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Aimed at the hyperspectral image (HSI) classification under the condition of
limited samples, this paper designs a joint spectral–spatial classification
network based on metric meta-learning. First, in order to fully extract HSI fine
features, the squeeze and excitation (SE) attention mechanism is introduced into
the spectrum dimensional channel to selectively extract useful HSI features to
improve the sensitivity of the network to information features. Second, in the part
of spatial feature extraction, the VGG16 model parameters trained in advance on
the HSRS-SC dataset are used to realize the transfer and learning of spatial feature
knowledge, and then, the higher-level abstract features are extracted to mine the
intrinsic attributes of ground objects. Finally, the gated feature fusion strategy is
introduced to connect the extracted spectral and spatial feature information on
HSI for miningmore abundant feature information. In this paper, a large number of
experiments are carried out on the public hyperspectral dataset, including Pavia
University and Salinas. The results show that the meta-learning method can
achieve fast learning of new categories with only a small number of labeled
samples and has good generalization ability for different HSI datasets.
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1 Introduction

Hyperspectral image (HSI) refers to a spectral image with a spectral resolution in the
range of nanometers, and its rich spectral information can be obtained while obtaining
spatial information on ground objects [1]. The unique advantage of hyperspectral imagery is
that it can not only obtain multi-channel spectral information on ground objects but also
complex spatial information on different types of ground objects, and its spatial spectrum
fusion features can effectively distinguish ground objects [2].

HSI classification methods based on deep learning can automatically extract spectral
features, spatial features, or spectral–spatial features. Chen et al. [3] proposed a stacked
autoencoder (SAE) to extract joint spectral–spatial features for HSI classification. Li et al.
[4] utilized deep belief networks (DBNs) to extract spectral–spatial features and achieved
better classification performance than SVM-based methods. Makantasis et al. [5]
introduced 2D-CNN to HSI classification and obtained satisfactory performance by
using CNN to encode spectral–spatial information and using multi-layer perceptron.
Chen et al. [6] used 3-D CNN to simultaneously extract spectral–spatial features of HSI
and achieved better classification results. Nevertheless, training very deep CNNs is still
somewhat difficult due to the information loss produced by the vanishing gradient
problem. To solve this problem, Wang et al. [7] introduced ResNet into HSI
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classification. Zhong et al. [8] designed a spectral–spatial residual
network (SSRN) to identify HSI spectral properties and spatial
context using spectral and spatial residual blocks and achieved
state-of-the-art HSI classification accuracy. Furthermore, Paoletti
proposed deep pyramidal residual networks (PyResNet) [9] to
learn more robust spectral–spatial representations from HSI cubes
and provide competitive advantages over state-of-the-art HSI
classification methods in both classification accuracy and
computation time aspect.

Hyperspectral image classification based on deep learning has
achieved great success, but deep learning methods require a large
number of labeled training samples, and the acquisition of labeled
samples is very difficult, requiring great manpower, material, and
financial resources. In practical classification applications, new scene
images often have very few labeled samples, but other scene images
often have enough labeled samples. Meta-learning is an effective
method to achieve few-sample classifications. The learned meta-
knowledge can help predict the target domain data and solve the

FIGURE 1
Joint spectral–spatial classification network based on the metric meta-learning model.
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problem of hyperspectral image classification when there are only a
few labeled samples for each class. Meta-learning is proposed to
solve the problem of the insufficient generalization performance of
traditional neural network models and the adaptability of new types
of tasks. As early as the beginning of the 21st century, Hochreiter
et al. verified that neural networks with memory modules could be
used to deal with the proposition of meta-learning problems [10].
Such networks cache information efficiently and accurately through
learning and then input it into the memory module to complete the
conversion of the output. Subsequently, Munkhdalai et al. proposed
a meta-network that applied the idea of meta-learning to the
memory network to solve the problem of small-sample learning
[11]. This network extracts task-independent meta-level knowledge
to achieve rapid parameterization of common tasks. The matching
network model proposed by O. Vinyals et al. [12] is the earliest
method of combining metric learning with meta-learning.
Subsequently, Snell et al. proposed prototypical networks by
further improving and optimizing the matching network [13].
The prototype network uses simple ideas to effectively reduce the
number of parameters, simplify the training process, and achieve
good classification results. C. Finn et al. proposed a model-
independent meta-learning algorithm named model-agnostic
meta-learning (MAML) [14], which can be seen as a meta-
learning tool for training basic meta-learners. Andrei A. Rusu
et al. [15] proposed a meta-learning idea by optimizing hidden
layer embedding on the basis of MAML, constructing a hidden space
in which the parameters can complete its inner loop update, which
effectively adapts the behavior of the model.

The contributions of the proposed method are as follows:

1. According to the few training samples and scarce labeled samples
of HSI, this paper proposes a joint transfer classification
framework based on the metric meta-learning method.

2. In order to mine the spatial–spectral features of HSI, this paper
proposes a novel spatial–spectral feature extraction module.
Moreover, the squeeze and excitation (SE) attention
mechanism is introduced into the spectral dimension channel
in the spatial–spectral feature migration network module to
capture global information, selectively extract useful HSI
features, reduce the influence of useless information, and
increase the attention of important features.

3. The gated feature fusion strategy is introduced, the feature
information on spectral–spatial HSI is utilized, and the
method of recursive merging is adopted to gradually fuse the
images, thereby enhancing the ability of the network to adapt to
the characteristics of HSI. Through gated fusion, the network can
select a reasonable combination scheme for each pixel, enhance
the appropriate features and suppress the inappropriate features,
and extract more abundant HSI feature information.

2 Materials and methods

Figure 1 shows the overall block diagram of the spectral–spatial
joint transfer classification network based on the metric meta-
learning of HSI.

First, the hyperspectral dataset is divided into many different
metatasks. Each task contains a small number of labeled samples

(the support set) and unlabeled samples (the query set). Then, the
support set and query set samples are simultaneously sent to the
spectral–spatial joint transfer network module constructed to
extract the spatial and spectral embedded features. The
parameters in the spatial features are initialized by the
network parameters trained on the HSRS-SC dataset to realize
the transfer learning of spatial feature knowledge, which provides
a new idea for hyperspectral image classification when training
samples are insufficient. Then, the extracted spatial and spectral
features are fused to gain more knowledge about general HSI
features. Finally, the fused spectral–spatial features are sent into
the metric meta-learning classification module and feature
information is mapped into an embedding space by making
full use of the metric space in the prior knowledge so that the
model can achieve the effect of quickly and efficiently classifying
the image categories.

2.1 Spatial–spectral feature extraction
module combined with transfer learning

This section starts from the perspective of joint spatial–spectral
features and aims at optimizing feature extraction and proposes a
spatial–spectral joint transfer network. For HSI classification,
spectral feature extraction exclusively leads to difficult
interpretation of high-level semantic information on features of
HSI scenes. It is shown that modeling through the synergy of spatial
and spectral information can combine the spectral and spatial
advantages of images to better reveal the proprieties of HSI. The
two branches of the network extract spatial features and spectral
features of HSI, respectively, and a channel attention mechanism is
applied after extracting spectral features. This mechanism can
strengthen the extracted features and make them more
discriminative, thus improving the classification effect of HSI.
After the spatial features and spectral features are extracted, the
two features are combined by the gated fusion method. The gated
fusion method can selectively fuse the spatial–spectral features for
the classification of different positions, according to the feature
appearance of the input image.

2.1.1 Spectral feature extraction combined with SE
attention mechanisms

For the spectral feature extraction model, the network is
configured with one 1-D convolutional layer, one spectral
residual block, one 1-D convolutional layer, and one FC layer.
SE-Net adds attention mechanisms to channels, including two
key operations: squeeze and incentive. It can be observed that the
module obtains the best weight value through autonomous learning,
which is generally implemented by the neural network. A feature
recalibration mechanism based on the network model is proposed,
which enables the model to find some small amount of information
that needs to be focused on in a large amount of data, thus avoiding a
waste of computing power on unimportant information.

The inputX of any size is first given, then the input is mapped by
Ftr, resulting in its special transformation into a feature map U
(U ∈ RH×W×C). The convolutional neural network is then used to
construct a corresponding SE block, which is used to re-calibrate the
features. The calibration step is to generate an embedded global
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distribution channel feature response and aggregate the features
with a dimension size of C × H × W to obtain a feature size of
C × 1 × 1 so that the layer closest to the input layer can obtain the
global receptive field. After the squeeze operation, an excitation

operation is performed, which is to re-input the new feature and
aggregate a new weight generated by each channel, which will be
mapped to U again to obtain the final output ~X combined with the
weight.

TABLE 1 Classification results of different methods on the Pavia University dataset.

Class EMP-SVM DCNN ResNet RLNet DCFSL HFSL Ours

Asphalt 80.24 ± 2.45 79.38 ± 3.08 76.59 ± 0.58 84.03 ± 1.89 85.25 ± 2.55 86.47 ± 0.83 87.06 ± 3.47

Meadows 79.25 ± 0.76 83.42 ± 1.47 82.98 ± 1.49 76.96 ± 3.55 90.64 ± 0.84 89.33 ± 0.56 90.90 ± 0.85

Gravel 63.59 ± 2.07 72.18 ± 0.86 75.36 ± 3.67 80.13 ± 2.76 82.09 ± 1.62 84.81 ± 1.94 87.58 ± 1.06

Trees 78.67 ± 1.89 80.03 ± 2.43 85.52 ± 0.44 87.34 ± 0.81 88.84 ± 3.91 89.45 ± 2.85 90.70 ± 2.19

Metal sheets 76.41 ± 0.95 77.26 ± 4.16 82.71 ± 0.83 85.03 ± 1.43 91.70 ± 4.27 93.93 ± 3.06 93.57 ± 3.54

Bare soil 72.72 ± 2.44 87.84 ± 3.81 89.92 ± 4.75 91.06 ± 0.72 88.28 ± 1.66 89.49 ± 2.07 91.36 ± 4.82

Bitumen 76.06 ± 0.58 78.61 ± 0.84 75.34 ± 1.40 78.68 ± 3.53 87.12 ± 3.82 90.41 ± 3.82 92.71 ± 1.53

Bricks 78.52 ± 3.06 74.86 ± 2.59 73.57 ± 3.61 74.65 ± 2.86 83.51 ± 2.77 86.24 ± 0.91 87.03 ± 2.06

Shadows 86.43 ± 1.54 87.66 ± 1.06 88.67 ± 2.84 90.64 ± 4.39 92.79 ± 0.93 94.81 ± 1.64 96.54 ± 0.31

OA/% 77.89 ± 0.75 79.84 ± 2.14 80.85 ± 3.72 82.97 ± 1.68 85.02 ± 2.51 86.15 ± 3.19 89.26 ± 1.95

AA/% 75.76 ± 1.63 80.32 ± 1.86 81.49 ± 1.95 83.41 ± 2.11 84.47 ± 0.83 85.88 ± 2.83 88.75 ± 3.08

100 K 70.09 ± 3.71 72.56 ± 0.92 73.24 ± 0.86 75.91 ± 3.54 79.04 ± 1.69 80.73 ± 1.52 82.51 ± 0.76

TABLE 2 Classification results of different methods on the Salinas dataset.

Class EMP-SVM DCNN ResNet RLNet DCFSL HFSL Ours

Bg_weeds_1 77.57 ± 1.56 85.29 ± 0.16 86.85 ± 0.05 87.63 ± 0.22 89.47 ± 3.25 91.40 ± 2.12 92.49 ± 0.09

Bg_weeds_2 82.43 ± 0.85 88.20 ± 2.03 89.97 ± 2.20 91.09 ± 1.14 92.47 ± 0.85 93.76 ± 3.14 95.41 ± 2.54

Fallow 86.95 ± 2.12 89.45 ± 2.28 88.47 ± 3.48 89.01 ± 2.21 91.05 ± 1.94 92.86 ± 0.82 94.94 ± 0.51

Fr_plow 82.11 ± 0.22 84.31 ± 3.05 86.52 ± 1.80 88.54 ± 2.05 93.75 ± 2.29 94.55 ± 0.08 95.97 ± 1.15

Fallow_smooth 80.29 ± 0.23 82.24 ± 2.19 84.20 ± 0.43 85.98 ± 0.55 86.45 ± 0.61 88.70 ± 0.74 89.85 ± 3.24

Stubble 85.36 ± 0.45 88.85 ± 1.06 87.28 ± 2.22 89.47 ± 2.29 91.73 ± 2.74 92.52 ± 0.25 94.62 ± 1.07

Celery 84.39 ± 0.13 86.69 ± 2.01 88.98 ± 3.01 90.81 ± 3.64 92.61 ± 1.45 93.88 ± 1.59 94.31 ± 0.46

Grapes_untrained 74.99 ± 0.05 76.40 ± 1.28 78.90 ± 3.74 80.74 ± 0.76 81.11 ± 3.23 82.57 ± 2.49 85.84 ± 0.51

Sv_develop 86.09 ± 1.87 89.25 ± 3.16 90.64 ± 0.05 91.13 ± 3.09 92.35 ± 0.25 93.59 ± 0.41 94.94 ± 3.08

Cs_green_weeds 85.45 ± 0.37 88.72 ± 0.29 89.01 ± 1.64 90.98 ± 1.85 91.53 ± 0.19 92.42 ± 1.54 94.51 ± 2.94

Lr_4wk 81.25 ± 0.29 84.15 ± 1.57 86.86 ± 0.47 85.99 ± 0.19 87.03 ± 3.09 88.61 ± 3.61 89.63 ± 1.46

Lr_5wk 77.22 ± 0.07 79.65 ± 0.32 80.67 ± 1.23 81.13 ± 0.43 83.15 ± 2.54 85.93 ± 0.37 86.27 ± 2.13

Lr_6wk 77.30 ± 1.08 83.63 ± 0.66 84.04 ± 3.67 86.34 ± 0.51 88.54 ± 0.52 89.30 ± 0.69 89.71 ± 0.88

Lr_7wk 81.84 ± 0.15 84.56 ± 2.09 85.61 ± 0.82 84.06 ± 0.02 86.43 ± 0.68 88.85 ± 0.43 90.29 ± 2.69

Vinyard_untrained 69.52 ± 1.23 71.02 ± 3.01 73.97 ± 3.54 74.54 ± 1.67 75.18 ± 0.28 77.38 ± 1.88 80.53 ± 0.43

Vv_trellis 81.45 ± 0.19 86.41 ± 0.46 89.91 ± 1.28 92.65 ± 2.98 94.39 ± 1.73 95.22 ± 3.66 96.61 ± 0.79

OA (%) 79.85 ± 1.38 84.20 ± 0.38 86.39 ± 2.28 88.67 ± 0.76 90.65 ± 2.38 91.43 ± 0.57 93.96 ± 1.58

AA (%) 85.24 ± 0.42 87.56 ± 1.29 89.01 ± 0.46 90.90 ± 0.60 91.42 ± 0.84 92.59 ± 1.26 94.39 ± 0.76

100 K 78.68 ± 2.54 82.46 ± 0.24 84.95 ± 3.13 85.52 ± 0.93 87.32 ± 3.13 88.84 ± 2.04 89.08 ± 2.93
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2.1.2 Spatial feature extraction network combined
with transfer learning

As shown in Figure 1, the three parts of spectral feature extraction,
spatial feature extraction, and spectral–spatial feature extraction
constitute the joint spatial–spectral feature extraction network.
However, a meta-learning training strategy is used to learn the
embedding feature space suitable for the HSRS-SC dataset. The
pre-trained VGGNet’s first seven-layer structure and parameters
are used to train the data on the target domain, and the
parameters are transferred to the feature extraction model of the
HSRS-SC dataset. Then, a CNN with 2D convolution, 2D max-
pooling, and FC layers is designed to extract spatial features. The
2D convolution layer is followed by the BN layer, ReLU activation
function, and maximum pooling. A batch normalization (BN) layer is
added after the 2D convolutional layer to solve gradient disappearance
and improve the generalization ability of the model. The activation
function is added after the normalization layer. Finally, an FC layer is
added to generate spatial feature vectors.

After the spatial features and spectral features are extracted, the
two features are combined by the gated fusion method, which can
selectively fuse the spectral–spatial features for the classification of
different positions according to the feature appearance of the input
image. Through gated fusion, the network can select a reasonable
combination scheme for each pixel, enhance suitable features and
suppress inappropriate features, and extract richer HSI feature
information.

2.2 Metric meta-learning classification
module

As shown in Figure 1, the obtained spectral–spatial feature vector
used to be classified by comparing the distance of labeled samples and
unlabeled samples based on metric element learning. The method in
this paper is an improvement on the classic algorithm of metric-based
meta-learning. The estimated metric function minimizes the difference
between similar tasks, whichmaximizes the distance between dissimilar
tasks and improves the efficiency of task processing. The known
support samples xj and query samples xi generate the eigenvector
sums of two sets of Eφ(xi) and Eφ(xj) through the spectral–spatial
transfer network module, and then generate eigenvectors through
splicing operation C(*, *). The distance between samples can be
used to obtain sample attributes Conji without using all the features
of samples, which can make more effective use of HSI features and
reduce the model’s dependence on training samples.

Conj
i � C Eφ xi( ), Eφ xj( )( ). (1)

Mϕ is a neural network consisting of three regular convolutional
layers. The first two convolution layers, with the size of 1 × 1 × 64,
are followed by the Leaky-ReLU activation function for non-linear
mapping. The sigmoid activation function is then used to output the
similarity between samples, then the output feature vector is mapped
to Mϕ and convolved by a convolutional layer. By analyzing the
similarity between samples to obtain class xj, feature vectors and
relationship scores mi,j are generated xj.

In order to determine the label of the query sample, the feature
mapping of each combination is input into Mϕ to generate a

similarity, which is defined to indicate the similarity between any
two embedded samples. The value of the output mi,j is a range of
[0, 1], in which the samples with high similarity scores are
considered to be more similar.

mi,j � Mϕ C Eφ xi( ), Eφ xj( )( )( ). (2)

The comparison measurement model uses the mean squared
error (MSE) loss function to calculate the relationship score and
conduct training. When the training samples belong to the same
category, the loss value is 1; otherwise, it is 0. The loss function is
shown as follows: (mi,j − l(yi �� yj))2

ϕ,φ ← argmin
ϕ,φ

∑
xi
. (3)

3 Results

In order to prove the effectiveness of this method, classification
experiments are carried out on public datasets, namely, Pavia
University and Salinas datasets, and the transfer learning dataset
selects the HSRS-SC dataset. All experiments were conducted using
the Intel (R) Xeon (R) 4208 CPU @ 2.10 GHz processor and Nvidia
GeForce RTX 2080Ti graphics card. The number of training
iterations is set to 1,000. For each training iteration, K is set to
1 and N is set to 19, which is the number of categories in the HSI
dataset; that is, 1 labeled sample and 19 unlabeled samples were
selected randomly to form a training set for model training. In
addition, the model in this paper is optimized using Adam, and the
learning rate is set to 0.001.

3.1 Comparison with state-of-the-art
methods

In order to evaluate the effectiveness of the meta-learning method,
this paper compares the meta-learning method with deep learning and
few-shot supervised learning methods including extended
morphological profile support vector machine (EMP-SVM) [16],
deep convolutional neural network (DCNN) [17], residual network
(ResNet) [18], and current few-shot learning methods including
relation network (RLNet) [19], deep cross-domain few-shot learning
(DCFSL) [20], and heterogeneous few-shot learning (HFSL) [21]. In
order to ensure the fairness of the experiment, this paper randomly
selects five labeled samples in each type of HSI dataset as the supervised
samples. All experiments were performed 10 times to remove the effect
of random sampling. Tables 1, 2 show the accuracy values of OA, AA,
and kappa of Pavia University and Salinas datasets.

From Tables 1, 2, it can be seen that the proposed method in this
paper achieves almost the highest classification accuracy in each class. In
particular, it improves the classification accuracy more for classes with
lower heights, such as the asphalt road class and the grass class in the
Pavia University dataset. As shown in Table 1, theOA value of the Pavia
University dataset is as high as 82.96%, and compared with EMP-SVM,
DCNN, ResNet, RLNet, DCFSL, and HFSL, it has increased by 11.37%,
9.42%, 8.41%, 6.29%, 4.24%, and 3.11%, respectively. These results
demonstrate the superiority of meta-learning methods in HSI
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FIGURE 2
Classification maps of the Pavia University dataset. (A) ground truth; (B) EMP-SVM; (C) DCNN; (D) ResNet; (E) RLNet; (F) DCFSL; (G) HFSL; (H)Ours.

FIGURE 3
Classification maps of the Salinas dataset. (A) ground truth; (B) EMP-SVM; (C) DCNN; (D) ResNet; (E) RLNet; (F) DCFSL; (G) HFSL; (H) Ours.
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classification. For categories that other methods cannot accurately
classify, such as gravel, bare soil, asphalt, and bricks, the meta-
learning method can obtain more accurate classification results,
further demonstrating its effectiveness.

Figures 2, 3, respectively, show the HSI ground truth maps and
the false color image maps of the classification results. In the small-
sample ground objects, the error features such as gravel and bricks
have been significantly improved, and it can correct various types of
ground objects with a small number of training samples.

In Figure 3, the SVM algorithm only considers the spectral
feature, and the misclassification rate for Vinyard_untrained and
Grapes_untrained is higher. DCNN and other deep learning
algorithms are better than SVM in the classification of Vinyard_
untrained and Grapes_untrained, which shows that it has good
feature extraction ability in large-scale landforms. On this dataset,
the meta-learning algorithm has greatly improved compared with
other algorithms, and the classification effect is the best.

4 Discussion

In order to verify the HSI classification framework based on
model transfer, the influence of different datasets on the
classification results in transfer learning was studied to construct
the optimal classification framework. Figure 4 shows the results of
classification using different datasets for transfer learning, where CP
means the center of Pavia dataset, SA means the Salinas dataset, HS
means the HSRS-SC dataset, and IM means the natural image
dataset ImageNet. Through the visualization of experimental
data, it can be found that the model-based transfer learning
method is effective. As shown in Figure 4F, the classification
result obtained by using the HSRS-SC as the source dataset is
better than the other three types and is closer to the ground
truth map in terms of spatial correlation and completeness,
especially the soil class. Rich information on source domain data
facilitates the learning of pre-trained models. By using the HSRS-SC

FIGURE 4
Classification visualization result diagram using different transfer datasets. (A) Ground truth; (B) No transfer learning; (C) Transfer using CP; (D)
Transfer using SA; (E) Transfer using IM; (F) Transfer using HS.
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dataset to train the model, the obtained model has a stronger feature
extraction ability and is able to learn more general features rather
than features limited to a specific dataset so that the migration of the
pre-trained model to the target domain can better adapt to the new
learning task well.

5 Conclusion

In order to improve the classification accuracy of hyperspectral
images, this paper designs a spatial–spectral joint transfer
classification network based on metric meta-learning.
Furthermore, to combine the spectral and spatial superiority of
HSI, a joint spatial–spectral transfer learning network module is
proposed in this paper, which can extract finer HSI features and
capture cross-dimensional and spatial interaction information. The
experimental results on two publicly available HSI datasets show
that the meta-learning method proposed in this paper is more
competitive and outperforms other classical methods and existing
few-shot learning methods. In the future, we will study model
compression and pruning to reduce the complexity of the
proposed model and improve real-time performance without
affecting the classification ability.
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