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Electromagnetic induction can effectively induce abundant firing patterns in
neurons. In modeling a neuron model with the electromagnetic induction
effect, an electromagnetic induction current is frequently added to the state
equation of membrane potential. To more properly reflect the non-uniform
distribution of the ions inside and outside the neuron membrane, an ideal flux-
controlled memristor with sinusoidal memductance function and non-linearly
modulated input is raised to depict an electromagnetic induction effect on a
Hindmarsh–Rose neuron model, and thereby, a three-dimensional (3D)
memristive Hindmarsh–Rose (mHR) neuron model is built in this paper. The
proposed mHR neuron model possesses no equilibrium point since the
involvement of the ideal flux-controlled memristor, which induces the
generation of hidden dynamics. Numerical results declare that the mHR
neuron model can generate abundant hidden dynamics, i.e., periodic spiking,
chaotic spiking, period-doubling bifurcation route, tangent bifurcation, and chaos
crisis. These hidden dynamics are much related to the memristor coupling
strength and externally applied stimulus. Afterward, the memristor initial
condition-offset boosting behavior is revealed. This can trigger the generation
of infinite multiple coexisting firing patterns along the memristor variable
coordinate. These coexisting firing patterns have identical attractor topology
but different locations in the phase plane. Finally, an analog circuit is designed
for implementing the mHR neuron model, and PSIM-based circuit simulation is
executed. The circuit-simulated results perfectly verify the generation of hidden
infinite multiple coexisting initial condition-offset boosting firing patterns in the
proposed mHR neuron model.
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1 Introduction

The nervous system contains a huge number of biological neurons, which are the basic
information handling and integrating units of a biological nervous system [1]. The
dynamical properties of these biological neurons are crucial for determining the
behaviors of the nervous systems [2, 3]. Thus, modeling of the biological neuron and
exploring its dynamical behaviors are research hotspots and attract many researchers’
attention. Up to date, numerous neuron models have been constructed to depict different
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kinds of biological neurons, and they can roughly be divided into
two categories, i.e., the continuous-time neuron model [4–10] and
discrete-time map [11–13]. In the literature, some of the
continuous-time neuron models were built based on the
electrophysiological ion transport mechanism [4–7]. In addition,
some continuous-time neuron models [8–10] and discrete-time
maps [11, 13] were built on dynamical assumptions to reproduce
electrical activities without regard to the neuron structure [14]. No
matter which category they are, all these neuron models can
effectively reproduce abundant firing patterns in response to the
change of the electrophysiological environment. Recently, the
electromagnetic induction effect has immersed great scientists’
concern, which can greatly affect the neuron dynamics [15–17]
and neural network behaviors [18, 19].

Actually, the media of a biological neuron can be magnetized
during its polarizing and depolarizing processes [20]. On one hand,
periodic firing can control the transition, pumping, and distribution
of calcium, potassium, chloride, etc., ions in these processes. On the
other hand, the distribution, pumping, and transition of these ions
can induce fluctuation of the membrane potential. Meanwhile, the
electromagnetic induction effect is induced when the ions pass
through the neuron membrane. Thus, ion channel currents and
the electromagnetic induction current simultaneously affect the
membrane potential. In the literature, flux-controlled memristors
were used in various neuron models to depict the dynamic relation
between the membrane potential and magnetic flux [21]. In other
words, the flux-controlled memristors were used in the
Hodgkin–Huxley neuron model [22–24], Izhikevich neuron
model [25], FitzHugh–Nagumo neuron model [26], and three-
dimensional (3D) [27–31]/two dimensional (2D) [32–34]
Hindmarsh–Rose neuron model to depict the electromagnetic
induction effect. These memristive neuron models can generate
abundant firing patterns since the involvement of the flux-controlled
memristor. To explain in detail, these flux-controlled memristors are
non-ideal with a quadratic polynomial memductance function
[22–30, 32, 33] and ideal with hypertangent/sinusoidal/cosinoidal
memductance functions [20, 31, 33]. It is worth noting that the state
equations of these memristors are linearly controlled by amembrane
potential. Actually, the membrane potential possesses non-linear
regulation on magnetization since the non-uniform distribution of
the ions inside and outside the neuron membrane. To stress this
issue, an ideal flux-controlled memristor with a sinusoidal
memductance function and non-linear modulation on a
memristor magnetic flux is raised to availably depict the
electromagnetic induction effect in this paper.

The Hindmarsh–Rose neuron model is a simple kind of neuron
model built on dynamical assumptions, which can reproduce main
firing patterns of the biological neuron [9]. In the literature, the
memristive Hindmarsh–Rose (mHR) neuron models with ideal
memristors can easily generate multistability with coexisting
firing patterns. In this case, the mHR neuron model has no
equilibrium point, which induces the occurrence of hidden
dynamics [20]. In particular, the initial condition-offset boosting
behavior is triggered since the involved ideal flux-controlled
memristor possessing sinusoidal/cosinoidal memductance
functions [20, 34, 35], which is very different from the
parameter-offset boosting behavior [36–38]. This induces the
occurrence of extreme multistability with infinite multiple

coexisting firing patterns. These coexisting firing patterns own
attractors having identical topology and boosting along the
memristor variable coordinate [20, 34]. Herein, a mHR neuron
model with our proposed memristor is tamed for simplicity but
without losing generality. The hidden dynamics and initial
condition-offset boosting behavior of the mHR neuron model are
investigated by numerical simulation and PSIM-based circuit
simulation in this paper. A brief comparison between some
aforementioned mHR neuron models and the model reported in
this paper is demonstrated in Table 1. It is demonstrated that the
memristor employed in building the mHR neuron model in this
paper is different from the memristors reported in the
aforementioned literature works. The electromagnetic induction
effect characterized by the memristor is established by
considering the periodic magnetization processing and non-
uniform distribution of the ions inside and outside the neuron
membrane.

The remainder of this paper is formulated as follows: Section 2
explains the building of a mHR neuron model with hidden
dynamics. Section 3 explains memristor parameter- and stimulus
parameter-related dynamical distributions and bifurcation
behaviors by numerical simulations. Section 4 explains the
memristor initial condition-offset boosting behavior and infinite
multiple coexisting firing patterns. Section 5 explains the analog
circuit design and PSIM-based circuit simulation. Finally, Section 6
briefly concludes the main results of this paper.

2 Memristive Hindmarsh–Rose neuron
model

Considering the periodic magnetization process and non-linear
regulation of electromagnetic induction, a memristor with
sinusoidal memductance function and non-linearly modulated
input is raised, which is mathematically expressed as follows:

iM � W φ( )vM � sin φ( )vM,
_φ � tanh vM( ), (1)

where vM and iM represent the terminal voltage and current,
respectively. W(φ) = sin(φ) is the periodic memductance
function, and magnetic flux φ is the memristor inner state
variable. Different from the memristor reported in [20], this
memristor has a non-linearly modulated input, i.e., a
hypertangent function, to reflect the non-uniform distribution of
the ions inside and outside the neuron membrane. The hypertangent
function is continuously derivable and bounded above and below.

To investigate this kind of electromagnetic induction effect on a
neuron, the memristor is introduced into the existing 2D
Hindmarsh–Rose neuron model [9]; thereby, a 3D mHR neuron
model is built as follows:

_x � y − ax3 + bx2 + I + k sin φ( )x,
_y � c − dx2 − y,
_φ � tanh x( ),

⎧⎪⎨⎪⎩ (2)

where x is the membrane potential and y is the recovery variable. a,
b, c, and d are four controllable parameters in the original model
[39]. I is the externally applied stimulus, and k is the coupling
strength of electromagnetic induction. We mainly consider the
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dynamical effect of the externally applied stimulus I and coupling
strength k on the mHR neuron model in the following sections.
Therefore, the four controllable parameters, namely, a = 1, b = 3, c =
1, and d = 5, are assigned as the original parameters in [39, 40]; I and
k are adjustable parameters with positive values, and their typical
values are preset to I = 1.5 and k = 2.

By setting the left sides of (2) equal to 0, one can obtain the
following equation:

0 � y − x3 + 3x2 + I + k sin φ( )x,
0 � 1 − 5x2 − y,
0 � tanh x( ).

⎧⎪⎨⎪⎩ (3)

Evidently, there is no solution of (3) since I has a positive value.
In other words, model (2) has no equilibrium point. Therefore, the
dynamical behaviors and firing patterns generated by the 3D mHR
neuron model (2) are hidden [41].

3 Parameter-related hidden dynamics

In this section, we mainly focus our concern on the parameter-
related hidden dynamics with the two adjustable parameters of the

coupling strength k and externally applied stimulus I. The initial
conditions [x(0), y(0), φ(0)] = [0, 0, 0] are utilized. The MATLAB-
based ODE45 algorithmwith a fixed time-step duration of 10−2 s and
time-end duration of 800 s is utilized to calculate the bifurcation
diagram, and the Jacobi matrix-based Wolf’s method with a time-
step duration of 0.1 s and time-end duration of 4,000 s is employed
to calculate Lyapunov exponent spectra [42].

3.1 Dynamical distribution

When the two adjustable parameters k and I are varied in 0.5 ≤
k ≤ 3 and 0 ≤ I ≤ 3, dynamical distributions of the bifurcation
diagram and dynamical map in the k–I parameter plane are
simulated, as shown in Figure 1. The 2D bifurcation diagram is
depicted by checking the periodicities of the membrane potential x,
as shown in Figure 1A, that is, the trajectories with different
periodicities are painted by different colors. The red marked by
CH represents chaos, and the other colors represent period-1 to
period-8 marked by P1 to P8, respectively. One can see that the 2D
bifurcation diagram possesses a ribbon structure in some regions
and the ribbons marked by P1, P2, P4, and P8 appear in sequence.

TABLE 1 Comparison of relevant papers on the mHR neuron models.

Paper Dimensionality Memristor state equation Implementation

[31] 3D iM � cos φ( )vM,
_φ � vM .

{ DSP

[32] 3D iM � k2 a + bφ + cφ2( )vM,
_φ � tanh vM( ).{ PSpice

[34] 4D iM � −tanh φ( )vM,
_φ � −vM .

{ —

This paper 3D iM � sin φ( )vM,
_φ � tanh vM( ).{ PSIM

FIGURE 1
Parameter-related dynamical distribution in the k–I parameter plane for a= 1, b= 3, c= 1, and d= 5 under the initial conditions [x(0), y(0), φ(0)] = [0, 0,
0]. (A) 2D bifurcation diagram depicted by inspecting periodicities of the membrane potential x and (B) 2D dynamical map described by LLE.
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Also, numerous ribbons marked by P3, P5, and P7 are embedded in
the CH (red) region or near the neighborhood of the CH region.
These declare that numerous periodic windows generated via
tangent bifurcations [42] and period-doubling bifurcations [29]
are triggered by varying the two parameters. In addition, the 2D
dynamical map described by the largest Lyapunov exponent (LLE) is
employed to depict the parameter-related dynamical distribution in
the k–I parameter plane, as shown in Figure 1B. The colorized
domains are painted with different colors according to the values of
LLE: red for chaos with positive LLE and other colors for a period
with negative LLE.

It is demonstrated that the dynamical behaviors depicted by
dynamical distributions of the 2D bifurcation diagram and 2D
dynamical map are completely identical. These numerical results
demonstrate that the coupling strength and externally applied
stimulus can induce abundant dynamical behaviors on neuron
properties of the 3D mHR neuron model.

3.2 Bifurcation behavior

To more clearly demonstrate the bifurcation behaviors with the
coupling strength k and externally applied stimulus I, the one-
dimensional (1D) bifurcation diagram and Lyapunov exponent
spectra (LEs) are numerically simulated with the variations of k
and I, as shown in Figures 2A, B, respectively. The representations at
the top of Figures 2A, B display the 1D bifurcation diagrams of the
membrane potential x, while the representations at the bottom
exhibit LEs.

Herein, the externally applied stimulus I = 1.5 is fixed, and
the coupling strength k is varied in 0.5 ≤ k ≤ 3. The 1D
bifurcation diagram for the maximum value of the membrane
potential x (marked as xmax) is depicted in Figure 2A. When k
increases from 0.5, the trajectory of mHR neuron model (2)
starts from period-1, then enters chaos via the forward period-
doubling bifurcation route [29], returns to period-2 via tangent
bifurcation [42], and ends up to period-1. It is worth noting that

the period-doubling bifurcation route demonstrates the
transition of P1-P2-P4-P8-CH. In Figure 2A, only the first
Lyapunov exponent LE1 and partial second Lyapunov
exponent LE2 are shown for better visualization since the
third exponent is very small. The LE1 exponent has a zero
value for periodic states with different periodicities and a
positive value for the chaotic state. The LE2 exponent
increases to zero and immediately returns to the negative
value along with the occurrence of period-doubling
bifurcations. It is observed that the bifurcation behaviors
revealed by the 1D bifurcation diagram (up) are effectively
verified by the LEs (bottom) in Figure 2A.

Then, we fix coupling strength k = 2 and change the externally
applied stimulus I in 0 ≤ I ≤ 3. In Figure 2B, one can see that with the
increase of I, the mHR neuron model undergoes period-1 to chaos
via chaos crisis [43], to period-2 via tangent bifurcation, to chaos via
forward period-doubling bifurcations, to period-3 via reverse
period-doubling bifurcations, to chaos via chaos crisis, and finally
to period-1 via reverse period-doubling bifurcations. It is worth
noting that there exists a small periodic window near the
neighborhood of I = 1.95. The LE1 exponent drops to zero and
maintains in the narrow parameter range and then returns to a
positive value with the appearance of a periodic window. Obviously,
the evolution of LEs confirms the occurrence of bifurcation
behaviors.

Consequently, these bifurcation behaviors can lead to the
occurrence of abundant periodic firing patterns with different
periodicities and a chaotic firing pattern in the 3D mHR neuron
model and can be regulated by the memristor coupling strength and
externally applied stimulus.

3.3 Hidden firing patterns

In this section, five values of coupling strength k with I = 1.5 are
selected from Figure 2A to partially display the firing patterns
emerged from the 3D mHR neuron model, as shown in Figure 3.

FIGURE 2
Parameter-related bifurcation behaviors as k and I changed in determined ranges for a = 1, b = 3, c = 1, and d = 5 under the initial conditions [x(0),
y(0), φ(0)] = [0, 0, 0]. (A) k-related bifurcation diagram (top) and LEs (bottom) for I = 1.5 and (B) I-related bifurcation diagram (top) and LEs (bottom) for
k = 2.
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Time–domain waveforms of the membrane potential x (left) and
corresponding phase portraits in the φ–x phase plane (right) are
demonstrated; they are period-1 spiking, period-2 spiking, period-4
spiking, period-8 spiking, and chaotic spiking for k = 1, 1.5, 1.6, 1.65,
and 2, respectively. These numerical results further demonstrate that
the 3D mHR neuron model can generate hidden firing patterns of
periodic spiking behaviors with different periodicities and a chaotic
spiking behavior. Moreover, the state transition (P1-P2-P4-P8-CH)
of firing patterns confirms the generation of the period-doubling
bifurcation route.

4 Initial condition-related dynamics

Of particular interest, the 3D mHR neuron model (2) can show
the initial condition-offset boosting behavior since the involvement
of sinusoidal memductance function [20, 44]. This can trigger

infinite multiple coexisting firing patterns for a fixed set of model
parameters. In this section, we mainly focus our attention on this
issue. Herein, we only consider the memristor initial condition-
induced dynamical effect and set the initial conditions as [x(0), y(0),
φ(0)] = [0, 0, φ(0)]. The numerical simulation settings are identical
with those employed in Section 3.

4.1 Initial condition-offset boosting

Herein, two sets of model parameters, i.e., I = 1.5, k = 1.5 and I =
1.5, k = 2, are selected as paradigms to demonstrate the memristor
initial condition-offset boosting behavior. The memristor initial
condition is adjusted in the region [–20, 20]. The bifurcation
plots of the 1D bifurcation diagram and Lyapunov exponent
spectra for the two sets of model parameters are shown in
Figures 4A, B, respectively.

FIGURE 3
Time–domain waveforms (left) and phase portraits in the φ–x phase plane (right) with a = 1, b = 3, c = 1, d = 5, and I = 1.5 and the initial conditions
[x(0), y(0), φ(0)] = [0, 0, 0] for k = 1 (period-1 spiking), k = 1.5 (period-2 spiking), k = 1.6 (period-4 spiking), k = 1.65 (period-8 spiking), and k = 2 (chaotic
spiking), respectively.
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Figure 4A shows the bifurcation plots for I = 1.5 and k = 1.5,
which demonstrates period-2 spiking firing patterns with the
increase of the initial condition φ(0). One can see that the
locations of these firing patterns possess a step-by-step structure
and their dynamic amplitude is identical. In addition, the memristor
initial condition applies at 2π initial condition-offset, which is the
period of the sinusoidal memductance function sin(φ). In this case,
the step change happens periodically. In addition, the LE1 and LE2
exponents demonstrate constant Lyapunov exponent spectra and
are not related to the memristor initial condition, i.e., LE1 = 0 and
LE2 = −0.15.

As shown in Figure 4B, the bifurcation plots for I = 1.5 and k =
2 are elaborated. The results also display the step-by-step memristor
initial condition-offset boosting behavior; thereby, multiple
coexisting chaotic firing patterns are generated. Also, the
memristor initial condition applies at 2π initial condition-offset,
and these steps periodically occur. Identically, the Lyapunov
exponent spectra display constant values of LE1 and LE2 and
possess LE1 = 0.21 and LE2 = 0 for the chaotic firing patterns. It
is worth noting that the initial condition-offset boosting behavior

exists for other firing patterns under different fixed model
parameters. In addition, the memristor initial condition-offset
boosting behavior can trigger infinite multiple coexisting firing
patterns. We only demonstrate this behavior in a finite range of
memristor initial conditions in this study.

4.2 Infinitemultiple coexisting firing patterns

In the previous bifurcation analysis for the memristor initial
condition-offset boosting behavior, the results display the
occurrence of hidden infinite multiple coexisting firing patterns
in the 3D mHR neuron model. To further demonstrate this striking
memristor initial condition-offset boosting behavior, the coexisting
firing patterns are displayed by the phase portrait in the φ–x phase
plane, as shown in Figure 5. The coexisting period-2 spiking firing
patterns for I = 1.5 and k = 1.5 under the initial conditions φ(0)
= −18, −12, −6, 0, 6, 12, and 18 are shown in Figure 5A. These initial
conditions are selected in each step from the bifurcation diagram in
Figure 4A. The offsets among each of the two adjacent attractors of

FIGURE 4
Memristor initial condition-offset boosting behaviors illustrated by 1D bifurcation plots of the 1D bifurcation diagram and LEs for the initial conditions
[x(0), y(0), φ(0)] = [0, 0, φ(0)]. (A) I = 1.5 and k = 1.5 and (B) I = 1.5 and k = 2.

FIGURE 5
Infinite multiple coexisting firing patterns for different memristor initial conditions of φ(0) = −18 V, −12 V, −6 V, 0 V, 6 V, 12 V, and 18 V under different
sets of model parameters. (A) Coexisting period-2 firing patterns for I = 1.5 and k = 1.5 and (B) coexisting chaotic firing patterns for I = 1.5 and k = 2.
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firing patterns are all 2π, and these attractors are not connected,
which implies the emergence of initial condition-offset boosted
attractors. The attractors possess identical topology but different
locations. Similarly, the memristor initial condition-offset boosted
coexisting chaotic firing patterns for I = 1.5 and k = 2 under the
initial conditions φ(0) = −18, −12, −6, 0, 6, 12, and 18 are also
demonstrated in Figure 5B. It is worth noting that we do not select
the initial conditions with the interval 2π for their convenient setting
in PSIM-based circuit simulation. These results demonstrate the
generation of hidden infinite multiple coexisting firing patterns in
our proposed 3D mHR neuron model.

5 Analog design and PSIM-based circuit
simulation

The analog circuit design of neuron models is crucial for
investigating the neuron dynamics and exploring neuron-based

engineering applications [45, 46]. The 3D mHR neuron model
can be easily designed by utilizing passive circuit components of
a capacitor and resistor and the integrated chips of operational
amplifier, multiplier, and trigonometric circuit modules. The circuit
schematic representation is well-designed and given in Figure 6. The
memristor equivalent circuit contains a hypertangent circuit module
[47], a sinusoidal function chip U5, an operational amplifier U4, a
multiplierM3, a capacitor, and two resistors, as shown in the bottom
part of Figure 6. The main circuit involves two integrators, two
multipliers, and an inverter, as shown in the top part of Figure 6.
Then, the circuit state equations can be correspondingly built as
follows:

RC1
dvx
dt

� RVI

R1
+ Rvy

R2
+ g1Rvx

2

R3
− g1g2Rvx

3

R4
+ g3R sin vφ( )vx

R9
,

RC2
dvy
dt

� −Rvy
R5

− g1Rvx
2

R6
+ RVc

R7
,

RC3
dvφ
dt

� R tanh vx( )
R8

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where vx, vy, and vφ are three circuit state variables corresponding to
the model variables x, y, and φ, respectively. We suppose C1 = C2 =
C3 = C and the integral time constant RC = 1 ms, i.e., C = 100 nF and
R = 10 kΩ. In addition, the recovery variable vy is linearly
transformed to reduce its dynamic amplitude as follows:

vx, vy, vφ( ) � vx, 10vy, vφ( ). (5)

The linear transformation is conducive to a hardware
experiment since the value of the recovery variable approaches
the saturation voltage of operational amplifiers without
transformation. Thereby, the other circuit parameters are
calculated as R1 = 10 kΩ, R2 = 1 kΩ, R3 = 3.3 kΩ, R4 = 10 kΩ,
R5 = 10 kΩ, R6 = 20 kΩ, R7 = 100 kΩ, R8 = 10 kΩ, R9 = 3.3 kΩ, g1 =
g2 = g3 = 1 V−1, and Vc = 1 V by comparing (2) with (4). It is worth
noting that the two adjustable parameters can be regulated by I = VI

and k = R/R9. The initial states of three capacitors are assigned as
[vx(0), vy(0), vφ(0)] = [0 V, 0 V, vφ(0)].

Employing the circuit schematic representation illustrated in
Figure 6, a PSIM-based simulation circuit is built and circuit

FIGURE 6
Circuit schematic representation of the 3D mHR neuron model.

FIGURE 7
PSIM-based circuit simulation of infinite multiple coexisting firing patterns for different memristor initial conditions of φ(0) = −18 V, −12 V, −6 V, 0 V,
6 V, 12 V, and 18 V under the two sets of circuit parameters. (A)Coexisting period-2 firing patterns for VI = 1.5 V (I = 1.5) and R9 = 6.667 kΩ (k = 1.5) and (B)
coexisting chaotic firing patterns for VI = 1.5 V (I = 1.5) and R9 = 5 kΩ (k = 2).
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parameters are accurately set. First, the two adjustable circuit
parameters are set to VI = 1.5 V and R9 = 6.667 kΩ
corresponding to I = 1.5 and k = 1.5. By respectively setting the
memristor initial condition vφ(0) to −18 V, −12 V, −6 V, 0 V, 6 V,
12 V, and 18 V, PSIM-based circuit simulations are executed and
phase trajectories are obtained in the vφ–vx phase plane, as shown in
Figure 7A. Then, the two adjustable circuit parameters are set toVI =
1.5 V and R9 = 5 kΩ corresponding to I = 1.5 and k = 2. The PSIM-
based circuit simulations are illustrated in Figure 7B. One can see
that the PSIM-based circuit simulations in Figure 7 are very
consistent with the numerical results in Figure 5. These circuit-
simulated results manifest the occurrence of hidden infinite multiple
coexisting initial condition-offset boosting firing patterns in our
proposed 3D mHR neuron model. It is worth noting that the power
supplies for operational amplifiers and multipliers are, respectively,
set to ±30 V and ±15 V in PSIM-based circuit simulation.

6 Conclusion

In this paper, an ideal flux-controlled memristor with sinusoidal
memductance and non-linearly modulated input was presented to
depict the electromagnetic induction effect in biological neurons.
Then, the electromagnetic induction effect on an existing 2D
Hindmarsh–Rose neuron model was elaborated. Theoretical
analysis and numerical simulation demonstrated that the 3D
mHR neuron model can generate the hidden memristor initial
condition-offset boosting behavior with infinite multiple
coexisting firing patterns. The attractors of these firing patterns
have an offset along the memristor variable coordinate, and the
offset is identical with the period of memductance function. In
addition, PSIM-based circuit simulation further confirmed the
validation of the analog circuit design and generation of the
initial condition-offset boosting behavior. It is worth noting that
the power supplies should be suitably set in PSIM-based circuit
simulation to capture the offset boosting firing patterns. The settings
can refer to the dynamic range for the attractors of these firing
patterns along with the memristor variable coordinate. This hinders
the hardware experimental measurement of initial condition-offset
boosting firing patterns. In addition, it is not easy to accurately set
the initial conditions in each step to acquire corresponding firing
patterns from hardware experiments. However, the memristor
initial condition-offset boosting firing patterns have potentiality
in neuron-based engineering applications [37, 48], i.e., the

waveform bias of chaotic signal and random signal generation
[49]. These deserve our future concern.
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