus, the dimensionless form of entropy generation is obtained
by taking a ratio of Eqs 21 and 22.

NG � S′′′gen

_S
′′′
0

� Re[ 1 + R( )θ′′ + R θf − 1( ){θ′′θ3 θf − 1( )2 + 3θ′′θ2 θf − 1( )

+ 3θθ′′}] + 1

θ2f
ReBrMf′2 − 1

θ2f
ReBr αf′′2 + βf′′4[ ], (17)

FIGURE 5
θ(η) versus Bi.

FIGURE 6
θ(η) versus Pr.

FIGURE 7
Nusselt number versus Pr.

FIGURE 8
Nusselt number versus R.
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where Re � Uw(x)x
υ , Br � μ(Uw(x))2

kΔT , and θf � ΔT
T∞.

4 Convergent series solutions

Convergent series solutions depend on the non-zero auxiliary
parameters. The convergence of solution is checked by drawing the
h-curves for the velocity and temperature distributions. Figures (a and
b) show the h-curves of velocity and temperature profiles for fixed

values of other physical parameters. The admissible ranges are hf and hθ,
respectively. It is observed that the solutions converge for the complete
region. Table 1 illustrates the convergence of solutions for various
orders of approximations. Tabular values elucidate that 15th and 30th
order of approximations are enough for the convergence of series
solutions of momentum and energy equations, respectively.

Figures a and b show the --curves for velocity and temperature
profiles.

5 Results and discussion

To analyze the physical aspects of the considered problem, we
discuss the effects of dimensionless parameters α, β, R,θf, Bi, and Pr on
the velocity f′η) and temperature θ(η) distributions. The influence of
Prandtl fluid parameters α and β on the velocity profile is presented in
Figures 1, 2. It is inspected that the velocity profile increases for greater
α and β. The increment in velocity for larger values of β is smaller
when compared with α. The effect of thermal radiation parameter R
on the temperature profile is displayed in Figure 3. It represents the
increasing behavior of thermal radiation parameters when α = 0.4, β =
0.3, Bi = 0.3, Pr = 1.0, and θf = 1.03. There is heat transfer from the flow
region to the wall, indicating that the boundary layer thickness
increases throughout the region. Physically, the effect of the

FIGURE 9
Nusselt number versus θf.

FIGURE 10
Nusselt number versus Bi.

TABLE 2 Values of drag forces for various fluid parameters.

α β −f ′′(0)
0.4 0.3 1.3133

0.5 1.4265

0.6 1.5341

0.4 0.3 1.3133

0.2 1.2789

0.1 1.2381

TABLE 3 Comparison of the Nusselt number at the wall for the present results
and those of Ishak [42] and Aziz [43] for Pr and Biot number Bi.

Pr Bi Present [42] [43]

0.1 0.05 0.03731 0.036844 0.0373

0.10 0.05951 0.058338 0.0594

0.20 0.0823 0.082363 0.0848

0.72 0.05 0.04110 0.042767 0.0428

0.10 0.07053 0.074724 0.0747

0.20 0.1125 0.119,295 0.1193

0.40 0.1638 0.169,994 0.1700

FIGURE 11
Entropy generation versus Ec.

Frontiers in Physics frontiersin.org05

Asad 10.3389/fphy.2023.1150457

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1150457


radiation parameter is to increase the rate of heat transport to the flow
region. Figure 4 illustrates the behavior of ratio parameter θf on the
thermal profile. It is observed that temperature distribution increases
for greater values of θf. Figure 5 shows the effect of the Biot number on
the temperature field. A larger Biot number Bi boosts the temperature
profile. Here, a gradual increase inBi results in the larger convection at
the stretching sheet which increases the temperature. This outcome
leads to the conclusion that the heat transfer rate at the sheet is
enhanced by increasing the velocity of the stretching sheet. Figure 6
depicts the temperature distribution for different values of the Prandtl
number. We observe that the fluid temperature decreases with the
increase in the value of the Prandtl number Pr. Growth in the Prandtl
number decreases the rate of thermal diffusion. Consequently, the
boundary layer thickness becomes thinner due to the reduction in
thermal conductivity. The Nusselt number characterizes the heat flux
from a solid surface to a fluid. Here, we see graphical effects of
radiation parameter R, Prandtl number Pr, and Prandtl fluid
parameters on the Nusselt number. Figures 7–10 reveal the
influences of emerging parameters on the Nusselt number.
Figure 7 describes the variation of the Nusselt number. Physically,
a larger-Prandtl number fluid has a relatively lower thermal
conductivity; thus, an increase in Pr decreases conduction and,

thereby, increases the variations of thermal characteristics. This
results in the reduction of the thermal boundary layer thickness
and an increase in the heat transfer rate at the bounding surface.
We can see that the heat transfer rate increases for greater values of α
and Pr. Figure 8 depicts that the Nusselt number increases for

FIGURE 12
Entropy generation versus R.

FIGURE 13
Entropy generation versus β.

FIGURE 14
Entropy generation versus α.

FIGURE 15
Entropy generation versus M.

FIGURE 16
Entropy generation versus θf.
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radiation parameter R. An increase in R enhances the heat flux from
the sheet which increases the fluid’s velocity and temperature. Figure 9
depicts that the Nusselt number increases for a larger temperature
ratio parameter. Figure 10 shows that the Nusselt number increases
with an increase in the Biot number. The values of drag forces are
given in Table 2. It shows that the magnitude of drag forces decreases
for larger values of Prandtl fluid parameters. Table 3 shows the
validation of the method, and we found good agreement with the
published work.

Deviation of entropy generation with η is represented in
Figure 11 for different values of Eckert’s number. Growth in
Eckert’s number leads to a decrease in entropy generation. It is
also observed that near-the-surface variation is almost negligible.
Figure 12 shows the dual behavior of the radiation parameter: a
small increase is displayed near the wall, but far away from the
wall, entropy generation increases rapidly. Figures 13,14 exhibit
the influence of fluid parameters α and β which boost the entropy
generation. The distribution of the magnetic framework on
entropy generation is displayed in Figure 15. The magnetic
parameter persuades Lorentz force which boosts the entropy
generation. The effect of the temperature ratio framework on
entropy generation is shown in Figure 16. From this figure, it can

be seen that entropy generation decreases when the temperature
ratio parameter increases. The effect of the Brickman number is
discussed in Figure 17. The Brickman number produces heat
transport by viscous heating, which leads to the development in
entropy generation. The variation of entropy generation with the
Reynolds number is discussed in Figure 18. It is distinguished
that entropy generation increases with a larger Reynolds number
because a larger Reynolds number corresponds to a larger inertia
and smaller viscous force.

6 Conclusion

Important features of the heat transfer flow of an MHD Prandtl
fluid past a stretching are investigated. Important points are
mentioned as follows.

■ By increasing α and β, the velocity field increases.
■ Larger values of radiation parameter enhance the temperature
distribution.

■ The temperature field decreases by increasing the Prandtl
number.

■ Larger Biot number enhances the temperature and thermal
boundary thickness.

■ The effect of fluid parameters α and β on the magnitude of the
skin friction coefficient is quite the opposite.

■ Entropy generation develops with the magnetic parameter,
Reynolds number, curvature parameter, and Brinkman
number, while contrary behavior is detected for larger
values of the temperature ratio parameter.

■ Nusselt number enhances when R and Bi are enhanced.
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Nomenclature

u, v Velocity components h Heat transfer coefficient

x, y Space coordinates A and C Material parameters

T Fluid temperature σ* Stefan–Boltzmann constant

T∞ Ambient temperature k* Mean absorption coefficient

L Length η Dimensionless space variable

∧1 Linear thermal expansion coefficient f Dimensionless velocity

∧2 Nonlinear thermal expansion coefficient θ Dimensionless temperature

Uw Stretching velocity ϕ Dimensionless concentration

B0 Free stream velocity ψ Stream function

ρ Fluid density α&β Fluid parameters

ν Kinematic viscosity M Magnetic parameter

μ Dynamic viscosity Br Brinkman number

cp Specific heat g Mixed convection

σ Electrical conductivity Bi Biot number

ρf Fluid density R Radiation parameter

(cp)f Fluid heat capacity Pr Prandtl number
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