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This study, considers the fractional order cable model (FCM) in the sense of
Riemann–Liouville fractional derivatives (R-LFD). We use a modified implicit finite
difference approximation to solve the FCM numerically. The Fourier series
approach is used to examine the proposed scheme’s theoretical analysis,
including stability and convergence. The scheme is shown to be
unconditionally stable, and the approximate solution converges to the exact
solution. To demonstrate the application and feasibility of the proposed
approach, a numerical example is provided.

KEYWORDS

fractional cable equation, implicit approximation, stability, convergence, riemann-
liouville fractional derivative

1 Introduction

Real-life phenomena have been modeled in a variety of ways, and partial differential
equations (PDEs) and ordinary differential equations (ODEs) can be used to model some of
these phenomena. For the phenomena that are not sufficiently modeled by PDEs, fractional
PDEs have been developed by replacing the non-integers order derivative [1]. Fractional
calculus can be applied to every field of science, such as biology, engineering, image
processing, wave propagation, rheology, viscoelasticity, etc.

Fractional diffusion equations are a type of fractional differential equation that has
sparked a lot of interest due to their various applications. By adding a variable lower limit of
integration Rajkovic [2] generalized the notions of fractional the g-integral and
g-derivative, and came up with a q-Taylor definition that contains fractional-order
q-derivatives of the function. Yakar [3] considered a fractional boundary value
problem with a two-part operator. The main problem’s eigenvalues with Eigen
functions are the same as the constructed operator’s eigenvalues and corresponding
Eigen functions in Hilbert spaces. The non-integers order Cable model is derived from
the circuit model based on intracellular and extracellular space [4]. Vitali [5] introduced a
Caputo formula as an extension of the FCE, obtained the analytical solution using the
Laplace transform, and obtained results in terms of special functions. Yu [6] used the
compact difference method and the Fourier method for stability and convergence in his
computational treatment of the two-dimensional FCE. Liu et al. [7] discussed the FCE
having two fractional temporal derivatives, and proposed implicit schemes with
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convergence orders of O(τ + h2) and O(τ2 + h2), respectively. The
energy approach was used to investigate the stability and
convergence analysis. Lin et al. [8] devised a numerical schema
for FCE discretization. They analyzed the proposed schema by
providing theoretical and error estimates. The schema was
unconditionally stable. Liu et al. [9] used a two-grid approach
with the finite element scheme to solve the non-linear FCM, and
the stability based on the fully discrete two-grid method was
derived. A semi-discrete approach was used for time, and the
Galerkin finite element approach was used for space Zhuang
[10]. To approximate the time of the FCE involving two
fractional temporal derivatives, Nikan [11] proposed a
computational scheme for the radial basis function-generated
finite difference (RBF-FD). The Grünwald–Letnikov expansion
was used to discretize the time domain of the TFCM, and the
RBF-FD was used to discretize the spatial derivatives. They
demonstrated that the method can easily be implemented on
such types of fractional PDEs. The orthogonal spline collocation
with a complete theoretical analysis with order O(τmin (2−γ1 ,2−γ2 +
hr+1) was used by Zhang [12]. Quintana-Murillo [13] researched
two temporal R-LFD for explicit numerical approaches to solve
FCE. The numerical solution was obtained by using the forward
difference formula, the Grünwald–Letnikov formula for the first-
order derivative and Riemann–Liouville derivatives, respectively,
and the three-point centered formula for the spatial derivative. The
stability was tested by the von Neumann technique. Baleanu [14]
proposed computational schemes for the optimal control problems
of fractional order in the R-LFD sense. The approximations were
replaced into optimal control equations of fractional order, and an
algebraic equation was obtained, which can be solved by a
numerical technique. To model the electrodiffusion of ions in
nerve cells with anomalous sub-diffusion along and through the
nerve cells, Henry [15] introduced fractional Nernst–Planck
equations and related FCE. They analyzed fundamental
solutions after modeling the sub-diffusion in two different ways,
leading to two FCE. The solution approaches the normal non-zero
steady state with uniform sub-diffusion along and around the nerve
cells, but the approach is delayed by the anomalous sub-diffusion.
Realistic electrophysiological studies on actual dendrites may be
related to these solutions. Langlands [16] introduced fractional
Nernst–Planck equations and derived FCE as macroscopic models
for the electro diffusion of ions in nerve cells. They calculated the
power lessening along dendrites in response to synaptic inputs of
the alpha function. Easy integration and fire variants of the models
were also used to calculate action potential firing rates. Tomovski
[17] discussed Laplace and Fourier transforms to formulate the
Green function of the generalized space-time FCE, and then
examined the even moments to demonstrate that it can have a
negative sign, indicating that the Green function does not always
flow in one direction and that the current can switch directions.
Bhrawy [18] used the collocation method in combination with the
Shifted-Jacobi operational matrix in the sense of the Caputo
fractional derivative. The results of their suggested approach are
much more efficient for solving variable-order non-linear PDEs
with high accuracy. Liu [19] presented a discrete numerical formula
obtained by finite difference and finite element approximation in
time and space, respectively, for the FCE. Liang-lian [20]
considered the finite volume approach to solving the FCE using

an implicit difference scheme. The approach was also convergent
and unconditionally stable. Zhang [21] suggested an
unconditionally numerical approach for the convection-diffusion
of the fractional order problem. A novel shifted version of the
Grünwald–Letnikov formula for the fractional order derivatives
was used to prove the accuracy, and for theoretical analysis. Hu [22]
implemented compact schemes for the FCE, and utilized the energy
method to prove that the first scheme is stable and convergent in
l∞-norm with the order O(τ + h4), while the second one is an inner
product. The computed result indicates that both schemes are
accurate and effective. Moshtaghi and Saadatmandi [23] researched
the cable model of fractional order and solved using the
collocation-type approach. They converted the fractional order
model into a set of algebraic equations and presented two
numerical examples to confirm the accuracy and efficiency.
Aslefallah et al. [24] studied the 2D time-fractional order cable
model with Dirichlet boundary conditions and implemented the
singular boundary method to split the solution of the
inhomogeneous governing equation. More studies related to the
fractional order differential equation can be seen in [25–35].

The aim of this study is to find out the numerical solution of the
fractional-order cable model. The fractional derivative is
approximated by the discretized Riemann–Liouville derivative
and for the space derivative use the finite difference
approximation. For the proposed approach’s complete theoretical
analysis as stability and convergence are discussed. The theoretical
analysis, confirms the efficiency and effectiveness of the proposed
approach.

Suppose the following fractional order cable model [36] as:

zw x, t( )
zt

� 0D
1−ρ1
t K

z2w x, t( )
zx2

( ) − μ20D
1−ρ2
t w x, t( ) + h x, t( ), (1)

with initial and boundary conditions

w x, 0( ) � β x( ), 0≤ x≤ L, (2)
w 0, t( ) � β1 t( ), w L, t( ) � β2 t( ), 0< t≤T, (3)

where 0< ρ1, ρ2 < 1, K> 0 and μ are constants and β, β1 and β2 are
known functions and the unknown function w is to be determined .

The 0D
1−ρ1
t w(x, t) is the Riemann–Liouville fractional derivative

of fraction order 1 − ρ1 defined by [37]:

0D
1−ρ1
t w x, t( ) � 1

Γ ρ1( ) d

dt
∫t
0

w x, η( )
t − η( )1−ρ1 dη � z

zt
Iρ10 w x, t( ). (4)

The Riemann–Liouville fractional integral can be discretized
[38] as:

Iρ10 w x, t( ) � 1
Γ ρ1( )∫

t

0

w x, η( )
t − η( )1−ρ1 dη,

discretizing the equation at the grid point (xi, tk).

Iρ10 w xi, tk( ) � 1
Γ ρ1( )∫

tk

0

tk − η( )ρ1−1w xi, η( )dη.

As by Jumarie property [39] as:
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� 1
ρ1Γ ρ1( )∫

tk

0

w xi, η( ) dη( )ρ1 ,

� 1
Γ 1 + ρ1( ) ∑k−1

j�0
∫
tj+1

tj

w xi, η( ) dη( )ρ1 ,

� 1
Γ 1 + ρ1( ) ∑k−1

j�0
w xi, tk−j( ) ∫

tj+1

tj

1 dη( )ρ1 .
Again, by Jumarie property as:

� 1
Γ 1 + ρ1( ) ∑k−1

j�0
w xi, tk−j( ) τρ1 j + 1( )ρ1 − τρ1 j( )ρ1( ),

� τρ1

Γ 1 + ρ1( ) ∑k−1
j�0

w xi, tk−j( ) j + 1( )ρ1 − j( )ρ1( ),
Iρ10 w xi, tk( ) � τρ1

Γ 1 + ρ1( ) ∑k−1
j�0

d
ρ1( )

j w xi, tk−j( ), (5)

where d(ρ1)j � (j + 1)ρ1 − (j)ρ1 . The same procedure can be followed
for ρ2.

Lemma 1: The coefficients d
(ρ1)
k (k � 0, 1, 2, . . .) satisfy the

following properties [35]:

(i) d
(ρ1)
0 � 1, d(ρ1)k > 0, k � 1, 2, . . .

(ii) d
(ρ1)
k−1 > d

(ρ1)
k , k � 1, 2, 3, . . .

(iii) There exists a positive constant C> 0, such that
τ ≤Cd

(ρ1)
k τρ1 , k � 1, 2, 3, . . .

(iv) ∑k
j�0d

(ρ1)
j τρ1 � (k + 1)ρ1 ≤Tρ1

2 Methodology

We implement an implicit numerical approximation for the
FCE in Eqs 1–3, utilizing the discretization of the Riemann–Liouville
integral with backward difference approximation for the partial
derivative using central difference approximation. The steps as xi �
iΔx along x-axis, where i � 1, 2, . . . ,Mx − 1,Δx � L/Mx

and the
step tk � kτ, k � 1, 2, 3, . . . , N where τ � T /

N. Letting the obtained
numerical solution be wk

i to w(xi, tk), and using Eq. 4 in Eq. 1, we
have

zw x, t( )
zt

� K
z

zt
Iρ10

z2

zx2
w x, t( )[ ] − μ2

z

zt
Iρ20 w x, t( ) + h x, t( ). (6)

Further, applying Eq. 5 in Eq. 6, we can write

zw xi, tk( )
zt

� z

zt
m1 ∑k−1

j�0
d

ρ1( )
j δ2xw xi, tk−j( ) − z

zt
m2 ∑k−1

j�0
d

ρ2( )
j w xi, tk−j( )

+ h xi, tk−j( ),
(7)

Where

m1 � Kτρ1

Δx( )2Γ ρ1 + 1( ), m2 � μ2τρ2

Γ ρ2 + 1( ). (8)

By using implicit discretization with respect to time ‘t’, we have

wk
i − wk−1

i � m1 ∑k−1
j�0

d
ρ1( )

j δ2x wk−j
i − wk−j−1

i[ ]
−m2 ∑k−1

j�0
d

ρ2( )
j wk−j

i − wk−j−1
i[ ] + τhki , (9)

Simplifying Eq. 9, we obtained

wk
i � wk−1

i +m1d
ρ1( )

0 wk
i+1 − 2wk

i + wk
i−1[ ]

−m1d
ρ1( )

k−1 w0
i+1 − 2w0

i + w0
i−1[ ] −m1 ∑k−1

j�1
d

ρ1( )
j−1 − d

ρ1( )
j[ ]

× wk−j
i+1 − 2wk−j

i + wk−j
i−1[ ] +m2 d

ρ2( )
k−1 w0

i − d
ρ2( )

0 wk
i[ ]

+m2 ∑k−1
j�1

d
ρ2( )

j−1 − d
ρ2( )

j[ ] wk−j
i[ ] + τhki , (10)

With

w0
i � β xi( ), 0≤ x≤ L, (11)

wk
0 � β1 tk( ), wk

Mx
� β2 tk( ), 0≤ t≤T. (12)

where i � 1, 2, . . . ,Mx − 1, k � 1, 2, 3, . . . , N.

3 Stability

In this section, we use the Fourier series method to analyze the
stability of the implicit numerical scheme. Letting Wk

i be the
approximate solution for Eq. 10, we have

Wk
i � Wk−1

i +m1d
ρ1( )

0 Wk
i+1 − 2Wk

i +Wk
i−1[ ]

−m1d
ρ1( )

k−1 W0
i+1 − 2W0

i +W0
i−1[ ] −m1 ∑k−1

j�1
d

ρ1( )
j−1 − d

ρ1( )
j[ ]

× Wk−j
i+1 − 2Wk−j

i +Wk−j
i−1[ ] +m2 d

ρ2( )
k−1 W0

i − d
ρ2( )

0 Wk
i[ ]

+m2 ∑k−1
j�1

d
ρ2( )

j−1 − d
ρ2( )

j[ ] Wk−j
i[ ] + τhki . (13)

The error is defined as:

Ek
i � wk

i −W
k

i , (14)
where Ek

i satisfies (13) and

Ek
i � Ek−1

i +m1d
ρ1( )

0 Ek
i+1 − 2Ek

i + Ek
i−1[ ]

−m1d
ρ1( )

k−1 E0
i+1 − 2E0

i + E0
i−1[ ] −m1 ∑k−1

j�1
d

ρ1( )
j−1 − d

ρ1( )
j[ ]

× Ek−j
i+1 − 2Ek−j

i + Ek−j
i−1[ ] +m2 d

ρ2( )
k−1 E0

i − d
ρ2( )

0 Ek
i[ ]

+m2 ∑k−1
j�1

d
ρ2( )

j−1 − d
ρ2( )

j[ ] Ek−j
i[ ]. (15)

The error and initial conditions are

Ek
0 � Ek

Mx
� E0

i � 0. (16)

Here, i � 1, 2, . . . ,Mx − 1.
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Here, we need to define grid functions for k � 1, 2, . . . , N, as the
following:

Ek x( ) �
Ek
i , when xi−Δx

2
< x< xi+Δx

2
,

0, when 0≤ x≤
Δx
2

or L − Δx
2
≤ x≤ L.

⎧⎪⎪⎨⎪⎪⎩ (17)

Then, Ek(x) can be written in Fourier series, such as

Ek x( ) � ∑∞
l1�−∞

λk l1( )e2
��−1√

π l1xL( ), (18)

Here

λk l1( ) � 1
L
∫L

0
Ek x( )e−2

��−1√
π l1xL( ). (19)

From the definition of l2 norm and Parseval equality, we have

Ek
���� ���� 2∞ � ∑Mx−1

i�1
Δx Ek

i

∣∣∣∣ ∣∣∣∣2 � ∑∞
l1�−∞

λk l1( )∣∣∣∣ ∣∣∣∣2. (20)

Supposing that

Ek
i � λke

��−1√
σiΔx( ). (21)

where σ � 2πl1
L and by substituting (18) − (21) in Eq. 15, we have

λk � 1

1 +m2 + 4m1 sin 2 σΔx
2( )( )[ ]

λk−1 + λ0 m2d
ρ2( )

k−1 +m1d
ρ1( )

k−1 4sin 2 σΔx
2

( )( )[ ][
+λk−j m2 ∑k−1

j�1
d

ρ2( )
j−1 − d

ρ2( )
j[ ]⎡⎢⎢⎣

+m14sin
2 σΔx

2
( )∑k−1

j�1
d

ρ1( )
j−1 − d

ρ1( )
j[ ]]], (22)

Proposition 1: If λk(K � 1, 2, . . . , N) satisfies Eq. 22, then
|λk|≤ |λ0|.

Proof: To prove the above equality based on mathematical
induction, we take k � 1 in Eq. 22.

λ1
∣∣∣∣ ∣∣∣∣≤ 1

1 +m2 + 4m1 sin 2 σΔx
2( )( )[ ]

λ1−1
∣∣∣∣ ∣∣∣∣ + λ0

∣∣∣∣ ∣∣∣∣ m2d
ρ2( )

1−1 +m1d
ρ1( )

1−1 4sin 2 σΔx
2

( )( )[ ][
+ λk−j
∣∣∣∣ ∣∣∣∣ m2 ∑k−1

j�1
d

ρ2( )
j−1 − d

ρ2( )
j[ ]⎡⎢⎢⎣

+m14sin
2 σΔx

2
( )∑k−1

j�1
d

ρ1( )
j−1 − d

ρ1( )
j[ ]⎤⎥⎥⎦⎤⎥⎥⎦,

As d(ρ1)0 � d
(ρ2)
0 � 1 and 0< γ1, γ2 < 1, we have

λ1
∣∣∣∣ ∣∣∣∣≤ λ0

∣∣∣∣ ∣∣∣∣.
Now consider,

λm| |≤ λ0
∣∣∣∣ ∣∣∣∣, m � 1, 2, . . . , k − 1.

As 0< ρ1, ρ2 < 1, from (22) and Lemma 1

λk
∣∣∣∣ ∣∣∣∣≤ 1

1 +m2 sin 2 σΔx
2

( )( )[ ]
λk−1
∣∣∣∣ ∣∣∣∣ + λ0

∣∣∣∣ ∣∣∣∣ m2d
ρ2( )

k−1 +m1d
ρ1( )

k−1 4sin 2 σΔx
2

( )( )[ ]+
λk−j
∣∣∣∣ ∣∣∣∣ m2∑k−1

j�1 d
ρ2( )

j−1 − d
ρ2( )

j[ ] +m1 4sin 2 σΔx
2

( )( )[ ]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
≤

1

1 +m2 + 4m1 sin 2 σΔx
2

( )( )[ ]
1 +m2d

ρ2( )
k−1 +m1d

ρ1( )
k−1 4sin 2 σΔx

2
( )( ) +m2d

ρ2( )
0 +m2d

ρ2( )
k−1[

+m1d
ρ1( )

0 4sin 2 σΔx
2

( )( ) −m1d
ρ1( )

k−1 4sin 2 σΔx
2

( )( )] λ0∣∣∣∣ ∣∣∣∣,
≤

1

1 +m2 + 4m1 sin 2 σΔx
2

( )( )[ ]
1 +m2d

ρ2( )
0 +m1d

ρ1( )
0 4sin 2 σΔx

2
( )( )[ ] λ0

∣∣∣∣ ∣∣∣∣,
Here, d(ρ1)0 � d

(ρ2)
0 � 1, we have

≤
1

1 +m2 + 4m1 sin 2 σΔx
2( )( )[ ]

1 +m2 +m14sin
2 σΔx

2
( )[ ] λ0

∣∣∣∣ ∣∣∣∣, λk∣∣∣∣ ∣∣∣∣≤ λ0
∣∣∣∣ ∣∣∣∣. (23)

By using proposition 1 and Eq. 20

λk
���� ����2 ≤ λ0

���� ����2.
The implicit numerical scheme in Eq. 10 is unconditionally

stable.

4 Convergence

To investigate the convergence of the proposed implicit scheme.
Let w(xi, tk) be the exact solution represented by Taylor series, then
the local truncation error is obtained as

Qk
i � w xi, tk( ) − w xi, tk−1( )

−m1 ∑k−1
j�0

d
ρ1( )

j δx2 w xi, tk−j( ) − w xi, tk−j−1( )[ ]
+m2 ∑k−1

j�0
d

ρ2( )
j w xi, tk−j( ) − w xi, tk−j−1( )[ ] − τh xi, tk( ), (24)

From Eq. 1

Qk
i �

w xi, tk( ) − w xi, tk−1( )
τ

− zw xi, tk( )
zt

+ 0D
1−ρ1
t K

z2w x, t( )
zx2( )

−m1 ∑k−1
j�0

d
ρ1( )

j δx2 wk−j
i − wk−j−1

i( )
−0D

1−ρ2
t w xi, tk( )+m2 ∑k−1

j�0
d

ρ2( )
j wk−j

i − wk−j−1
i( ),

� O τ + Δx( )2( ) (25)
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Since i and k are finite, then there exist a positive constant C1,
then we have

Qk
i

∣∣∣∣ ∣∣∣∣≤C1 τ + Δx( )2( ), (26)

The error is defined as

ψk
i � w xi, tk( ) − wk

i . (27)
From Eq. 24, as

ψk
i � ψk−1

i +m1d
ρ1( )

0 ψk
i+1 − 2ψk

i + ψk
i−1[ ]

−m1d
ρ1( )

k−1 ψ0
i+1 − 2ψ0

i + ψ0
i−1[ ] −m1 ∑k−1

j�1
d

ρ1( )
j−1 − d

ρ1( )
j[ ]

× ψk−j
i+1 − 2ψk−j

i + ψk−j
i−1[ ] −m2 d

ρ2( )
0 ψk

i − d
ρ2( )

k−1 ψ0
i[ ]

+m2 ∑k−1
j�1

d
ρ2( )

j−1 − d
ρ2( )

j[ ]ψk−j
i + τQk

i . (28)

With error conditions that are

ψ0
i � 0, ψk

0 � ψk
M � 0,

Next, we define the following grid functions for k � 1, 2, . . . , N.

ψk x( ) �
ψk
i , when xi−Δx

2
< x< xi+Δx

2
,

0, when 0≤x≤
Δx
2

or L − Δx
2
≤ x≤ L.

⎧⎪⎪⎨⎪⎪⎩
And

Qk x( ) �
Qk

i , when xi−Δx
2
<x<xi+Δx

2
,

0, when 0≤ x≤
Δx
2

or L − Δx
2
≤ x≤ L.

⎧⎪⎪⎨⎪⎪⎩
Here, ψk(x) and Qk(x) can be expanded in Fourier series

such as

ψk x( ) � ∑∞
l1�−∞

ξk l1( )e2
��−1√

π l1xL( ), k � 1, 2, . . . , N,

Qk x( ) � ∑∞
l1�−∞

φk l1( )e2
��−1√

π l1xL( ), k � 1, 2, . . . , N.

where

ξk l1( ) � 1
L
∫L

0
ψk x( )e−2

��−1√
π l1xL( ), (29)

φk l1( ) � 1
L
∫L

0
Qk x( )e−2

��−1√
π l1xL( ). (30)

From the definition of l2 norm and the Parseval equality, we
have

ψk
���� ���� 2

l2
� ∑Mx−1

i�1
Δx Ek

i

∣∣∣∣ ∣∣∣∣2 � ∑∞
l1�−∞

ξk l1( )
∣∣∣∣∣ ∣∣∣∣∣2, (31)

Qk
���� ���� 2

l2
� ∑Mx−1

i�1
Δx Ek

i

∣∣∣∣ ∣∣∣∣2 � ∑∞
l1�−∞

φk l1( )∣∣∣∣ ∣∣∣∣2. (32)

Based on the above, supposing that

ψk
i � ξke

��−1√
σ1 iΔx( ), (33)

Qk
i � φke

��−1√
σ1iΔx( ), (34)

where σ1 � 2πl1
L , by using (33) and (34) in Eq. 28, we have

ξk � 1

1+m2 + 4m1sin 2 σ1Δx
2( )[ ]

ξk−1 + ξ0 m2d
ρ2( )

k−1 + 4m1d
ρ1( )

k−1 sin 2 σ1Δx
2

( )[ ][
+ξk−j m2 ∑k−1

j�1
d

ρ2( )
j−1 − d

ρ2( )
j[ ]⎡⎢⎢⎣

+4m1sin
2 σ1Δx

2
( ) ∑k−1

j�1
d

ρ1( )
j−1 − d

ρ1( )
j[ ]⎤⎥⎥⎦ + τφk⎤⎥⎥⎦, (35)

Proposition 2: If ξk is the solution of (35), then there exists a
positive constant C2 such that |ξk|≤C2kτ|φ1|.

Proof: From ψ0 � 0 and Eq. 29 we have

ξ0 � ξ0 l1( ) � 0. (36)
From (29) and (30), there exists positive constant C2, such that

φ1
∣∣∣∣ ∣∣∣∣≤C2 φ

1 l1( )∣∣∣∣ ∣∣∣∣. (37)

Using mathematical induction, for k � 1, then from (35),

ξ1
∣∣∣∣ ∣∣∣∣≤ 1

1+m2 + 4m1sin 2 σ1Δx
2( )[ ]

ξ0
∣∣∣∣ ∣∣∣∣ + ξ0

∣∣∣∣ ∣∣∣∣ m2d
ρ2( )

0 + 4m1d
ρ1( )

0 sin 2 σ1Δx
2

( )[ ] + C2τ φ
1

∣∣∣∣ ∣∣∣∣[ ],
From Eq. 36

ξ1
∣∣∣∣ ∣∣∣∣≤ 1

1+m2 + 4m1sin 2 σ1Δx
2( )[ ]C2τ φ

1
∣∣∣∣ ∣∣∣∣, ξ1∣∣∣∣ ∣∣∣∣≤C2τ φ

1
∣∣∣∣ ∣∣∣∣.

Now suppose

ξm
∣∣∣∣ ∣∣∣∣≤C2mτ φ1

∣∣∣∣ ∣∣∣∣, m � 1, 2, . . . , k − 1.

From Eq. 34 and Lemma 1

ξk
∣∣∣∣∣ ∣∣∣∣∣≤ 1

1+m2 + 4m1sin 2 σ1Δx
2( )[ ]

ξk−1
∣∣∣∣∣ ∣∣∣∣∣ + ξ0

∣∣∣∣ ∣∣∣∣ m2d
ρ2( )

k−1 + 4m1d
ρ1( )

k−1 sin 2 σ1Δx
2

( )[ ][
+m2 ∑k−1

j�1
d

ρ2( )
j−1 − d

ρ2( )
j[ ] ξk−j

∣∣∣∣∣ ∣∣∣∣∣
+4m1sin

2 σ1Δx
2

( )∑k−1
j�1

d
ρ1( )

j−1 − d
ρ1( )

j[ ] ξk−j
∣∣∣∣∣ ∣∣∣∣∣ + τ φk

∣∣∣∣ ∣∣∣∣⎤⎥⎥⎦,
from Eq. 36

ξk
∣∣∣∣∣ ∣∣∣∣∣≤ 1

1+m2 + 4m1sin 2 σ1Δx
2( )[ ]

k − 1 + 4m1 k − 1( )sin 2 σ1Δx
2

( )∑k−1
j�1

d
ρ1( )

j−1 − d
ρ1( )

j[ ]⎡⎢⎢⎣
+m2 k − 1( )∑k−1

j�1
d

ρ2( )
j−1 − d

ρ2( )
j[ ] + 1]C2τ φ

1
∣∣∣∣ ∣∣∣∣,
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ξk
∣∣∣∣∣ ∣∣∣∣∣≤ 1

1+m2 + 4m1sin 2 σ1Δx
2( )[ ]

k + 4m1sin
2 σ1Δx

2
( ) k − 1( ) 1 − d

ρ1( )
k−1( )[

+m2 k − 1( ) 1 − d
ρ2( )

k−1( ) + ]C2τ φ
1

∣∣∣∣ ∣∣∣∣,
ξk
∣∣∣∣∣ ∣∣∣∣∣≤ 1

1+m2 + 4m1sin 2 σ1Δx
2( )[ ]

k 1 +m2 1 − d
ρ2( )

k−1( ) + 4m1sin
2 σ1Δx

2
( ) 1 − d

ρ1( )
k−1( )( )[

− m2 1 − d
ρ2( )

k−1( ) + 4m1sin
2 σ1Δx

2
( ) 1 − d

ρ1( )
k−1( )( )]C2τ φ

1
∣∣∣∣ ∣∣∣∣.

Here, (1 − d
(ρ1)
k−1 ) � 1, (1 − d

(ρ2)
k−1 ) � 1 because d

(ρ1)
k−1 � 0,

and d
(ρ1)
k−1 � 0.

ξk
∣∣∣∣∣ ∣∣∣∣∣≤ k 1 +m2 + 4m1sin 2 σ1Δx

2( )( ) − m2 + 4m1sin 2 σ1Δx
2( )( )[ ]C2τ φ1

∣∣∣∣ ∣∣∣∣
1+m2 + 4m1sin 2 σ1Δx

2( )[ ] ,

ξk
∣∣∣∣∣ ∣∣∣∣∣≤ k − m2 + 4m1sin 2 σ1Δx

2( )
1+m2 + 4m1sin 2 σ1Δx

2( )⎡⎢⎣ ⎤⎥⎦C2τ φ
1

∣∣∣∣ ∣∣∣∣,
The value of ( m2+4m1sin 2(σ1Δx2 )

1+m2+4m1sin 2(σ1Δx2 )) is very small, lying between
0 and 1. So, we obtained

ξk
∣∣∣∣∣ ∣∣∣∣∣≤ kC2τ φ

1
∣∣∣∣ ∣∣∣∣.

5 Numerical tests

In this study, the numerical result of an implicit scheme for one-
dimensional FCE are discussed numerically and graphically. The
examples are as following.

Example 1:Consider the fractional-order cable model [15] with the
closed-form solution is given as:

zw x, t( )
zt

� 0D
1−ρ1
t K

z2w x, t( )
zx2

( ) − μ20D
1−ρ2
t w x, t( )

+ 2 t + π2t1+ρ1

Γ 2 + ρ1( ) + t1+ρ2

Γ 2 + ρ2( )( ) sin πx( ),

with initial and boundary conditions

w x, 0( ) � 0, 0≤ x≤ 1,

w(0, t) � 0, w(1, t) � 0, 0< t≤ 1. Where ρ1, ρ2 ∈(0, 1] and K �
1, μ � 1. The closed-form solution is w(x, t) � t2 sin(πx).

Example 2: Consider the 1D fractional Stokes’ first problem for the
heated generalized second-grade equation [40].

TABLE 1 Numerical results for example, 1 of the modified implicit scheme for
various values of , Δx, and fixed values of ρ1 � 0.5, ρ2 � 0.75.

Δx N E∞ E2

1/5 20 0.0355 0.0264

40 0.0300 0.0223

60 0.0284 0.0211

20 0.0170 0.0120

1/10 40 0.0114 0.0081

60 0.0098 0.0069

20 0.0120 0.0085

1/20 40 0.0064 0.0045

60 0.0048 0.0034

TABLE 2 Numerical results example 1 of the modified implicit scheme for
various values of , Δx, and fixed value of ρ1 , ρ2 � 0.5.

Δx N E∞ E2

1/25 50 0.0048 0.0034

80 0.0035 0.0024

110 0.0029 0.0020

50 0.0043 0.0030

1/35 80 0.0029 0.0021

110 0.0024 0.0017

50 0.0041 0.0029

1/45 80 0.0027 0.0019

110 0.0022 0.0015

TABLE 3 Numerical results example 1 of the modified implicit scheme for
various values of N,Δx, and for fixed value of ρ1 � 0.5, ρ2 � 0.25.

Δx N E∞ E2

1/10 40 0.0113 0.0081

80 0.0089 0.0064

250 0.0075 0.0054

40 0.0046 0.0063

1/20 80 0.0039 0.0029

250 0.0027 0.0020

40 0.0051 0.0037

1/40 80 0.0028 0.0021

250 0.0015 0.0018
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zw x, t( )
zt

� 0D
1−ρ3
t

z2w x, t( )
zx2

( ) + z2w x, t( )
zx2

+ 2 + ρ3( )t1+ρ3 − Γ 3 + ρ3( )
Γ 2 + 2ρ3( )t1+2ρ3 − t2+ρ3( )ex,

with initial and boundary conditions

w x, 0( ) � 0, 0≤ x≤ 1,

w(0, t) � t1+ρ3 , w(1, t) � et1+ρ3 , 0< t≤ 1. Where ρ3 ∈(0, 1] and
K � 1, μ � 1. The closed-form solution is w(x, t) � ext1+ρ3 .

The errors between a numerical and an exact solution are
defined as follows:

E∞ � max
1< i≤Mx−1

w xi, tk( ) − wk
i{ }. (38)

E2 � ∑Mx−1

k�1
w xi, tk( ) − wk

i( )2Δx⎛⎝ ⎞⎠1/2

. (39)

The above problem is solved using the modified implicit scheme.
The errors E∞ andE2 at T � 1.0 and for different values of Δx and
N. The time step τ is defined by τ � T

N.

6 Results and discussion

The modified implicit finite difference approximation is used to
solve the numerical example of fractional order, such as fractional
cable model and the fractional order Stokes’ first problem for the
heated generalized second grade equation. Numerical results are
presented in the form of tables and figures for various values of space
and time steps in order to demonstrate the efficiency of the
suggested numerical scheme.

In Tables 1–3, the exact and the numerical solution are
compared of the given example 1 for fixed values ρ1 � 0.5 and
ρ2 � 0.75, 0.5, 0.25, and different values of N and h. The error
decreases as the value of N increases. Similarly, as the time and
space step size τ and Δx,Δy reduce, the errors decrease for a fixed
value of ρ1 and ρ2. In Table 4, the exact and the numerical solution of
example 1 are compared for ρ1, ρ1 � 0.25, ρ1, ρ1 � 0.5, and
ρ1, ρ1 � 0.95, and for different values of N and Δx. The results
show that as we increase the value of N, i.e., reduce the time and
space step size τ and hx, the errors decrease for different values of
ρ1 and ρ2. In Table 5, the numerical results are explained for
example, 2 of the suggested scheme for the fractional order first
problem for a heated generalized second-grade fluid for various
values of order ρ3, step size τ, and Δx. Figures 1–3 show the
comparison of the numerical and the exact solution of example
1 in Figure 1 at ρ1, ρ2 = 0.5, T � 1.0, Δx = 1/10, and N � 40. For
Figure 2, at ρ1, ρ2 = 0.5,T � 1.0, Δx = 1/20, andN � 80. For Figure 3,
at ρ1, ρ2 = 0.5, T � 1.0, Δx = 1/40, andN � 250. Furthermore, added
Figure 4 which shows the graphical representation of example 2 for
ρ3 � .6,Δx � 1/8, T � 1.0 and N � 64, which confirmed our

TABLE 4 Numerical results example 1 of the modified implicit scheme for
various values of ρ1 , ρ2, N, and Δx.

Δx N ρ1, ρ2 � 0.25 ρ1, ρ2 � 0.5 ρ1, ρ2 � 0.95

1/10 40 0.0117 0.0081 0.0065

80 0.0080 0.0064 0.0057

110 0.0059 0.0055 0.0051

40 0.0081 0.0063 0.0032

1/20 80 0.0045 0.0029 0.0024

110 0.0024 0.0020 0.0009

40 0.0072 0.0037 0.0024

1/40 80 0.0036 0.0021 0.0015

110 0.0015 0.0012 0.0009

TABLE 5 Numerical results for example 2 of the modified implicit scheme for
various values of ρ3, τ, and Δx.

ρ3 τ � Δx � 1
16 τ � Δx � 1

64 τ � Δx � 1
256

0.5 0.0109 0.00291 0.000725

0.6 0.0124 0.00324 0.000804

0.7 0.0139 0.00359 0.000887

0.8 0.0155 0.00397 0.000978

0.9 0.0172 0.00438 0.000108

FIGURE 1
Comparison of the numerical and exact solution of the given example 1 at ρ1, ρ2 = 0.5, T � 1.0, Δx = 1/10, and N � 40.
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FIGURE 2
Comparison of the numerical and exact solution of the given example 1 at ρ1, ρ2 = 0.5, T � 1.0, Δx = 1/20, and N � 80.

FIGURE 3
Comparison of the numerical and exact solution of the given example 1 at ρ1, ρ2 = 0.5, T � 1.0, Δx = 1/40, and N � 250.

FIGURE 4
Comparison of the numerical and exact solution of the given example 1 at ρ3 = 0.6, T � 1.0, Δx = 1/8, and N � 64.
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theoretical analysis and demonstrated that the proposed approach is
very powerful and efficient.

7 Conclusion

This paper presented the modified implicit numerical
approximation for a fractional one-dimensional linear Cable model.
The scheme is convergent and unconditionally stable, as seen by the
investigation using the Fourier series method. The time-fractional
derivative was calculated using the Riemann–Liouville formula. The
outcome of an application to specific examples of fractional order one-
dimensional linear Cable model and the fractional order Stokes’ first
problem for the heated generalized second-grade equation have been
explored graphically and numerically. The scheme is verified through
the comparison of the numerical solution with the exact solution,
which shows an agreement with the theoretical analysis and the
numerical experiment, confirming that the approximate solution
converges to the exact solution. This modified approach can also
extend to other types of two and three dimensional fractional order
differential models.
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