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In this paper, a new method for obtaining the basic reproduction number is
proposed, called the path analysis method. Compared with the traditional next-
generation method, this method is more convenient and less error-prone. We
develop a general model that includes most of the epidemiological characteristics
and enumerate all disease transmission paths. The path analysis method is derived
by combining the next-generation method and the disease transmission paths.
Three typical examples verify the effectiveness and convenience of the method. It
is important to note that the path analysis method is only applicable to epidemic
models with bilinear incidence rates. The Volterra-type Lyapunov function is given
to prove the global stability of the system. The simulations prove the correctness
of our conclusions.

KEYWORDS

path analysis method, basic reproduction number, transmission paths, Lyapunov
functions, stability

1 Introduction

Research on the epidemic compartment model began with Kermack–McKendrick’s SIR [1]
system. It took the Black Death as the research object and had only one infected population during
the illness period. The advantage of the SIR system is that it only needs to focus on the total number
of patients per unit time [2–4]. With the development of medical sciences, it is found that some
patients have already been infected before they develop symptoms. Statistics show that most
infectious diseases have an asymptomatic infected population, such as COVID-19 [5], SARS [6],
and Ebola [7]. Therefore, scholars proposed the SIR [8–11] model with two infected populations:
asymptomatic and symptomatic populations. The asymptomatic population is transformed into a
symptomatic population by a certain percentage after a latent period.

In recent years, researchers have developed more complex high-dimensional models
based on the transmission characteristics. In [12], the SE1E2I1I2HR model for COVID-19 in
Wuhan was established. Infected individuals were divided into four populations, of which
E2, I1andI2 were infectious. In [13], the SEQAIJR model consisting of quarantined and
isolated populations was developed. The authors divided patients into five populations, four
of which were infectious, except for those in the incubation period. In [14], the SCEAIHR
model divided people into seven populations, but only three were infectious. Actually, most
models divide infected people into multiple populations, but not all are infectious [15–17].
This phenomenon will be fully reflected in the basic reproduction number.

The basic reproduction number [18–23] is one of the most important indicators of the
infectious disease compartment model. Its basic form is R0 � Kβ/μ [24], where K is the total
population, β is the infection rate, and μ is the elimination rate. When there are multiple
compartments, it becomes R0 � R0(1) + R0(2) +/ + R0(n) [25, 26]. Usually, it can be solved
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by the next-generation method. The value of n depends on the
infected populations that are infectious, since a proportion of
infected individuals are isolated.

The study of stability is one of the most important subjects in the
infectious disease model. Many studies [27–35] give the methods for
proving the local and global stabilities of the singularities.
Lyapunov’s second method and Lasalle’s invariance principle are
the most common methods for proving global stability. However,
they are not easy to operate because there is no general way to
construct a suitable Lyapunov function. In the Lyapunov function
toolbox, linear-, quadratic-, and Volterra-type functions are three
frequently used functions applied to biological systems. These
functions are as follows:

V1 x1, x2,/, xn( ) � ∑n
i�1
mixi,

V2 x1, x2,/, xn( ) � ∑n
i�1

mi

2
xi − x*

i( )2,
V3 x1, x2,/, xn( ) � ∑n

i�1
mi xi − x*

i − x*
i ln

xi

x*
i

( ),
where mi > 0, i � 1, 2,/, n. In most cases, it requires linear- and
Volterra-type functions to prove the global stabilities of disease-free
and endemic equilibrium points, respectively. In [36], a linear-type
Lyapunov function to prove the global stability of the disease-free
equilibrium was defined. In [37], Ottaviano et al. constructed a
suitable Lyapunov function based on the Volterra-type function for
the endemic equilibrium point.

In summary, most researchers introduce their models, then
calculate the basic reproduction number, and prove the stability of
the equilibrium point. These processes are similar but require tedious
calculations. Is it possible to obtain a basic reproduction number with
universal applicability by building a general model containing the main
features? This paper develops a model with n infected populations that
can only be transferred from top to bottom. We list all transmission
paths and find some important conclusions. The number of the

transmission paths for the final infected population is the sum of
the combinatorial numbers. The number for all infected populations is
twice the sum of the combination numbers. The basic reproduction
number of the system is derived by the next-generation method. By
decomposing the basic reproduction number formula, we find not all
infected populations are infectious, such as those who are isolated and
treated. A path analysis method is shown by combining the basic
reproduction number formula with the disease transmission paths.
This method greatly simplifies the calculation and it is successfully
applied in three typical examples. The paper also gives the conditions
for the existence of disease-free and endemic equilibrium points.
Their global stabilities are proved by two Lyapunov functions
with linear- andVolterra-type tools. Simulations verify the conclusions.

2 Model and method

Individuals are divided into three categories, susceptible (S),
infected (I), and recovered (R) populations. Infected populations
are divided into n populations, which can be denoted as
I1, I2,/, In. I1 is the asymptomatic population, and I2, I3,/, In
are symptomatic populations. All symptomatic infected individuals go
through an asymptomatic period. Ii comes from I1, I2,/, Ii−1 and
will be transferred to Ii+1, Ii+2,/, In with 1< i< n. The compartment
model can be represented by Figure 1 and system 1. The incidence rate

is∑n
i�1
βiSIi. The input rate and natural mortality are Λ and μ. μi is the

mortality of Ii. r
p
q represents the conversion rate from Ip to Iq. The

transmission paths are shown in Table 1. It can be concluded that In
comes from 2n−2 paths: 2n−2 � C0

n−2 + C1
n−2 + C2

n−2 +/ + Cn−2
n−2. The

number of the paths for In is equal to the sum of all combinatorial
numbers. The sum of the total transmission paths of I1, I2, I3,/, In is

2n−1. The total population is N � S +∑n
i�1
Ii + R. By deriving the

equation, we obtain the following equation:

dN

dt
�
d S + ∑n

i�1
Ii + R( )

dt
� Λ −∑n

i�1
μiIi − μN t( )≤Λ − μN t( ),

FIGURE 1
Disease transmission paths.

TABLE 1 Simulation parameter values for chapter 5.

In Transmission path Number

I1 S → I1 1

I2 I1 → I2 1

I3 I1 → I3 , I1 → I2 → I3 2

I4 I1 → I4 , I1 → I2 → I4 , I1 → I3 → I4 ,
I1 → I2 → I3 → I4

4

I5 I1 → I5 , I1 → I2 → I5 , I1 → I3 → I5 ,
I1 → I4 → I5 , I1 → I2 → I3 → I5 ,
I1 → I2 → I4 → I5 , I1 → I3 → I4 → I5 ,
I1 → I2 → I3 → I4 → I5

8

/ / /

In I1 → In,/ 2n−2

Total 2n−1
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dS

dt
� Λ − ∑n

p�1
βpSIp − μS,

dI1
dt

� ∑n
p�1

βpSIp − μ1 + ∑n
p�2

r1p⎛⎝ ⎞⎠I1,

dI2
dt

� r12I1 − μ2 + ∑n
p�3

r2p⎛⎝ ⎞⎠I2,

/

dIp
dt

� ∑q−1
p�1

rpq Ip − μq + ∑n
p�q+1

rqp⎛⎝ ⎞⎠Iq, q � 4, 5,/, n − 1( ),
/

dIn
dt

� ∑n−1
p�1

rpnIp − μn + rnn+1( )In,
dR

dt
� rnn+1In − μR,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

N t( )≤ Λ
μ
− C0

μ
e−μt, C0 > 0.

Here, the next-generation method [38] is used to calculate the
basic reproduction number. We rewrite system 1 as
(I1, I2, I3,/, In, S, R). It can be expressed as follows:

ri x( ) �
∑n
p�1

βpSIp

0
..
.

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, hi x( ) �

μ1 + ∑n
p�2

r1p⎛⎝ ⎞⎠I1

−r12I1 + μ2 + ∑n
p�3

r1p⎛⎝ ⎞⎠I2

..

.

−rnn+1In + μR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

F and V are the Jacobian matrices of ri(x) and hi(x). Then, we
obtain

F � zri
zxj

x0( ) �

β1
Λ
μ

β2
Λ
μ

β3
Λ
μ

/ βn
Λ
μ

0 0

0 0 0 / 0 0 0

..

. ..
. ..

.
1 ..

. ..
. ..

.

0 0 0 / 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

V � zhi
zxj

x0( )

�

μ1 + ∑n
p�2

r1p 0 0 / 0 0 0 0

−r12 μ2 + ∑n
p�3

r2p 0 / 0 0 0 0

−r13 −r23 μ3 + ∑n
p�4

r3p / 0 0 0 0

..

. ..
. ..

.
1 ..

. ..
. ..

. ..
.

−r1n −r2n −r3n / −rn−1n μn + rnn+1 0 0

β1
Λ
μ

β2
Λ
μ

β3
Λ
μ

/ βn−1
Λ
μ

βn
Λ
μ

μ 0

0 0 0 / 0 rn−1n 0 μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where 1≤ i, j≤ n. The basic reproduction number R0 is the spectral
radius of FV−1. The elements of F are all zero except these at the first
row. So, we only need to consider the first column ofV−1. It is given by

V−1 � zhi
zxj

x0( ) �

1
A1

/ /

r12
A1A2

/ /

r12r
2
3 + r13A2

A1A2A3
/ /

..

. ..
. ..

.

∑n−2
p�0

Bp
n−2

∏n
i�1
Ai

/ /

0 ..
. ..

.

0 ..
. ..

.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ai � μi + ∑n
p�i+1

r1p, i � 1, 2,/, n,

where

B0
n−2 � r1n∏n

i�2
Ai,

B1
n−2 � ∑n−1

p�2
r1pr

p
n ∏p−1

i�2
Ai ∏n−1

i�p+1
Ai,

B2
n−2 � ∑n−1

p1�2,p2�3,p2 >p1

r1p1r
p1
p2
rp2n ∏p1−1

i�2
Ai ∏p2−1

i�p1+1
Ai ∏n−1

i�p2+1
Ai,

B3
n−2 � ∑n−1

p1�2,p2�3,p3�4,p3 >p2 >p1

r1p1r
p1
p2
rp2p3r

p3
n ∏p1−1

i�2
Ai ∏p2−1

i�p1+1
Ai ∏p3−1

i�p2+1
Ai ∏n−1

i�p3+1

Ai,//, Bn−2
n−2 � ∏i�n−1

i�1
rii+1.

Hence,

FV−1 �

R0 I1( ) + R0 I2( ) + R0 I3( ) + R0 I4( ) +/ + R0 In( ) / /
0 0 0
..
. ..

. ..
.

0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

R0 � ρ FV−1( ) � R0 I1( ) + R0 I2( ) + R0 I3( ) + R0 I4( ) +/ + R0 In( ),

where

R0 I1( ) � β1
Λ
μ

1
A1

,

R0 I2( ) � β2
Λ
μ

r12
A1A2

� β2
Λ
μ

r12
A1

1
A2

,

R0 I3( ) � β3
Λ
μ

r13A2 + r12r
2
3

A1A2A3
� β3

Λ
μ

r13
A1

+ r12r
2
3

A1A2
( ) 1

A3
,

R0 I4( ) � β4
Λ
μ

r14A2A3 + r12r
2
4A3 + r13r

3
4A2 + r12r

2
3r

3
4

A1A2A3A4

� β4
Λ
μ

r14
A1

+ r12r
2
4

A1A2
+ r13r

3
4

A1A3
+ r12r

2
3r

3
4

A1A2A3
( ) 1

A4
,//,

R0 In( ) � βn
Λ
μ

C0
n−2 + C1

n−2 +/ + Cn−2
n−2

∏n
i�1
Ai

� βn
Λ
μ

r1n
A1

+ r12r
2
n

A1A2
+/ + r12r

2
3r

3
n

A1A2A3
+/ +

∏i�n−1
i�1

rii+1

∏n−1
i�1

Ai

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1

An
.
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Here, the basic reproduction number consists of R0(Ii) that is
contributed by Ii. Ai represents the elimination rate of
infected population Ii, and 1/Ai can be seen as the illness period.
It is found that R0(Ii) is equal to the product of infection rate,
population size, and illness period. I1 comes from 1 path S → I1. Its
population size isΛ/μ. The infection and elimination rates are β1 and
1/A1. I1 contributes β1Λ/(μA1). I2 comes from 1 path I1 → I2. Its
population size isΛr12/(μA1). The infection and elimination rates are
β2 and 1/A2. I2 contributes β2Λr12/(μA1A2). I3 comes from 2 paths
I1 → I3, I1 → I2 → I3. Its population size is from I1 and I2,
which can be shown as Λr13/(μA1) and Λr12r23/(μA1A2).
The infection and elimination rates are β3 and 1/A3. So,
I3 contributes β3Λr13/(μA1A3) + β3Λr12r23/(μA1A2A3). The
contribution of In can be obtained by analogy. Thus, we can get
the basic reproduction number with very little calculations. We
define this process as a path analysis method that can be applied for
the bilinear compartment models. The key is to find out all
transmission paths and different population sizes.

3 Application examples

For high-dimensional epidemic model, it is cumbersome and
error-prone to derive the basic reproduction number using the
next-generation method. In this section, we use the path analysis
method of Section 2 to directly give the basic reproduction
numbers for three bilinear compartment models without any
calculation.

In [37], system (2) has two populations with infection capability,
which are called asymptomatic A(t) and infected I(t) populations.
A(t) comes from the path S → A, and I(t) comes from the path
A → I. According to the path analysis method, the basic reproduction
number can be expressed as R0 � R0A + R0I. The total population is
(μ + γ)/(μ + ] + γ) through the first equation of the system. The
population sizes of A(t) and I(t) are (μ + γ)/(μ + ] + γ) and
α(μ + γ)/[(μ + ] + γ) (α + δA + μ)]. The infection rates of A(t)
and I(t) are βA and βI. The elimination rates are 1/(α + δA + μ)
and 1/(δI + μ). A(t) and I(t) contribute

R0A � βA
μ + γ

μ + ] + γ

1
α + δA + μ

, R0I � βI
μ + γ

μ + ] + γ

1
δI + μ

.

Therefore, the basic reproduction number is as follows:

R0 � βA
μ + γ

μ + ] + γ

1
α + δA + μ

+ βI
μ + γ

μ + ] + γ

1
δI + μ

,

dS t( )
dt

� μ − βAA t( ) + βII t( )( )S t( ) − μ + ]( )S t( ) + γR t( ),
dA t( )
dt

� βAA t( ) + βII t( )( )S t( ) − α + δA + μ( )A t( ),
dI t( )
dt

� αA t( ) − δI + μ( )I t( ),
dR t( )
dt

� δAA t( ) + δII t( ) + ]S t( ) − γ + μ( )R t( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

System (3) with nine dimensions has been developed in [25] to
depict the transmission of COVID-19. The first equation reveals that
Iss, Ims, and Ia are infectious. Iss, Ims, and Ia come from the paths

S → E → Iss, S → E → Ims, and S → E → Ia, respectively. So, the
basic reproduction number can be

dS t( )
dt

� −β S t( )
N

Iss t( ) + Ims t( ) + Ia t( )( ),
dE t( )
dt

� β
S t( )
N

Iss t( ) + Ims t( ) + Ia t( )( ) − kE t( ),
dIss t( )
dt

� kp1E t( ) − hIss t( ),
dIms t( )

dt
� kp2E t( ) − γ3Ims t( ),

dIa t( )
dt

� k 1 − p1 − p2( )E t( ) − γ3Ia t( ),
dH t( )
dt

� hq1Iss t( ) −H t( ),
dIcu t( )
dt

� h 1 − q1( )Iss t( ) − Icu,

dR t( )
dt

� γ3Ims t( ) + γ3Ia t( ) + 1 − δ1( )H t( ) + 1 − γ1( )Icu t( ),
dD t( )
dt

� δ1H t( ) + γ1Icu t( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

shown as R0 � R0Iss + R0Ims
+ R0Ia . The infection rates of the three

populations are β. The elimination rates of Iss, Ims, and Ia are 1/h,
1/γ3, and 1/γ3. The population sizes of Iss, Ims, and Ia are p1, p2, and
1 − p1 − p2. Iss, Ims, and Ia contribute

R0Iss � β
p1

h
, R0Ims

� β
p2

γ3
, R0a � β

1 − p1 − p2

γ3
.

The basic reproduction number is as follows:

R0 � β
p1

h
+ β

p2

γ3
+ β

1 − p1 − p2

γ3
,

dS

dt
� Π − S βI + rQβQ + rAβA( ) + rJβJ

N
− μS,

dE

dt
� S βI + rQβQ + rAβA( ) + rJβJ

N
− γ1 + k1 + μ( )E,

dQ

dt
� γ1E − k2 + σ1 + μ( )Q, dA

dt
� pk1E − σ2 + μ( )A,

dI

dt
� 1 − p( )k1E − γ2 + σ3 + μ( )I,

dJ

dt
� k2Q + γ2I − δ + σ4 + μ( )J,

dR

dt
� σ1Q + σ2A + σ3I + σ4J − μR.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

In [13], an epidemic model (4) incorporating quarantine was built to
predict the COVID-19 trend in the United Kingdom. The first equation
shows that the quarantine Q(t), asymptomatic A(t), symptomatic I(t),
and isolated J(t) populations are infectious in this system.Q(t),A(t), and
I(t) come from the paths S → E → Q, S → E → A, and S → E → I.
J(t) is from two paths S → E → Q → J and S → E → I → J. The
basic reproduction number can be denoted as
R0 � R0Q + R0A + R0I + R0J1

+ R0J2
. The population sizes of Q(t),

A(t), and I(t) are 1. The population size of J(t) can be divided into
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two parts. One part from Q(t) is k2/(k2 + σ1 + μ). The other part from
I(t) is γ2/(γ2 + σ3 + μ). The infection rates ofQ(t),A(t), I(t), and J(t)
are rQβ, rAβ, β, and rJβ. The elimination rates are 1/(k2 + σ1 +
μ), 1/(σ2 + μ), 1/(γ2 + σ3 + μ) and 1/(δ + σ4 + μ). Q(t), A(t), I(t),
and J(t) contribute

R0Q � rQβ
1

k2 + σ1 + μ
, R0A � rAβ

1
σ2 + μ

, R0I � β
1

γ2 + σ3 + μ
,

R0J � rJβ
k2

k2 + σ1 + μ

1
δ + σ4 + μ

+ rJβ
γ2

γ2 + σ3 + μ

1
δ + σ4 + μ

.

The basic reproduction number is

R0 � rQβ
1

k2 + σ1 + μ
+ rAβ

1
σ2 + μ

+ β
1

γ2 + σ3 + μ

+rJβ k2
k2 + σ1 + μ

1
δ + σ4 + μ

+ rJβ
γ2

γ2 + σ3 + μ

1
δ + σ4 + μ

.

4 Global stability analysis

4.1 Global stability analysis of the disease-
free equilibrium point

Theorem 4.1: The disease-free equilibrium point of system (1) is
(Λ/μ, 0, 0,/, 0). It is globally stable if R0 < 1.

Proof. Let Ii � R � 0, i � 1, 2,/, n. Then, we get
(Λ/μ, 0, 0,/, 0) as the disease-free equilibrium point. We define
a linear function as follows:

V � ∑n
i�1
miIi,

where mq �
∑n−q
p�0

βq+p Λ
μ ∏n
i�q+p+1

Ai ∏q+p−1
i�q

rii+1

∏n
i�q

Ai

r1q, i � 1, 2,/, q,/, n. Calculating

the time derivative of V along the solutions of system (1), we have

dV

dt
� m1 ∑n

p�1
αpSIp − μ1 + ∑n

p�2
r1p⎛⎝ ⎞⎠I1⎡⎢⎢⎣ ⎤⎥⎥⎦

+m2 r12I1 − μ2 + ∑n
p�3

r1p⎛⎝ ⎞⎠I2⎡⎢⎢⎣ ⎤⎥⎥⎦ +/ +mn ∑n−1
p�1

rpn Ip − μn + rnn+1( )In⎡⎢⎢⎣ ⎤⎥⎥⎦,
≤ m1β1

Λ
μ
−m1A1 +m2r

1
2 +m3r

1
3 +/ +mnr

1
n( )I1,

�
β1
Λ
μ

A1
+ m2r

1
2

A1
+ m3r

1
3

A1
+/ + mnr

1
n

A1
− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠A1I1,

�
β1
Λ
μ

A1
+
∑n
i�2
m2 βi( )r12
A1

+
∑n
i�3
m3 βi( )r13
A1

+/ +
∑n
i�n
mn βi( )r1n
A1

− 1
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠A1I1,

� R0 − 1( )A1I1.

When R0 < 1, dVdt < 0. According to Lyapunov’s second method
[39–43], the disease-free equilibrium point is globally stable.

4.2 Global stability analysis of the endemic
equilibrium point

Theorem 4.2: When R0 > 1, system (1) has an endemic
equilibrium point, and it is globally stable.

Proof. According to the equilibrium solution of system (1), we
can arrive at

I1 � Λ β1 + β2B2 + β3B3 +/ + βnBn( ) − μA1

A1 β1 + β2B2 + β3B3 +/ + βnBn( ) > 0,

Λ β1 + β2B2 + β3B3 +/ + βnBn( )
μA1

− 1> 0,

R0 − 1> 0.

Therefore, when R0 > 1, system (1) has an endemic
equilibrium point. The endemic equilibrium point can be represented
as (S*, I1*, I2*,/, I*n, R*). We define a Volterra-type Lyapunov function

L S, I1, I2,/, In( ) � m0 S − S* − S* ln
S

S*
( )

+ ∑n
p�1

mp Ip − I*p − I*p ln
Ip
I*p

⎛⎝ ⎞⎠.

We denote

m1 � m0, mk � m0
βkS*I

*
k

r1kI1
*
, k � 2, 3, 4,/, n.

Differentiating L along system (1), we have

dL

dt
≤m0∑n

p�1
βpS*I

*
p 1 − SIp

S*I*p
⎛⎝ ⎞⎠ 1 − S*

S
( ) +m0μS* 1 − S

S*
( ) 1 − S*

S
( )

+m1∑n
p�1

βp
SIp
S*I*p

− I1
I1
*

⎛⎝ ⎞⎠ 1 − I1
*

I1
( ) +/ +mq ∑q−1

p�1
rpq I

*
p

Ip
I*p

− Iq
I*q

⎛⎝ ⎞⎠
× 1 − I*q

Iq
( ) +mq ∑n

p�q+1
tpI

*
p

Ip
I*p

− Iq
I*q

⎛⎝ ⎞⎠ 1 − I*q
Iq

( ) +/

+mn ∑n−1
p�1

rpnI
*
p

Ip
I*p

− In
I*n

⎛⎝ ⎞⎠ 1 − I*n
In

( ).
By calculation, we can get

dL

dt
≤m0∑n

p�1
βnS*I

*
n 1 − S*

S
+ In
I*n

− SIn
S*I*n

( ) +m0μS* 2 − S

S*
− S*

S
( )

+m1β1S*I1
* 1 − S

S*
− I1
I1
* +

SI1
S*I1

*( ) + ∑n
p�2

m1βpS*I
*
p 1 − SI1

*Ip
S*I1I

*
p

− I1
I1
* +

SIp
S*I*p

⎛⎝ ⎞⎠
+/

+mq ∑q−1
p�1

rpq I
*
p 1 + Ip

I*p
− Iq
I*q

− IpI
*
q

I*pIq
⎛⎝ ⎞⎠ +mq ∑n

p�q+1
tpI

*
p 1 + Ip

I*p
− Iq
I*q

− IpI
*
q

I*pIq
⎛⎝ ⎞⎠

+/

+mn ∑n−1
p�1

rpn I
*
p 1 + Ip

I*p
− In
I*n

− IpI
*
n

I*pIn
⎛⎝ ⎞⎠.

Finally, we get
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dL

dt
≤m0S*I1

* μ + β1( ) 2 − S*
S
− S

S*
( )

+m0S*∑n
p�2

βpI
*
p 3 − S*

S
− SI1*Ip
S*I1I*p

− I1I*p
I1*Ip

⎛⎝ ⎞⎠< 0.

According to Lyapunov’s second method, the endemic
equilibrium point is globally stable.

5 Model simulation

We demonstrate the stabilities of the disease-free and
endemic equilibrium points with 1, 2, 3, and 4 infected
populations through simulations. Supplementary Material S1
gives the values of the parameters in different cases. When the
infection rate α of I1 is taken as 0.0001, 0.0002, and 0.0003,

FIGURE 2
(A, B) The time series diagrams for n � 1. (C–F) The time series diagrams for n � 2.

FIGURE 3
The time series diagrams for n � 3.
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Figure 2A demonstrates the global stability of the disease-free
equilibrium point with R0 < 1. As it is taken as 0.0004, 0.0006,
and 0.0008, Figure 2B demonstrates the global stability of the
endemic equilibrium point with R0 > 1. Figures 2C–F show the
global stabilities of the equilibrium points with n � 2. Figures 3,
4 show the conclusions with n � 3, 4.

6 Conclusion and discussions

This paper constructs a general epidemic system with bilinear
incidence rates. It contains n infected populations, where the first is
the latent population. The transmission paths follow the top–down
principle. We give all the disease transmission paths and find the
number is equal to the sum of the combinatorial numbers. The basic
reproduction number of our system has a reliable biological
explanation and rigorous mathematical structure. It can be seen
as the sum of the basic reproduction numbers of several infected
populations with the ability to spread. We deform its structure and

combine it with the disease transmission paths. A new method for
calculating the basic reproduction number, the path analysis
method, is proposed. The path analysis method is successfully
applied to three representative examples containing different
dimensions. Compared with the traditional next-generation
method, the path analysis method greatly simplifies the
calculation. It is possible to obtain the basic reproduction
numbers of high-dimensional epidemic models without tedious
calculations. The linear- and Volterra-type Lyapunov functions
are used to prove the global stabilities of the disease-free and
endemic equilibrium points. The global stability conditions are
consistent with other studies. Simulations of the systems with 1,
2, 3, and 4 infected populations show that the infected populations
converge to 0 when R0 < 1 and to a constant when R0 > 1. The path
analysis method and the Volterra-type Lyapunov functions are not
applicable to the systems with the nonlinear incidence rates, such as
the Holling-type functions. For the simultaneous transmission of
multiple infectious diseases, the path analysis method is also not
feasible.

FIGURE 4
The time series diagrams for n � 4.
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