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In this study, we first define the logarithmic likelihood ratio as a measure between arbitrary generalized information sources and non-homogeneous Markov sources and then establish a class of generalized information sources for small deviation theorems, strong limit theorems, and the asymptotic equipartition property. The present outcomes generalize some existing results.
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1 INTRODUCTION
In information theory, the asymptotic equipartition property (abbreviated as AEP) is a type of property of random sources. It is the basis of the typical set concept used in data compression theory. The AEP is the constant convergence of certain random processes in some types of convergence, such as [image: image] convergence, probability convergence, and almost surely convergence. In some circumstances, it is also known as the Shannon–McMillan–Breiman theorem or entropy ergodic theorem. Small deviation properties are types of strong limit theorems (i.e., in the sense of almost everywhere convergence) presented by inequalities for information sources, and they usually involve the generalization of the strong law of large numbers (SLLNs). In this paper, following the research [1-3], we mainly consider the strong limiting properties and small deviation properties of generalized information entropy (a type of array of non-homogeneous Markov chains), which is an important issue in the study of limit theory.
In 1948, Shannon first explored the AEP of i.i.d. sequences (i.e., independent identically distributed sequences) and the entropy ergodic theorem of convergence in the sense of probability (see [4]). Then, in the 1950s, McMillan and Breiman established the AEP for certain types of information sources in the sense of [image: image] and almost everywhere (abbreviated as a.e.) convergence, respectively (see [5-6]). In 1960, Chung relaxed the conditions and found that the AEP still holds for random sources equipped with countable state (see [7]). From the 1970s to the early stages of the 21st century, the AEP for various general stochastic processes was investigated by many studies, such as [8–13]. Recently, many scholars, such as Yang (e.g., [14–17]), Shi (e.g., [3,18–21]), Huang [22,23], and Peng [24–26], by generalizing the method proposed by [27], [11], and Wang [2,28,29], studied the AEP and the limit properties (including AEP and SLLNs) of some types of Markov chains (such as homogeneous and non-homogeneous; finite state space and infinite state space; and Markov chains indexed by the set of positive integers and tree-indexed Markov chains).
However, most of the aforementioned results do not consider arrays of information sources, which play significant roles in information science. In recent works, [30] explored the conditions and SLLNs for almost certain convergence of double random variable arrays, and [31] established several kinds of convergences for row negatively correlated random variable arrays under certain conditions. More related studies can be found in their references. Therefore, the limit behavior and the AEP, as well as the small deviation properties of the arrays of information sources, aroused our interest. This paper, in line with [3], [30], and [31], first introduces the logarithmic likelihood ratio as a measure between arbitrary generalized information sources and non-homogeneous Markov sources and then establishes a class of generalized information sources for small deviation theorems and strong limit theorems. The outcomes generalize some existing results.
The rest of the content is arranged as follows: Section 2, the preliminaries, gives some notations and establishes some definitions and lemmas. Section 3 states the main results and presents the strong limit behaviors and strong deviation properties of non-homogeneous Markov sources.
2 PRELIMINARIES
In this section, we first introduce several notation and then establish the definition of the generalized divergence rate distance of the arbitrary measure μ with respect to the Markov measure [image: image]. In the rest of this section, the probability space [image: image] that we explore in our main results is fixed. Let [image: image] be a general information source, where [image: image] are an array of non-negative integer-valued random variables over the (un − vn + 1)th Cartesian product [image: image] of an arbitrary discrete source alphabet [image: image] with the distribution
[image: image]
where [image: image] and [image: image], [image: image], [image: image].
For any arbitrary information source, [image: image] denote [image: image]. Let
[image: image]
which is called the entropy density of [image: image].
Supposing that [image: image] is a non-homogeneous Markov information source, then there exists a distribution [image: image] and a transition probability density [image: image], which is called the nth step transition probability density, such that
[image: image]
and
[image: image]
Definition 2.1. Defining
[image: image]
Here, [image: image] is called the generalized divergence rate distance of the arbitrary measure μ with respect to the Markov measure [image: image].
We use log to represent the logarithm operator. Let 0 log  0 = 0, which can be verified since x log  x → 0 as x → 0.
Lemma 2.1. [27] Let [image: image] be a sequence of non-negative random variables with [image: image], then
[image: image]
The proof of Lemma 2.1 can be found in [27], which is omitted in this study.
3 MAIN RESULTS AND PROOFS
In this section, we first derive the strong deviation theorem (Theorem 3.1) for a sequence of measurable functions defined on [image: image] under certain conditions. Then, by considering the special case with c = 0 in Theorem 3.1, we derive the strong law of large numbers for strong ergodic information sources (Theorem 3.2). Finally, we obtain the small deviation behavior (Theorem 3.3) and the asymptotic property of the entropy density fn(ω) (Corollary 3.1).
Theorem 3.1. Let fn(ω) and [image: image] be as given in Definition 2.1, [image: image] be a sequence of measurable functions defined on [image: image], and [image: image]. Let c > 0 be a real-valued constant and
[image: image]
Supposing that there exists α > 0, for each vn⩽i⩽un
[image: image]
and for arbitrary vn⩽i⩽un,
[image: image]
Let
[image: image]
where t ∈ (0, α). Then, in the case of 0⩽c⩽t2Ht (α, τ), it can be found that
[image: image]
and
[image: image]
Note: In Eq. 3.1 of Theorem 3.1, [image: image] defines the range of the generalized divergence rate distance of the arbitrary measure μ with respect to the Markov measure [image: image]. It measures the difference between arbitrary generalized information sources and non-homogeneous Markov sources. In the rest of the content, we omit ω for notation explicitly. Equation 3.2 states the restriction that the array [image: image] is integrable in the exponential sense. Equation 3.3 gives the moment condition for the conditional mathematical expectation of the array.
Proof. Let λ be a negative constant and
[image: image]
Let
[image: image]
then
[image: image]
Combining Lemma 2.1, we can obtain
[image: image]
With Eqs 3.1, 3.7, we have
[image: image]
With Eqs 3.8, 3.9, we have
[image: image]
Hence, with Eq. 3.10, we have
[image: image]
We consider that the maximum of x2e−hx is [image: image] with (h > 0). Hereafter, we restrict the analysis to 0 < λ < t and 0 < t < α. According to the inequality 2 − 1/x⩽1 + log  x⩽x and ex − 1⩽x + x2e|x|/2 with x > 0, the properties of the superior limit, and Eq. 3.4, we have
[image: image]
From Eqs 3.11, 3.12, we can obtain
[image: image]
[image: image]
Considering 0 < λ < t < α and 0⩽c⩽t2Ht (α, τ), with Eqs 3.2, 3.13, we have
[image: image]
Defining function [image: image] and 0⩽c⩽t2Ht (α, τ), we can arrive at
[image: image]
Considering 0⩽c⩽t2Ht (α, τ), it can be found that
[image: image]
Similarly, supposing −α < − t < λ < 0, we have
[image: image]
In particular, and only if c = 0
[image: image]
The proof is completed. □
In the following content, we assume that [image: image] is a strongly ergodic matrix and the vector π is the unique invariant measure determined by [image: image].
Theorem 3.2:. Supposing the conditions of Theorem 3.1 hold, if
[image: image]
for any positive integer k,
[image: image]
and for vn⩽i⩽un,
[image: image]
then
[image: image]
Proof. According to Theorem 3.1, we consider, under the condition of c = 0, that
[image: image]
With Eqs 3.14, 3.16, for arbitrary k, we have [image: image], and under the condition of vn⩽i⩽un, we have [image: image] and
[image: image]
[image: image]
With Eqs 3.17–3.19, we can arrive at
[image: image]
Since eα|x| is convex, according to the Jensen’s inequality of conditional expectation, we arrive at
[image: image]
It is easy to obtain the conclusion that g(x) = x2eα|x| is a convex function. With Eq. 3.15, we have
[image: image]
Let [image: image], satisfying the condition of Eqs 3.2 and 3.3, then
[image: image]
Then,
[image: image]
Therefore,
[image: image]
With Eqs 3.18, 3.19, we can find
[image: image]
With Eqs 3.20, 3.21, we have
[image: image]
For positive integer h, calculating by induction, we arrive at
[image: image]
With the strong ergodicity of [image: image] and the invariant of π, we can find
[image: image]
The proof is completed.
Theorem 3.3. Let fn(ω) and [image: image] be as given in Definition 2.1. Let 0 < t < 1 and
[image: image]
Assume that 0 < c < t2Ht and j (1⩽j⩽N) are constant, then we have
[image: image]
and
[image: image]
Proof. Under the conditions of Theorem 3.1, let [image: image] and α = 1, and
[image: image]
then
[image: image]
Supposing 1⩽j⩽N is a constant, we have
[image: image]
Applying 0 < c < t2Ht, we have
[image: image]
and
[image: image]
With Eqs 3.5, 3.11, we have
[image: image]
With Eqs 3.6, 3.11, we have
[image: image]
The proof is completed.
Corollary 3.1. Supposing the conditions of Theorem 3.1 hold, then
[image: image]
Proof. It is easy to obtain this conclusion regarding the strong limit theory of entropy when c = 0. □
We point out that Corollary 3.1 implies that our main outcomes generalize the known results, such as Liu and Yang [12].
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