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We extend the invariant subspace method (ISM) to a class of Hamilton–Jacobi equations (HJEs) and a family of third-order time-fractional dispersive PDEs with the Caputo fractional derivative in this letter. More precisely, the complete classification is presented for such HJEs that admit invariant subspaces governed by solutions of the second-order and third-order linear ordinary differential equations (ODEs). Meanwhile, some concrete equations are derived for the construction of new exact solutions [image: image]. Then a set of invariant subspaces of the considered third-order time-fractional non-linear dispersive equations are obtained. Based on the Laplace transform method (LTM) and applying several properties of the well known Mitta-Leffer (ML) function, the different types of explicit solutions of a family of third-order time-fractional dispersive PDEs are finally derived.
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1 INTRODUCTION
One of the recently invented methods to derive the explicit solution of NPDE is ISM, which was initiated by Galaktionov and Svirshchevskii in [1] and many researchers have illustrated its applicability in Refs. [2–6]. Specifically, Refs. [2, 3, 5, 6] have addressed the basic question of the dimension of invariant subspaces, which in addition to ISM is also relevant to Lie-B[image: image]cklund symmetry (LBS) and the conditional Lie-B[image: image]cklund symmetry (CLBS) [7–14]. Very recently, Refs. [15–23] generalized this method to resolve fractional non-linear partial differential equations (fNPDEs). It is verified that by applying ISM, a fNPDE can be reduced to a system of fractional non-linear ordinary differential equations (fNODEs), which can be solved by known analytical approaches.
In this paper, we analyze the following two families of special-type non-linear evolution equations.
1.1 Hamilton–Jacobi equations
Hamilton–Jacobi equations (HJEs) can be regarded as models for various processes in theoretical physics, quantum mechanics and contemporary problems of control, etc. In Refs. [24–28], the authors analyzed HJEs in different directions. References [29–32] have also indicated that these equations can be used to depict several properties including blow up behavior and the long time action of non-linear diffusion equations. We will consider the following HJEs
[image: image]
where u = u(t, x) and p(x), B(u), Q(x, u) are sufficiently smooth functions of indicated variables. Here we suppose that m ≠ − 1, −2. This assumption means that Eq. 1.1 is a fully non-linear HJE. In Ref. [7], Qu showed that Eq. 1.1 preserves the second-order CLBS with [image: image] and classified the solutions for Eq. 1.1.
1.2 Third-order time-fractional dispersive PDEs
The concept of fractional order derivative was initiated with the half-order derivative as considered by Leibniz and L’Hopital and many authors have generalized it to an arbitrary order derivative. Different concepts of fractional derivatives were proposed in [33–36]. Now fNPDEs have gained much attention because they can be utilized to represent a large number of physical processes. Some techniques have been employed to solve fNPDEs, but the study of fNPDEs has been still handicapped due to the limitations on dealing with more complex fNODEs.
We will study a family of third-order time-fractional dispersive PDEs
[image: image]
where u = u(t, x), 0 < α ≤ 1, t > 0, and [image: image] is the Caputo fractional derivative of u with respect to t. The ordinary case α = 1 of Eq. 1.2 was first introduced in [37] and has been discussed in depth by many researchers [38, 39]. In fact, when α = 1, δ = b2 = b3 = 0, Eq. 1.2 becomes the KdV equation. If we take [image: image], Eq. 1.2 becomes the Camassa–Holm equation [40]:
[image: image]
If [image: image], Eq. 1.2 is the Degasperis–Procesi equation [41, 42]:
[image: image]
If α = δ2 = 2b2 = b3 = 1, σ = γ = b1 = 0, Eq. 1.2 becomes the Hunter-Saxton equation [1]:
[image: image]
These equations arise as asymptotic models in the theory of shallow water waves. Many authors have concentrated on studying the above special cases of Eq. 1.2.
The major contents of this paper are as follows. We recall the method of the invariant subspace, and also introduce several definitions and fundamental theorems on fractional derivatives and integrals in Section 2. In Section 3 we obtain the complete invariant subspace classification of Eq. 1.1 and derive the reductions and explicit solutions of several examples by utilizing ISM. In Section 4, combined with LTM and inspired by several properties of the well known ML function, we investigate exact solutions of different cases for Eq. 1.2. In the last section, we make some concluding remarks.
2 PRELIMINARIES
First, we introduce ISM. Then, we give several definitions and properties.
2.1 Invariant subspace method
Now, we will present brief details of ISM for a kth-order NPDE
[image: image]
where [image: image].
In [15], Gazizov and Kasatkin demonstrated that ISM can be used to reduce a fNPDE to a system of fNODEs.
We focus on the fNPDE of the form
[image: image]
where [image: image] is the time-fractional Caputo derivative. Let f1(x), f2(x), …, fn(x) be linearly independent functions and their linear span over [image: image] be Wn, namely,
[image: image]
Definition 2.1. If differential operator F satisfies F[Wn] ⊆ Wn, the subspace Wn is invariant under F.Let us suppose Eq. 2.2 preserves the subspace Wn, then
[image: image]
[image: image]. Thus Eq. 2.2 has the solution
[image: image]
{Ci(t), (i = 1, 2, …, n)} satisfy the n-dimensional dynamical system
[image: image]
Observing that the subspace Wn is determined by a basic solution set of a linear nth-order ODE,
[image: image]
Therefore, the invariant condition F is
[image: image]
2.2 Some results on fractional calculus
Definition 2.2. The Riemann–Liouville fractional integral operator of order α > 0 is represented as the following expression:
[image: image]
Where [image: image] is the Euler Gamma function. Note that [image: image].
Definition 2.3. The Caputo fractional differential operator of order α > 0 is represented as the following expression:
[image: image]
When [image: image].We can replace operators [image: image] and [image: image] by Dαf(t) and Iαf(t) respectively. The following properties are true for fractional integral and derivative:
[image: image]
When α ∈ (0, 1], the LT of Caputo fractional derivative has the following expression
[image: image]
where [image: image].
Definition 2.4. A ML function is
[image: image]
Also, Eα,1(z) = Eα(z).We can see the γth order Caputo derivatives of the ML function are:
[image: image]
[image: image], and the following presentation gives the LT of function [image: image], that is
[image: image]
3 EXACT SOLUTIONS OF HJES
3.1 Invariant subspace classification of Eq. 1.1
For Eq. 1.1, we write it in the form [image: image]. By the maximal dimension n ≤ 2k + 1, we consider the following cases for n = 2, 3.
We investigate n = 2 first. After a straightforward calculation, we obtain that
[image: image]
where Ji(i = 1, 2, …, 8) have the following expressions:
[image: image]
Observing the above expression Eq. 3.1, we shall discuss four possibilities: m = −3, 1, 2 and m ≠ − 3, 1, 2. For the case of m = −3, we derive the following system
[image: image]
From the first equation of Eq. 3.3, it is apparent that B(u) = b1u + b2. By solving the fifth and sixth equations of Eq. 3.3, we obtain Q(x, u) = q1u + Q1(x), where b1, b2 and q1 are arbitrary constants and Q1(x) is a function of x. Inserting B(u) = b1u + b2 and Q(x, u) = q1u + Q1(x) into system Eq. 3.3, we have
[image: image]
Taking into account the assumption p(x) ≠ 0 and solving the system (3.4), the corresponding classifying equations and two-dimensional invariant subspaces are listed as the first three lines in Table 1 with the case m = −3. The cases of m = 1, 2 and m ≠ − 3, 1, 2 can be dealt in a similar way; therefore, we obtain the invariant subspace classification results, which are presented in Table 1.
TABLE 1 | Classifications of W2 governed by linear ODEs (2.3) of Eq. 1.1.
[image: Table 1]When n = 3, we find there is only one case: m = 0, and the corresponding results are listed in Table 2.
TABLE 2 | Classifications of W3 governed by linear ODEs (2.3) of Eq. 1.1.
[image: Table 2]3.2 Applications
In this section, we provide a further discussion for addressing with the explicit solutions using the above classification results.
Example 1: The equation
[image: image]
admits the two-dimensional invariant subspace [image: image] generated by ODE
[image: image]
As a result, we derive that
[image: image]
Substituting the above solution into Eq. 3.5, we obtain
[image: image]
For q1 = 0, we can see that
[image: image]
For q1 ≠ 0, we have
[image: image]
The corresponding solution shown in Figure 1
[image: Figure 1]FIGURE 1 | Solution profile of Eq. 3.5.
Example 2: The equation
[image: image]
admits the invariant subspace [image: image] governed by ODE
[image: image]
Then, we arrive at
[image: image]
Inserting the above solution into Eq. 3.6, we obtain
[image: image]
For q1 = 0, we obtain
[image: image]
For q1 ≠ 0, we have
[image: image]
The corresponding solution shown in Figure 2
[image: Figure 2]FIGURE 2 | Solution profile of Eq. 3.6.
Example 3: The equation
[image: image]
admits the two-dimensional invariant subspace [image: image] governed by ODE
[image: image]
Then we arrive at
[image: image]
Inserting the above solution into Eq. 3.7, we obtain
[image: image]
we can see that
[image: image]
The corresponding solution shown in Figure 3
[image: Figure 3]FIGURE 3 | Solution profile of Eq. 3.7 with m = 2, c1 = c2 = 1.
Example 4: The equation
[image: image]
admits the three-dimensional trigonometric invariant subspace [image: image] governed by ODE
[image: image]
Then we arrive at
[image: image]
Inserting the above solution into Eq. 3.8, we obtain
[image: image]
For q2 = 0, we can see that
[image: image]
For q2 ≠ 0, we have
[image: image]
The corresponding solution shown in Figure 4
[image: Figure 4]FIGURE 4 | Solution profile of Eq. 3.8.
4 EXACT SOLUTIONS OF A FAMILY OF THIRD-ORDER TIME-FRACTIONAL DISPERSIVE PDES
Now, we will investigate the different invariant subspaces of non-linear differential operator F[u] and discuss explicit solutions of Eq. 1.2, see the following discussions.
Case 1. Let us consider the following equation
[image: image]
Here [image: image], Eq. 4.1 admits the invariant subspace [image: image], the reason is that
[image: image]
This means that Eq. 4.1 has the following explicit solution:
[image: image]
Substituting the solution into Eq. 4.1, we have
[image: image]
[image: image]
Eqs 4.2, 4.3 provide
[image: image]
and
[image: image]
Then
[image: image]
The corresponding solution shown in Figure 5
[image: Figure 5]FIGURE 5 | Solution profile of Eq. 4.1 with α = 1/3, b1 = 2.
Case 2. We consider the equation
[image: image]
α ∈ (0, 1], Eq. 4.4 preserves invariant subspace [image: image], since
[image: image]
which means that Eq. 4.4 has the solution
[image: image]
Plugging the solution into Eq. 4.4, we find
[image: image]
[image: image]
Solving Eq. 4.5, C1(t) = c1, c1 is an arbitrary constant, and when [image: image], letting
[image: image]
Therefore, Eq. 4.6 becomes
[image: image]
Applying the LT to Eq. 4.7, we have
[image: image]
namely,
[image: image]
Here C2(0) = a, its inverse LT is
[image: image]
where Eα,1(.) is the ML function
[image: image]
Hence, we derive that
[image: image]
In the case of α = 1, it is a traveling wave solution
[image: image]
The corresponding solution shown in Figure 6
[image: Figure 6]FIGURE 6 | Solution profile of Eq. 4.4.
Case 3. We consider the equation
[image: image]
α ∈ (0, 1], Eq. 4.8 admits the two-dimensional invariant subspace [image: image], since
[image: image]
This indicates that Eq. 4.8 has the solution
[image: image]
Substituting the solution into Eq. 4.8, we have
[image: image]
[image: image]
Here, [image: image]. By applying the time-fractional derivative [image: image] to Eq. 4.9, we derive that
[image: image]
Now we discuss the following Cauchy problem:
[image: image]
Then, define [image: image], and utilizing the LT to this equation, we can see
[image: image]
At the same time, applying LT to the first equation of Eq. 4.11, we obtain
[image: image]
Inserting Eq. 4.12 into Eq. 4.13, we find
[image: image]
whose inverse LT is
[image: image]
where E2α,1(.) is the ML function
[image: image]
Substituting Eq. 4.14 in Eq. 4.10, we get
[image: image]
By applying Iα on both sides of Eq. 4.15, we obtain
[image: image]
For the sake of simplicity, we set the integration constant to zero. Assuming a = 1, the solution of Eq. 4.8 is
[image: image]
Note that for α = 1,
[image: image]
and the solution becomes
[image: image]
The corresponding solution shown in Figure 7
[image: Figure 7]FIGURE 7 | Solution profile of Eq. 4.8 with a0 = 100, σ = γ = 1, δ = 2.
Case 4. We consider the equation
[image: image]
α ∈ (0, 1], Eq. 4.16 admits the two-dimensional invariant subspace [image: image], since
[image: image]
This means that the explicit solution has the following form
[image: image]
Substituting the solution into Eq. 4.16, we have
[image: image]
[image: image]
where [image: image]. Setting C1(0) = 1 and employing the LT of both sides of Eq. 4.17, we have
[image: image]
Its inverse LT is
[image: image]
Utilizing C1(t) in Eq. 4.18, we obtain
[image: image]
However, while the ML function does not fulfill the following composition property
[image: image]
it should be noted that
[image: image]
which satisfies the composition property, that is,
[image: image]
Thus, we find
[image: image]
Taking Iα on Eq. 4.19 and applying the integration of the ML function relation, we derive the following result:
[image: image]
Here, we set C2(0) = 0. Hence, the exact solution of Eq. 4.16 associated with [image: image] reads
[image: image]
Note that for α = 1,
[image: image]
[image: image]
The corresponding solution shown in Figure 8
[image: Figure 8]FIGURE 8 | Solution profile of Eq. 4.16 with a1 = 1, λ1 = 1, λ2 = 2, δ = 2.
Case 5. We consider the equation
[image: image]
α ∈ (0, 1], Eq. 4.20 admits the three-dimensional invariant subspace [image: image], since
[image: image]
This means that the exact solution has the following form:
[image: image]
Substituting the solution into Eq. 4.20, we obtain
[image: image]
[image: image]
[image: image]
Solving Eq. 4.21, we obtain C1(t) = c1, inserting it into Eq. 4.22 and Eq. 4.23, we find
[image: image]
where [image: image], Following the procedure described in case 3, we obtain the exact solution
[image: image]
Note that for α = 1,
[image: image]
and the solution is
[image: image]
which is a compacton solution.The corresponding solution shown in Figure 9
[image: Figure 9]FIGURE 9 | Solution profile of Eq. 4.20 with α = γ = b2 = b3 = c1 = 1, δ = 10.
Case 6. We consider the equation
[image: image]
[image: image], Eq. 4.24 admits the four-dimensional invariant subspace [image: image], since
[image: image]
This means that the exact solution has the following form
[image: image]
Substituting the solution into (4.24), we have
[image: image]
Solving this system, we derive that
[image: image]
Thus, Eq. 4.24 has the solution
[image: image]
where [image: image].The corresponding solution shown in Figure 10
[image: Figure 10]FIGURE 10 | Solution profile of Eq. 4.24 with α = 1/3, b2 = b3 = 1, δ = 10.
5 CONCLUSION
In this work, a class of HJEs (1.1) and a family of third-order time-fractional dispersive PDEs (1.2) are investigated by utilizing ISM. All invariant subspaces for the considered HJEs are derived and displayed in Table 1 and Table 2. Meanwhile, some exact solutions to the equations are obtained due to the corresponding symmetry reductions. For the third-order time-fractional dispersive PDEs, the right-hand side of Eq. 1.2 is the derivative of a quadratic differential polynomial, therefore they preserve more than one invariant subspace, each of which generates a solution. Then, by employing the LT method and applying several properties of the well known ML function, the different kinds of explicit solutions of Eq. 1.2 are derived.
There are still some important problems to be considered. For instance, how does one use ISM to resolve initial value problems? How can we develop this method to investigate higher-dimensional non-linear equations and their discrete versions? This will be considered in the future. Moreover, in the extended version of this work, we will discuss more complicated fractional differential equations by using ISM.
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