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Quaternionic quantum theory is an extension of the standard complex quantum
theory. Inspired by this, we study the quaternionic quantum computation using
quaternions. We first develop a theory of quaternionic quantum Turing machines
as a model of quaternionic quantum computation. Quaternionic quantum Turing
machines can also be seen as a generalization of the complex quantum Turing
machine. Then, we introduce the weighted sum of quaternionic quantum Turing
machines and establish some of their basic properties.
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1 Introduction

In recent years, quantum computation, which integrates computer science with quantum
physics, has attracted extensive attention [1]. In 1980, Benioff [2] proved that quantum
computing devices are at least as powerful as classical computers. Then, in 1982, Feynman
[3] suggested the quantum computer for simulating a quantum mechanical system.
Afterward, in 1985, Deutsch [4] defined the quantum Turing machine as a formal
model of quantum computation. In 1993, Bernstein and Vazirani [5] introduced the
quantum complexity theory. In the same year, Yao [6] introduced the quantum circuit
model for simulation of quantum computation. As another theoretical model of quantum
computation, the quantum automata theory has been well-studied [7–9]. In 1994, Shor [10]
developed the quantum polynomial-time algorithms for factorization and discrete logarithm
problems. Shor’s algorithm is also applied to solve other types of discrete logarithm problems
[11, 12]. In 1996, Grover [13] developed a quantum searching algorithm in a database
including n items in time O( �

n
√ ). In 2009, Harrow, Hassidim, and Lloyd [14] proposed a

quantum algorithm for solving linear systems of equations.
Due to its wide application potential in many fields, quantum computation has been an

important research area. Indeed, the aforementioned quantum computation models and
quantum algorithms are based on the standard complex quantummechanics. It is important
and interesting to further study quantum computation based on other versions of quantum
mechanics. Quaternionic quantum mechanics, as an extension of the standard complex
quantum mechanics, has been considered. In 1936, Birkhoff and Von Neumann [15]
suggested the quaternionic quantum theory. They showed that the mathematical model
of orthogonal vector subspaces of Hilbert spaces over the quaternions also has properties of
the propositional calculus suggested by quantum mechanics. Yang [16] also pointed out the
interest of the possibility of using quaternion algebra as the language of quantummechanics.
Kaneno [17] first attempted to introduce the quaternions into quantum mechanics, called
quaternionic quantum mechanics (QQM). Reference [18] studied the QQM from a purely
logical point of view. They also [19] gave some general features of QQM. Davies and
McKellar [20] considered the observability of QQM. Adler [21] proposed a comprehensive
treatment of the rules of QQM. Recently, QQM has interested many researchers. For
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instance,Reference [22] studied the Ramsauer–Townsend effect in
QQM. Graydon [23] proposed a quaternionic quantum formalism
for the description of quantum dynamics. Giardino [24] proposed
the non-anti-Hermitian QQM. He [25] also studied the virial
theorem and quantum quaternionic Lorentz force in QQM.

As we know, QQM has existed for a long time. Recently, the
computation model based on QQM has aroused the concern of
some scholars. References [26, 27] developed the quaternion
quantum neural network (QQNN) in the quaternion algebra
framework. Bayro–Corrochano [28] also studied quantum
computing using geometric algebra, specifically quaternion
algebra and rotor algebra. Altamirano–Escobedo and
Bayro–Corrochano [29] proposed a quaternionic quantum neural
network for classification. Konno [30] extended the QW to a walk
determined by a unitary matrix, the component of which is
quaternion, and called this model quaternionic quantum walk.
Afterward, Konno, Mitsuhashi, and Sato [31] studied the
discrete-time quaternionic quantum walk on a graph. Dai [32]
extended complex quantum automata to quaternionic quantum
automata. When we consider the computation model based on
QQM, the Turing machine was an inevitable model of computation.
Although the quantum Turing machine has been studied for many
years [33–35], it might not be suitable for the case of QQM. The
purpose of this paper is to establish a theoretical model of
quaternionic quantum computation, called quaternionic quantum
Turing machine (QQTM). Actually, to the best of our knowledge,
this paper is the first attempt on the study of the QQTM. We hope
that the results obtained in the QQTM may offer new insights into
quantum computation.

The paper is organized as follows: Section 2 presents some
preliminaries that help understand our analysis. Section 3 presents the
concept of aQQTMand amultitapeQQTM. Section 4 describes the study
of the weighted sum of QQTM. Section 5 concludes our research studies.

2 Preliminaries

2.1 Quaternions

The quaternion was first proposed by Hamilton [36]. For more
details, the reader is referred to [37].

The quaternion is an extension of real and complex numbers.
LetH be the set of quaternions. Any quaternion h ∈ H can be written
in the form

h � h0 + h1i + h2j + h3k, (1)
where hs (s = 0, 1, 2, 3) are real numbers and i, j, and k are three
different imaginary roots of −1, i.e.,

i2 � j2 � k2 � ijk � −1, (2)
Moreover, they obey

ij � −ji � k, jk � −kj � i, ki � −ik � j. (3)
The real and quaternionic imaginary parts of h are denoted by

Re(h) = h0 and Qim(h) = h1i + h2j + h3k, respectively.
Given a quaternion h ∈ H, its “quaternion conjugate” �h is

defined as

�h � h0 − h1i − h2j − h3k. (4)
Its modulus

|h| �
���
h�h

√
�

���
h�h

√
�

��������������
h20 + h21 + h22 + h23

√
. (5)

For any two quaternions h, h′ ∈ H, we have

hh′ � h′ �h (6)
Quaternion addition is defined as

h + h′ � h0 + h0′( ) + h1 + h1′( )i + h2 + h2′( )j + h3 + h3′( )k. (7)
Quaternion multiplication is defined as

hh′ � h0h0′ − h1h1′ − h2h2′ − h3h3′( )
+ h0h1′ + h1h0′ + h2h3′ − h3h2′( )i
+ h0h2′ + h2h0′ − h1h3′ + h3h1′( )j
+ h0h3′ + h3h0′ + h1h2′ − h2h1′( )k.

(8)

Quaternion multiplication is non-commutative, i.e.,

hh′ ≠ h′h, ∃h, h′, ∈ H. (9)
Quaternion addition and multiplication are

distributive, i.e., ∀h, h′, h″ ∈ H,

h h′ + h″( ) � hh′ + hh″, (10)
h″ + h′( )h � h″h + h′h. (11)

For any two vectors h � (v1, v2, . . . , vn), h′ � (u1, u2, . . . , un)
∈ Hn, their direct sum is h ⊕ h′ = (v1, v2, . . ., vn, u1, u2, . . ., un). Their
inner product is h · h′ � Σn

r�1vrur. Their pointwise addition and
multiplication are h + h′ = (v1 + u1, v2 + u2, . . ., vn + un) and h · h′ =
(v1u1, v2u2, . . ., vnun), respectively.

Let Hn×m be the set of all n × m quaternionic matrices. For
any U ∈ Hn×m, its adjoint of U is defined as U*, where (U*)r,s �
(U)s,r.

2.2 Quaternionic quantum formalism

We give a brief introduction to QQM [17, 21, 22].
The state of a quaternionic quantum system is described by a

unit vector of quaternions. The dimension of a quaternionic
quantum system is the number of quaternions in the vector. A
column vector is written |h〉, and its quaternion conjugate |h〉† is
the row vector 〈h|. Similar to quantum information in an
ordinary complex field, a quaterbit in quaternion Hilbert space
has the general form [38].

|φ〉 � h0|0〉 + h1|1〉 (12)
where h0 and h0 are two quaternion numbers with |h0| +
|h1| = 1.

As usual, a quaternionic matrix U ∈ Hn×n is said to be unitary
if UU* = I, Hermitian if U* = U, and positive semi-definite if
〈h|Uh〉≥ ,∀h ∈ Hn. A linear operator fromHn to Hm corresponds
to a quaternionic matrix U ∈ Hn×m.

The trace of a quaternionic matrix U ∈ Hn×n with respect to a
basis Θ = {e1, e2, . . ., en} for H

n is defined by
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tr U( ) � Re ∑n
r�1

〈er|Uer〉⎛⎝ ⎞⎠. (13)

The norm of U is defined by |U| � ������
tr(U2)√

.

2.3 Complex quantum Turing machine

Complex quantum Turing machines (CQTMs) play an
important role in the theory of complex quantum computing.
We, here, present a formal definition for the CQTM given by
Bernstein and Vazirani [5] as follows.

A CQTM is a 7-tuple QM =< Q, Γ, Σ, q0, δ, B, qf > where

(i) Q is a finite set of control states.
(ii) Γ is a finite set of allowable tape symbols.
(iii) Σ ⊆ Γ − {B} is a finite input alphabet, where B ∈ Γ is the blank.
(iv) q0 ∈ Q is an identified initial state.
(v) qf ∈ Q is an identified accepting states.
(vi) δ: Q × Γ × Q × Γ × {R, L} → C is a complex transition

function satisfying the well-formedness conditions that make
the evolution unitary.

3 Quaternionic quantum Turing
machine

In this section, we shall introduce the concepts of QQTMs.

Definition 1. A QQTM is a 7-tuple M � <Q, Γ,Σ, S, δ, B, F> ,
where

(i) Q is a finite set of control states.
(ii) Γ is a finite set of allowable tape symbols.
(iii) Σ ⊆ Γ − {B} is a finite input alphabet, where B ∈ Γ is the blank.
(iv) S � {(si, hi): si ∈ Q, hi ∈ H, i � 1, 2, . . . , k} with ∑k

i�1|hi| � 1
is called the set of initial symbols.

(v) F ⊆ Q is the set of accepting states.
(vi) δ: Q × Γ × Q × Γ × {R, L} → H is a quaternionic transition

function satisfying the following:

(a) For any p ∈ Q and γ ∈ Γ,
∑

d∈ R,L{ },q∈Q,τ∈Γ
δ p, γ, q, τ, d( )∣∣∣∣ ∣∣∣∣ � 1 (14)

(b) For any (p, γ), (p1, γ2) ∈ (Q, Γ) with (p, γ) ≠ (p1, γ2),

∑
d∈ R,L{ },q∈Q,τ∈Γ

δ p, γ, q, τ, d( )δ p1, γ1, q, τ, d( ) � 0 (15)

(c) For any p, p1 ∈ Q and γ, γ1, τ, τ1 ∈ Γ,
∑
q∈Q

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( ) � 0 (16)

S can be viewed as a quaternionic unit length vector denoting an
initial distribution of quaternionic amplitudes over the control
states.

To each (p, γ, q, τ, d) ∈ Q ×Γ × Q ×Γ ×{R, L}, the transition
function assigns a quaternionic amplitude δ(p, γ, q, τ, d) with which
the current state p turns to state q, the tape symbol τ being scanned
replaces symbol γ, and the head moves left (when d = L) or right
(when d = R).

We, here, construct an example of QQTM that is not a CQTM.

Example 1. Let M � <Q, Γ,Σ, S, δ, B, F> , where Q = {q0, q1}, Γ =
{B} F = {q1}, S = {q0} is the initial state, and the transition function δ

is defined as follows:

δ q0, B, q0, B, L( ) � i�
2

√ , δ q0, B, q0, B, R( ) � 0,

δ q0, B, q1, B, L( ) � 0, δ q0, B, q1, B, R( ) � 1�
2

√ ,

δ q1, B, q0, B, L( ) � j�
2

√ , δ q1, B, q0, B, R( ) � 0,

δ q1, B, q1, B, L( ) � 0, δ q1, B, q1, B, R( ) � −k�
2

√ .

We can check that δmeets (vi) (a–c) in Definition 1.δmeets (vi)
(a) since

|δ q0, B, q0, B, L( )| + |δ q0 , B, q1 , B, L( )| + |δ q0, B, q0, B, R( )| + |δ q0, B, q1, B, R( )| � 1,
|δ q1 , B, q0, B, L( )| + |δ q1, B, q1, B, L( )| + |δ q1 , B, q0, B, R( )| + |δ q1, B, q1, B, R( )| � 1.

δ meets (vi) (b) since

δ q0, B, q0, B, L( )δ q1, B, q0, B, L( )
+ δ q0, B, q1, B, L( )δ q1, B, q1, B, L( )
+ δ q0, B, q0, B, R( )δ q1, B, q0, B, R( )
+ δ q0, B, q1, B, R( )δ q1, B, q1, B, R( )
+ δ q1, B, q0, B, L( )δ q0, B, q0, B, L( )
+ δ q1, B, q1, B, L( )δ q0, B, q1, B, L( )
+ δ q1, B, q0, B, R( )δ q0, B, q0, B, R( )
+ δ q1, B, q1, B, R( )δ q0, B, q1, B, R( )

� i�
2

√ −j�
2

√ + 0 + 0 + 1�
2

√ k�
2

√ + j�
2

√ −i�
2

√ + 0 + 0 + 0 + −k�
2

√ 1�
2

√ � 0.

δ meets (vi) (c) since

δ q0, B, q0, B, R( )δ q0, B, q0, B, L( )
+ δ q0, B, q1, B, R( )δ q0, B, q1, B, L( ) � 0,

δ q0, B, q0, B, R( )δ q1, B, q0, B, L( )
+ δ q0, B, q1, B, R( )δ q1, B, q1, B, L( ) � 0,

δ q1, B, q0, B, R( )δ q1, B, q0, B, L( )
+ δ q1, B, q1, B, R( )δ q1, B, q1, B, L( ) � 0,

δ q1, B, q0, B, R( )δ q0, B, q0, B, L( )
+ δ q1, B, q1, B, R( )δ q0, B, q1, B, L( ) � 0.

So the aforementioned definition M is a QQTM.
Then, we give the definition of a multitape QQTM.

Definition 2. Suppose that k ≥ 1 is an integer. A k-tape QQTM is a
7-tuple M � <Q, Γ,Σ, S, δ, B, F> . where Q, Γ, Σ, S, B, F are the
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same in Definition 1, and δ: Q × Γk × Q × (Γ × {R, L})k → H is a
quaternionic transition function satisfying the following:

(a) For any p ∈ Q and γ1, γ2, . . ., γk ∈ Γ,

∑
d∈ R,L{ },q∈Q,τ1 ,τ2 ,...,τk∈Γ

δ p, γ1, γ2, . . . , γk, q, τ1, τ2, . . . , τk, d( )∣∣∣∣ ∣∣∣∣ � 1 (17)

(b) For any (p, γ11, γ12, . . ., γ1k), (p1, γ21, γ22, . . ., γ2k) ∈ (Q, Γk) with
(p, γ11, γ12, . . ., γ1k) ≠ (p1, γ21, γ22, . . ., γ2k),

∑
d∈ R,L{ },q∈Q,τ1 ,τ2 ,...,τk∈Γ

δ p, γ1, q, τ1, τ2, . . . , τk, d( )δ p1, γ2, q, τ1, τ2, . . . , τk, d( ) � 0

(18)

where γ1 = (γ11, γ12, . . ., γ1k) and γ2 = (γ21, γ22, . . ., γ2k)

(c) For any p, p1 ∈Q, γ1 = (γ11, γ12, . . ., γ1k) ∈ Γk, γ2 = (γ21, γ22, . . ., γ2k)
∈ Γk, τ1 = (τ11, τ12, . . ., τ1k) ∈ Γk and τ2 = (τ21, τ22, . . ., τ2k) ∈ Γk

∑
q∈Q

δ p, γ1, q, τ1, R( )δ p1, γ2, q, τ2, L( ) � 0 (19)

amplitude with which thIntuitively, δ(p, γ1, γ2, . . ., γk, q, τ1, τ2, . . .,
τk, d) is a quaternionice current state p turns to state q, each tape symbol
τ1, τ2, . . ., τk being scanned replaces symbol γ1, γ2, . . ., γk, and each head
moves left (when d = L) or right (when d = R) respectively.

The configuration of a Turing machine is described by a string
α1qα2 for q ∈Q and α1, α2 ∈ Γ*, where Γ* denotes all the finite strings
over Γ including the empty string ε, and the tape head scans the
leftmost symbol of α2 or the blank B in case α2 = ε.

Let D � Γ* × Q × Γ* be the set of configurations. A move from
D1 ∈ D to anotherD2 ∈ D, denoted byD1 ⊢D2, is defined as follows:
for any α1, α2 ∈ Γ*, x, y, z ∈ Γ, and p, q ∈ Q,

D1 ⊢ D2 �

δ q, x, p, y, R( ), if D1 � α1qxα2, D2 � α1ypα2,
δ q, x, p, y, L( ), if D1 � α1zqxα2, D2 � α1pzyα2,
δ q, B, p, y, R( ), if D1 � α1q, D2 � α1yp,
δ q, B, p, y, R( ), if D1 � α1zq, D2 � α1pzy,
0, otherwise.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
In the quaternionic quantum case, the quaternionic transition

function δ is a quaternion. A chain of derivatives from siω to αnqnβn
is expressed as siω ⊢ α1q1β1 ⊢/ ⊢ αn−1qn−1βn−1 ⊢ αnqnβn with the
probability |(siω ⊢ α1q1β1)(α1q1β1 ⊢ α2q2β2)/(αn−1qn−1βn−1 ⊢ αnqnβn)|.

A QQTM M defined previously induces a function
fM: Σ* → [0, 1] as follows: for any ω ∈ Σ*,

fM ω( ) � ∑
qni∈F

∑
si ,hi( )∈S

hi ∑
q1 ,...,qni−1∈Q,α1 ,...,αni ,β1 ,...,βni∈Γ*

∣∣∣∣∣∣∣∣∣∣∣ siω ⊢ α1q1β1( )
α1q1β1 ⊢ α2q2β2( )/ αni−1qni−1βni−1 ⊢ αniqniβni( )

∣∣∣∣∣∣∣∣∣∣,
(20)

which represents the probability that M accepts ω. Particularly, if
F = ∅, then fM(ω) � 0. If S = {q0}, then

fM ω( ) � ∑
qn∈F

∑
q1 ,...,qn−1∈Q,α1 ,...,αn,β1 ,...,βn∈Γ*

∣∣∣∣∣∣∣∣∣∣ q0ω ⊢ α1q1β1( )
α1q1β1 ⊢ α2q2β2( )/ αn−1qn−1βn−1 ⊢ αnqnβn( )

∣∣∣∣∣∣∣∣∣∣. (21)

4 Weighted sum of QQTM

How to construct a desired machine is an important issue. In [5],
the dovetailing lemma and the branching lemma are given and used
to construct the universal QTM. The weighted sum of complex
quantum automata, a theoretical model of quantum computation,
has been well-studied [39, 40].

In this section, we study the weighted sum of QQTM.
Let A � <QA, Γ,Σ, SA, δA, B, FA > and B � <QB, Γ,Σ, SB,

δB, B, FB > be two QQTMs over Σ, where SA �
{(sAi, hAi): sAi ∈ Q, hAi ∈ H, i � 1, 2, . . . , k} with ∑k

i�1|hAi| � 1
and SB � {(sBi, hBi): sBi ∈ Q, hBi ∈ H, i � 1, 2, . . . , l} with∑l

i�1|hBi| � 1. We assume that QA ∩ QB = ∅. Let α, β ∈ H and |α|
+ |β| = 1. Then, their weighted sum C � A+α,βB �
<QC,Σ,ψC, δC, FC > is defined as follows:

(i) QC = QA ∪ QB.
(ii) SC � {(sAi, αhAi)} ∪ {(sBi, βhBi)}
(iii) FC = FA ∪ FB ⊆ QC.
(iv) δ: QC × Γ × QC × Γ × {R, L} → H is defined as follows:

δC p, γ, q, τ, d( ) � δA p, γ, q, τ, d( ), if q, p ∈ QA,
δB p, γ, q, τ, d( ), if q, p ∈ QB,
0, otherwise,

⎧⎪⎨⎪⎩ (22)

where d ∈ {R, L}.

Theorem 1. Let α, β ∈ H and |α| + |β| = 1. If A �
<QA, Γ,Σ, qA, δA, B, FA > and B � <QB, Γ,Σ, qB, δB, B, FB > be
two QQTMs over Σ, then their weighted sum A+α,βB is a
QQTM over Σ.

Proof. Let C � A+α,βB. First, SC satisfies ∑k
i�1|αhAi|+∑l

i�1|βhBi| � |α| + |β| � 1. Then, we check that δC meets (iv) (a–c)
in Definition 1.

(a) For any p ∈QC and γ ∈ Γ, if p ∈QA, since δ(p, γ, q, τ, d) = 0 for any
q ∈ QB, then

∑
d∈ R,L{ },q∈QC,τ∈Γ

δ p, γ, q, τ, d( )∣∣∣∣ ∣∣∣∣ � ∑
d∈ R,L{ },q∈QA,τ∈Γ

δ p, γ, q, τ, d( )∣∣∣∣ ∣∣∣∣ � 1.

(23)
If p ∈ QB, since δ(p, γ, q, τ, d) = 0 for any q ∈ QA, then

∑
d∈ R,L{ },q∈QC,τ∈Γ

δ p, γ, q, τ, d( )∣∣∣∣ ∣∣∣∣ � ∑
d∈ R,L{ },q∈QB,τ∈Γ

δ p, γ, q, τ, d( )∣∣∣∣ ∣∣∣∣ � 1,

(24)

(b) For any (p, γ), (p1, γ2) ∈ (QC, Γ) with (p, γ) ≠ (p1, γ2), if q ∈ QA,
since δ(p, γ, q, τ, d) = 0 for any p ∈ QB, then

∑
d∈ R,L{ },q∈QC,τ∈Γ

δ p, γ, q, τ, d( )δ p1, γ1, q, τ, d( )
� ∑

d∈ R,L{ },q∈QA,τ∈Γ
δ p, γ, q, τ, d( )δ p1, γ1, q, τ, d( ) � 0

(25)
If q ∈ QB, since δ(p, γ, q, τ, d) = 0 for any p ∈ QA, then
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∑
d∈ R,L{ },q∈QC,τ∈Γ

δ p, γ, q, τ, d( )δ p1, γ1, q, τ, d( )
� ∑

d∈ R,L{ },q∈QB,τ∈Γ
δ p, γ, q, τ, d( )δ p1, γ1, q, τ, d( ) � 0

(26)

(c) For any p, p1 ∈ QC and γ, γ1, τ, τ1 ∈ Γ, if p, p1 ∈ QA, then

∑
q∈QC

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( )
� ∑

q∈QA

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( ) � 0 (27)

If p, p1 ∈ QB, then

∑
q∈QC

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( )
� ∑

q∈QB

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( ) � 0
(28)

If p ∈ QA, p1 ∈ QB, then

∑
q∈QC

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( )
� ∑

q∈QA

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( )
+ ∑

q∈QB

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( )
� ∑

q∈QA

δ p, γ, q, τ, R( )0 + ∑
q∈QB

0δ p1, γ1, q, τ1, L( ) � 0 (29)

If p ∈ QB, p1 ∈ QA, then

∑
q∈QC

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( )
� ∑

q∈QA

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( )
+ ∑

q∈QB

δ p, γ, q, τ, R( )δ p1, γ1, q, τ1, L( )
� ∑

q∈QA

δ p, γ, q, τ, R( )0δ p1, γ1, q, τ1, L( ) + ∑
q∈QB

δ p, γ, q, τ, R( )0 � 0

(30)
So, C is a QQTM.

Theorem 2. Let α, β ∈ H with |α| + |β| = 1, A �
<QA, Γ,Σ, qA, δA, B, FA > and B � <QB, Γ,Σ, qB, δB, B, FB > be
two QQTMs over Σ. If fA is the function induced by A, and fB
is the function induced by B, then fA+α,βB � |α|fA + |β|fB .

Proof. Let C � A+α,βB.

fC ω( ) � ∑
qni∈FC

∑
sAi ,hAi( )∈S

αhAi ∑
q1 ,...,qni−1∈Q,α1 ,...,αni ,β1 ,...,βni∈Γ*

∣∣∣∣∣∣∣∣∣∣∣∣ siω ⊢ α1q1β1( )
× α1q1β1 ⊢ α2q2β2( )/ αni−1qni−1βni−1 ⊢ αniqniβni( )
+ ∑

sAi ,hAi( )∈S
βhAi ∑

q1 ,...,qni−1∈Q,α1 ,...,αni ,β1 ,...,βni∈Γ*
siω ⊢ α1q1β1( )

× α1q1β1 ⊢ α2q2β2( )/ αni−1qni−1βni−1 ⊢ αniqniβni( )
∣∣∣∣∣∣∣∣∣∣.

Because FA ⊆ QA, FB ⊆ QB, and QA ∩ QB = ∅, we have

fC ω( ) � ∑
qni∈FA

∑
sAi ,hAi( )∈S

αhAi ∑
q1 ,...,qni−1∈Q,α1 ,...,αni ,β1 ,...,βni∈Γ*

∣∣∣∣∣∣∣∣∣∣∣∣ siω ⊢ α1q1β1( )
α1q1β1 ⊢ α2q2β2( )/ αni−1qni−1βni−1 ⊢ αniqniβni( )

∣∣∣∣∣∣∣∣∣∣
+ ∑

qni∈FB

∑
sAi ,hAi( )∈S

βhAi ∑
q1 ,...,qni−1∈Q,α1 ,...,αni ,β1 ,...,βni∈Γ*

∣∣∣∣∣∣∣∣∣∣∣∣ siω ⊢ α1q1β1( )
α1q1β1 ⊢ α2q2β2( )/ αni−1qni−1βni−1 ⊢ αniqniβni( )

∣∣∣∣∣∣∣∣∣∣
� |α| ∑

qni∈FA

∑
sAi ,hAi( )∈S

hAi ∑
q1 ,...,qni−1∈Q,α1 ,...,αni ,β1 ,...,βni∈Γ*

∣∣∣∣∣∣∣∣∣∣∣∣ siω ⊢ α1q1β1( )
α1q1β1 ⊢ α2q2β2( )/ αni−1qni−1βni−1 ⊢ αniqniβni( )

∣∣∣∣∣∣∣∣∣∣
+|β| ∑

qni∈FB

∑
sAi ,hAi( )∈S

hAi ∑
q1 ,...,qni−1∈Q,α1 ,...,αni ,β1 ,...,βni∈Γ*

∣∣∣∣∣∣∣∣∣∣∣∣ siω ⊢ α1q1β1( )
α1q1β1 ⊢ α2q2β2( )/ αni−1qni−1βni−1 ⊢ αniqniβni( )

∣∣∣∣∣∣∣∣∣∣
� |α|fA ω( ) + |β|fB ω( ).

So, |α|fA(ω) + |β|fB(ω) is the function induced by C.

5 Conclusion

The main purpose of this paper is to understand the
quaternionic quantum computation. In this paper, we have
defined quaternionic quantum versions of the Turing machine
and multitape Turing machine. The QQTM is based on
quaternionic quantum mechanics, which is a generalization of
the standard complex quantum mechanics. The QQTM provides
a new perception of quantum computation which is different from
the traditional complex quantum computation.

In our view, it is a natural mathematical progression from
the real to the complex to the quaternionic numbers. Then,
there is a corresponding natural progression also in computer
science that uses these numbers. This paper considers the
computation model in this direction, i.e., from the complex
quantum Turing machine to the QQTM. To conclude this
paper, we would like to mention some research questions for
further studies.

1) We focus on the Turing machine model based on quaternionic
quantum mechanics. There are various models of quantum
computation. As future work, we can consider other models
of quaternionic quantum computation.

2) It is also interesting to consider the quantum information
from the complex quantum case to quaternionic quantum
case. This will help us understand the quantum information
theory.

3) Whether it is necessary to study quaternionic quantum
computation. From a practical viewpoint, one of the most
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important problems is to examine the applicability of
quaternionic quantum computation.
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