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Since the birth of human beings, the spreading of epidemics such as COVID-19
affects our lives heavily and the related studies have become hot topics. All the
countries are trying to develop effective prevention and control measures. As a
discipline that can simulate the transmission process, complex networks have
been applied to epidemic suppression, in which the common approaches are
designed to remove the important edges and nodes for controlling the spread of
infection. However, the naive removal of nodes and edges in the complex network
of the epidemic would be practically infeasible or incur huge costs. With the focus
on the effect of epidemic suppression, the existing methods ignore the network
connectivity, leading to two serious problems. On the one hand, when we remove
nodes, the edges connected to the nodes are also removed, which makes the
node is isolated and the connectivity is quickly reduced. On the other hand,
although removing edges is less detrimental to network connectivity than
removing nodes, existing methods still cause great damage to the network
performance in reality. Here, we propose a method to measure edge
importance that can protect network connectivity while suppressing epidemic.
In the real-world, our method can not only lower the government’s spending on
epidemic suppression but also persist the economic growth and protect the
livelihood of the people to some extent. The proposed method promises to be an
effective tool to maintain the functionality of networks while controlling the
spread of diseases, for example, diseases spread through contact networks.
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1 Introduction

For the convenience of investigating practical systems, they are usually modeled as
complex networks, such as biology, ecology, physics and medicine [1–8]. The abbreviated
complex network usually consists of nodes and edges which represent individuals and
connections among individuals, respectively. With these complex network models, various
phenomena can be revealed through studying the properties of nodes, edges and
communities. Among existing studies, the determination of edge/node importance is of
great significance which can provide valuable guidance in addressing practical problems. For
instance, in the aviation network, the nodes correspond to the important airports and the
related studies are critical.

Since the birth of network science, scholars devote to studying the heterogeneity of
nodes. Various approaches are presented to measure the importance of nodes, such as degree
centrality [9,10], betweenness centrality [11,12], eigenvector centrality [13], k-shell [14], etc.
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According to node degree centrality [9], we can obtain the number
of routes for each airport in an aviation network; thus, airports with
more routes are of higher importance. Furthermore, scholars also
considered the problem of edge importance and different
approaches are presented, including WERA-KPath (WKP) [15],
edge betweenness centrality (EBC) [16,17], Link Importance (LI)
[18], Nearest-neighbor edge centrality [19], etc. The above methods
can be effectively applied to address practical problems, such as
community detection [20–22], virus/information diffusion [23–27].

In recent years, many infectious diseases spread globally,
countries around the world are actively looking for effective
countermeasures to suppress epidemic. Studying heterogeneity of
nodes and edges may play an important role in reducing virus
impact. For example, nodes and edges to be removed in aviation
networks corresponds to airports to be isolated and routes to be
canceled, respectively. With these measures, some undesired effects
might be limited. However, removing nodes has a more serious
impact on the connectivity of the network than removing edges;
furthermore, greater cost and impact might also be incurred in
practice. To achieve the purpose of effectively suppressing epidemic
and protecting network connectivity simultaneously, we propose a
method EBD to measure edge importance through combining edge
degree centrality and edge betweenness centrality. After that,
extensive experiments are conducted to verify its effectiveness.

The reminder of our work is organized as follows: In Section 2,
some existing edge importance methods are reviewed. Then, in Section
3, our proposed method is explained explicitly while the difference
between our method and existing ones are presented. Later, extensive
experiments are conducted with the obtained results being provided in
Section 4. The performance of our method is compared to that of
existing ones with sufficient discussions. Eventually, Section 5 concludes
this work with some future research directions being provided.

2 Related work

Firstly, we suppose a complex network is formulated as G(V, E),
where V and E stand for the node set and edge set, respectively,
n � |V| denotes the number of nodes, m � |E| represents the
number of edges. For brevity, we provide some edge importance
derivation methods as follows.

2.1 EBC

In [28], Freeman presents the node betweenness centrality, and
then Girvan and Newman extend the definition of betweenness
centrality from nodes to edges [16]. Later, Newman implements it
in [17]. The concept of edge betweenness centrality indicates that the
edges which are more important than the others are likely to be central.
We use CB to denote quantitative value of edge importance which is
defined as:

CB e( ) � 2
n × n − 1( ) ∑i≠j

sij e( )
Sij

, (1)

where e ∈ E, Sij represents the number of shortest paths from node i
to node j and sij(e) indicates the number of the shortest paths from

node i to node j which pass through edge e. If there exists no path
linking i and j, we set sij(e)Sij

� 0 for convenience. According to Eq. 1, a
lager CB usually indicates better control ability over the network. For
instance, in the aviation network, if the key routes obtained byCB are
canceled, the aviation network is likely to be decomposed into a
number of small ones. This is important for epidemic suppression
which will be discussed explicitly in Section 3.

2.2 WKP

De Meo et al. apply Random-Walk to measure edge importance
[15]. A total of m − 1 rounds of loops are carried out with
performing 10 Random-Walk in each loop from a random node
(m indicates the number of edges in the network). Then, the number
of times for each edge being traversed will be recorded. After that,
the edge importance sequence is sorted in descending order
according to the recorded traversal times (i.e., CW).

2.3 LI

Aiming to suppress epidemic effectively under SIS model, Joan
T. Matamalas et al. propose a method for assessing the importance
of edges during the spreading process, called Link Importance (LI)
[18]. Specifically, they first define a model named ELE which is
similar as the SIS model. Through the ELE model, they conduct the
disease spreading process until the system converges to a steady
state. Then, if nodes i and j are directly connected, they can obtain
the probability P(ϖi = S, ϖj = I) (i.e., the probability of node i is
susceptible and node j is infectious) which is represented byΦij, and
the probability P(ϖi = ϖj = I) (given by ΘI

ij). Here, ϖi represents the
state of node i, S and I represent the susceptible and the infectious
states, respectively. The edge importance is calculated by:

Iij � μ2 Φji ∑n
r�1

Ajr
Φrj

Φrj + ΘI
rj

+Φji ∑n
r�1

Air
Φri

Φri + ΘI
ri

⎛⎝ ⎞⎠, (2)

where Iij stands for the importance of edge eij and A represents the
adjacency matrix of network G. According to Eq. 2, after a node
being infected by its neighbors, we can effectively evaluate the extent
of the impact being applied on neighboring nodes by the newly
infected node. For instance, we assume that two nodes being
connected by an edge eij are in different states, i.e., susceptible
and infectious, respectively. When the susceptible node is infected
by an infectious one, if the newly affected node has a larger number
of neighbors, the authors suppose it will infect more nodes.

According to the analysis of existing studies, EBC tends to
achieve better effect of spreading control compared with the
others; however, greater damage will be incurred to network
connectivity. WKP has high randomness; hence, it is not effective
in spreading control and network connectivity protection. LI can
protect network connectivity well, but the effect of spreading control
is worse than that of EBC. In summary, existing methods cannot
achieve excellent performance in both epidemic suppression and
network connectivity protection. However, both aspects are of great
significance. Taking the aviation network as an example, on the one
hand, it is necessary to suppress epidemic to reduce the spreading
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range; thus, it is very important to reduce the necessary overhead as
much as possible. On the other hand, to meet the requirements of
world-wide transportation, it is also of great significance to ensure
the accessibility between countries. Therefore, we propose a method
(being denoted as EBD) which is effective in spreading control and
protecting network connectivity simultaneously.

3 Methods

In this work, we propose a new method to measure the
importance of edges through combining degree centrality and
EBC. With our proposed approach, we can control the spreading
phenomena and protect the network connectivity effectively after
removing some of the most important edges.

In this paper, we adopt the widely utilized SIS model to simulate
the spreading process. Accordingly, each node can be either in a state
of S (susceptible) or I (infectious). The node in the I state can infect
the neighboring nodes in the S state with probability μ, while the
node in the I state can recover with probability γ, the overall state
transition process can be depicted as in Figure 1. According to [29],
we can derive the epidemic threshold λc (i.e., if μ/γ > λc, the virus will
spread forever; otherwise, the virus will disappear quickly) in degree
uncorrelated networks which is provided as:

λc � 〈k〉
〈k2〉, (3)

where 〈k〉 stands for the average degree of all nodes and 〈k2〉
represents the mean of squared degree of all nodes.

According to the definition of λc, it is obvious that we can control
the virus spreading process through increasing the epidemic
threshold. After a theoretical analysis, we find that when we
remove an edge (eij ∈ E, i, j ∈ V), 〈k〉 is reduced by 2/n; thus, we
can only increase λc by minimizing 〈k2〉 as much as possible. Before
removing eij, we assume that the degrees of nodes i and j are denoted
as ki and kj, respectively. Then, after removing eij, 〈k2〉 is reduced by
[k2i − (ki − 1)2 + k2j − (kj − 1)2]/n. Hence, λc becomes:

λc′ � 〈k〉 − 2/n
〈k2〉 − 2 ki + kj − 1( )/n. (4)

As in Eq. 4, we find that a larger (ki + kj) usually indicates a larger
λc′. Then, we should find the edge eij with the largest ki + kj. This
means that the edge with more neighbors is more important than the
others and the important edge plays a greater role in the epidemic
diffusion process. Similar as ki + kj, ki × kj can also indicate the
number of neighbors being connected by eij. Van Mieghem et al.
verify that the performance of utilizing ki × kj is much better than the
adoption of ki + kj during epidemic suppression process [30]. To
verify this, we conduct some experiments. Firstly, we combine ki + kj
with ki × kj by an adjustable parameter η ∈ [0, 1] to obtain a new
criteria to measure edge importance which is provided as

MA eij( ) � ki × kj − υM( ) × η

σM
+ ki + kj − υA( ) × 1 − η( )

σA
, (5)

where υM and σM represent the average value and standard deviation
of ki × kj in all edges, respectively; υA and σA stand for the average
value and standard deviation of ki + kj in all edges, respectively; υ and
σ are used to normalize ki + kj and ki × kj. As in Eq. 5, we find that the
influence of the two aspects in theMA can be adjusted by changing η
and we set η = {0, 0.2, 0.4, 0.6, 0.8, 1}. Finally, we repeatedly remove
the edge with the largest MA for different η. Then, we obtain the
fraction of infectious nodes Iprop in steady state by simulating the SIS
model after every 0.04m edges are removed in usAir97 network. The
experimental results are shown in Figure 2. According to Figure 2,
we find that when the fraction of removed edges is less than 0.45, the
effect of spreading control becomes better when a smaller η is
adopted. However, there are many nodes that are infected in all
η. Then, when 0.65 > β > 0.45, large η leads to better effect of
spreading control and small spread range of virus. In addition, the
effect of spreading control for the scenario of η = 0 is much worse
than that for η = 1 when 0.65 > β > 0.45. Note that, since the lines in
Figure 2 are relatively dense, the error bars are not provided.
Moreover, the maximum standard deviation of the data points

FIGURE 1
Illustration of the adopted SIS model.

FIGURE 2
The effect of different values of η on epidemic suppression. We
show the faction of infectious nodes in steady state (Iprop), as a
function of the fraction of removed edges (β) in usAir97 network
(μ = 0.06, γ = 0.4), where the numbers in the legend represent
the values of η. Note that, the value of each point is the result of
averaging 100 simulated values of Iprop.
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on each line in Figure 2 is in [0.03, 0.04]. From above analysis,
compared with ki + kj, the adoption of ki × kj can achieve the purpose
of reducing the epidemic on a large scale while removing fewer
edges. Therefore, we adopt

CD est( ) � ks × kt (6)
to represent the importance of edge, where CD(est) represents degree
centrality of edge est.

In addition to the spreading ability of edges, we also consider the
effect of edge removal on network connectivity when studying the
edge sorting algorithm. Generally speaking, CD(est) is large given a
large number of neighbors of s and t. Thus, when we remove the edge

est with large CD, their high-order neighbors can likely be connected
because nodes s and t are of large degrees. As in Figure 3A, the edge e58
has the largest CD. When we remove it from the network, nodes 5 and
8 are still connected via other paths, such as {5, 6, 8}. Then, we
continuously remove the edge that has the largest CD in the remaining
network. After removing four edges, the network is still connected as
in Figure 3B. However, if the degrees of s and t are relatively small,
when edge est is removed, the probability of s and t being in two
connected components respectively increases greatly, such as edge e89
in Figure 3A. If we continuously remove the edge with the largest EBC,
when we remove the most important edge (e23), the network becomes
an unconnected one. Aiming to further verify the performance of
network connectivity under different edge removing strategies, we
conduct experiments on the Global airline network with the obtained
results being provided in Figure 4. As in Figure 4, we utilize the
number of connected components (CN) to reflect the network
connectivity (i.e., the better methods have fewer connected
components when the same number of edges are removed) and
compare the effects of adopting different methods (i.e., ADCM,
ABC and Random). Here, ADCM and ABC repeatedly remove the
edge with the highest CD and CB, respectively. Random randomly
selects an edge to remove at each time. As in Figure 4, we find that
when the proportion of removed edges is less than 0.7, ADCM is of
limited effect on the network connectivity; however, ABC and
Random have already decomposed the network into many
connected components. Among these methods, ABC has the
greatest impact on network connectivity. These results can further
validate the effectiveness of CD in protecting network connectivity.

From another perspective, since infectious diseases always originate
from one or a few people, the spreading range is usually limited in the
connected components where the seed nodes are located in. Therefore,
when some edges are removed, the method which dismantles the
network into many connected components is effective in epidemic
suppression, while CD is less effective in epidemic suppression (the
corresponding experimental results will be provided in Section 4). To
solve this problem, it is necessary to find a method that incorporates CD

to increase the effect of epidemic suppression when fewer edges are
removed. Furthermore, individual aggregation is a common

FIGURE 3
An example showing the effect of removing edges on network connectivity. (A) shows the initial network which consists of 9 nodes and 12 edges.
The thickness of these colored solid lines corresponds to theCD of the edge, the derived set according toCD in descending order is e58 ,e35 , e45 ,e68{ }. The
purple dot line indicates the edge with the largest EBC. (B) shows the network after removing e58, e35 , e45 ,e68{ }.

FIGURE 4
The effect of edge removing on network connectivity based on
different methods. We show the number of connected components
(CN), as a function of the faction of removed edges (β) in the Global
airline network. We compare three different approaches: ADCM,
ABC and Random.
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phenomenon in practical networks. For example, in the aviation
network, there are close connections between airports belonging to
the same country, but fewer routes between airports in different
countries; this results in the fact that modules are usually connected
by few edges. According to [31], edges with higher CB are usually the
links connecting different modules. Therefore, removing edges with
high CB first can quickly decompose the network into small connected
components. Figure 4 also shows that EBC-based ABC can quickly
decompose the network into many connected components.

Based on the above discussions, we propose our method EBD
through combining EBC (CB) with CD and a new edge importance
evaluation index CBD is defined as:

CBD est( ) � 1 − α( ) CD est( )
max CD e( )( ) + α

CB est( )
max CB e( )( ), (7)

where e is an element from the edge set E and α stands for an
adjustable parameter (α ∈ [0, 1]). Since CD and CB belong to different
orders of magnitude (e.g., CD(e58) = 16 and CB(e58) = 0.25 in
Figure 3A), these two indicators should be normalized before
fusion. In this paper, we adopt the max normalization
(i.e., max(CD(e)) and max(CB(e))). Here, max(CD(e))
represents the largest CD among all the edges in the current
network, max(CB(e)) is similar as max(CD(e)). Obviously, the
influence of the two aspects in CBD can be changed by adjusting
the parameter α.

In this article, we dynamically update CBD to derive the edge
importance ranking sequence (i.e., SBD). The updating processes are
provided as:

• Step 1: Initialization, we select a complex networkG(V, E) and
set an empty edge ranking sequence SBD = {};

• Step 2: Calculate CBD of each edge in the current network G
according to Eq. 7;

• Step 3: Remove the edge with the largest CBD from G (if there
exist multiple edges with same CBD, we will randomly select
one and then remove it); then, the removed edge is added to
the end of sequence SBD;

• Step 4: If there still exist edges in G, we need to go back to
Step 2;

• Step 5: Determine the edge importance ranking sequence SBD.

Through the above steps, an edge ranking sequence sorted in
declining order according to the edge importance index CBD will be
obtained (SBD � e1, e2, . . . , em{ }). Removing edges according to this
sequence can protect the network connectivity efficiently while
suppressing epidemic simultaneously.

4 Results and analysis

4.1 Baseline models

To evaluate the performance of our proposed method, some
baselines are adopted, including ADCM, Random, WKP, ABC and
LI. For ADCM, we need to repeatedly remove the edge eij with the
largest ki × kj from the remaining network (here, ki indicates the
degree of node i). As to Random, we randomly remove edges. For
WKP, we need to repeatedly remove the edge with the largest CW

from the remaining network. For ABC [32], we repeatedly remove
the edge with the largest CB from the remaining network. As to LI,
the edge with the largest Iij is repeatedly removed from the
remaining network. Similarly, in our approach, we continuously
remove the edge with the largest EBD from the remaining network.

4.2 Data description

In the following experiments, we mainly consider seven practical
networks including usAir97 (UA) [33], Global airline (GA), Facebook
combined (FC) [34], Ca netscience (CN) [33], Soc hamsterster (SH)
[33], ca CondMat (CC) [33] and email EU (EE) [33]. The UA network
is a small aviation network which is constructed based on the US
aviation network in 1997 (nodes and edges stand for airports and
routes, respectively). The GA network is obtained from OpenFlights
(https://openflights.org), in which airports are denoted by nodes and
airlines between airports are captured by the corresponding edges. As to

TABLE 1 Seven practical networks used for experimental analysis.

Networks n m < k> c r

UA 332 2126 12.8072 0.6252 −0.2079

CN 379 914 4.8232 0.7412 −0.0817

SH 2426 16630 13.7098 0.5375 0.0474

GA 3154 18592 11.7895 0.4914 −0.0170

FC 4039 88234 43.6910 0.6055 0.0636

CC 21363 91286 8.5461 0.6334 0.1340

EE 32430 54397 3.3547 0.1127 −0.3816

FIGURE 5
The effect of different values of α on network connectivity and
epidemic suppression. We show the spread range (Iprop) and the
number of connected components (CN), as a function of the faction of
removed edge (β) in GA network, where the numbers in the
legend represent the values of α. The error bars of all points are shown
in the top plot.
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FC, it consists of “circles” (or “friends lists”) from Facebook, the data is
collected from survey participants using this Facebook app (nodes stand
for Facebook users, if two users are friends then we need to add an edge
between them). CN and CC denote collaborative networks of
researchers (nodes stand for researchers, if two researchers have
collaboration on articles, then an edge need to be added between
them). As to SH, it indicates a social network (nodes stand for
people, if two people are friends, an edge exists between them). EE
is an email network (nodes stand for email users, if two users are
contacted by an email, then an edge exists between them). Table 1
illustrates the characteristics of the adopted networks, where n, m,
< k> , c and r stand for the number of nodes, the number of edges, the
average degree of all nodes, the average clustering coefficient, and the
assortativity, respectively.

To evaluate the performance, two indicators are adopted
(i.e., Iprop and CN). Firstly, we utilize the proportion of infectious
nodes in stable state (Iprop) to stand for the effect of epidemic
suppression. Here, the SIS model is considered; with the
provided network topology, we can simulate the spreading
phenomena accordingly. Certain number of iterations of the SIS
model will result in a steady number of infectious and susceptible
nodes in the network. Smaller Iprop indicates the method is more

effective in epidemic suppression. Secondly, as in Section 3, we also
consider network connectivity after removing edges. Same as
Figure 4, we consider the number of connected components in
the network (CN) to evaluate the performance of different methods.

A small CN indicates that the corresponding method is less
harmful to network connectivity. Like epidemic suppression,
network connectivity also possesses great practical significance.
For example, the aviation network is decomposed into many
connected components due to epidemic suppression, which leads
to a large number of routes that have been eliminated must be added
back to the aviation network if there is an emergency situation that
necessitates traveling from one connected component to another.
However, if there are few connected components in the network,
then only a few routes need to be added. To sum up, when we
remove the same number of edges, the smaller the values of Iprop and
CN, the better the performance of the method.

4.3 Performance Evaluation

To evaluate the performance of EBD, the corresponding results
are compared with those obtained by ADCM, random, WKP, ABC

FIGURE 6
Performance of our method EBD (α =0.5) and the others in epidemic suppression with experiments being conducted on six practical networks
(i.e., FC, GA, CN, SH, EE and CC). The vertical axis represents the proportion of infectious nodes (i.e., Iprop) in the stationary state and the horizontal axis
represents the proportion of edges being removed (i.e., β), the error bars are displayed at each point. Note that, μ =0.06 and γ =0.5 in GA, FC and SH,
μ =0.2 and γ =0.5 in CN and EE, μ =0.06 and γ =0.4 in CC.
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and LI. Firstly, we use the comparison methods and our method to
obtain the edge importance sequence, respectively. Secondly, we
remove edges according to these edge importance sequences
respectively. We remove the edges at a certain portion (i.e., 4%)
each time until all edges are removed and simulate 100 times using
SIS model. Finally, we calculate the average Iprop and standard
deviation of 100 simulation results after each removing. Note
that when we simulate the propagation process through the SIS
model, we randomly select only one node as the seed node initially,
and the number of iterative times is large enough for the system to

converge. The means of calculating CN is provided as follows: we
remove the top 0.04m edges until all edges are removed according to
edge importance sequence and calculate CN per time.

Based on the above preparation, we first study the effect of different
values of α on our method in the GA network, as the results are shown
in Figure 5. According to Figure 5, given the same number of edges are
removed, with the increase of α, Iprop decreases continuously, in contrast
to the constant increase of CN. In addition, the standard deviation
remains relatively stable and does not exhibit significant change. Thus,
these results confirm our assumption. With the increase α, the effect of
betweenness centrality increases gradually leading to the network
connectivity is more severely destroyed and enhancing epidemic
suppression effectiveness when a few edges are removed. Controlling
the spread of virus is relatively effective when α = 0.5, and network
connectivity is not significantly affected. When α is less than 0.5, even
though network connectivity protection is improved, epidemic
suppression is ineffective; when α is greater than 0.5, the effect of
epidemic suppression becomes better, but network connectivity cannot
be protected. As we normalize CB and CD before the fusion process, the
above phenomena can be explained as follows. Firstly, when α is greater
than 0.5, EBC dominates EBD. Furthermore, since EBC selects the most
central edge to remove, the network will be quickly decomposed into a
number of small connected components which leads to better

FIGURE 7
Performance comparison of our method EBD (α =0.5) and the others in preserving connectivity. Here, six networks (i.e., FC, GA, CN, SH, EE and CC)
are considered. The vertical axis represents the number of connected components (CN) in current network, and the horizontal axis represents β which
means the proportion edges being removed in the network.

TABLE 2 Average Iprop in different networks. The obtained numbers represent
the average value of ordinates of points on the same line in Figure 6.

Methods GA FC CN SH EE CC

EBD 0.038 0.037 0.025 0.071 0.091 0.050

ADCM 0.092 0.319 0.064 0.980 0.097 0.050

ABC 0.037 0.034 0.023 0.060 0.046 0.054

WKP 0.097 0.173 0.129 0.132 0.138 0.112

LI 0.089 0.311 0.064 0.098 0.112 0.049

random 0.110 0.297 0.118 0.126 0.133 0.085
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performance in epidemic suppression at a cost of sacrificing
connectivity protection. Secondly, when α is less than 0.5, ADCM
dominates EBD. As ADCM selects the edge with the largest degree
multiplication for removal, EBD with small α has an advantage of
connectivity protection at a cost of sacrificing epidemic suppression
when some edges are removed. Note that since increasing the epidemic
threshold is the starting point of ADCM, when α decreases, fewer edges
need to be removed to total epidemic control which means Iprop → 0.
Thus, we set α = 0.5 to achieve a trade-off between the two aspects.

In the following experiments, we set α = 0.5 in Eq. 7. In Figure 6,
Figure 7 and Table 2, EBD achieves better performance at epidemic
suppression and protection of network connectivity. According to
Figure 6 and Table 2, we can carefully make the following
conclusions. Firstly, the performance of EBD with α = 0.5 in
epidemic suppression is better than that of LI, WKP, ADCM and
Random, which proves the efficiency of our proposed method.
Secondly, the error bar of EBD falls within the acceptable range
(the maximum standard deviations of EBD in FC, GA, CN, SH, EE
and CC are 0.012, 0.015, 0.011, 0.025, 0.022 and 0.027, respectively)
which demonstrates the effectiveness of results. Finally, according to
Figure 7, when α = 0.5 in EBD, it has a good effect in protecting
network connectivity while the other methods with similar effects in
protecting connectivity, are much worse than EBD at epidemic
suppression. The authors of the LI method emphasize the
advantages of connectivity protection at the cost of losing
epidemic suppression. Our method has both the above advantages.

In addition to the practical networks, we also conduct
experiments on generated networks (i.e., BA and ER networks).
As shown in Figure 8, we find that the performance of our proposed
method in epidemic suppression seems to be similar as three
methods (i.e., ABC, ADCM and LI) which is much better than
the others. In the ER network, since the properties of all edges are
relatively comparable, the performance of these methods in
epidemic suppression are similar.

In the BA network, we design a sequence similarity verification
experiment to explore the potential power of the proposed method
in epidemic suppression. Furthermore, we adopt Jaccard index [35]
to reflect the correlations between edge ranking sequences derived
by different methods. The specific calculation steps of Jaccard index
are as follows. Firstly, the correlation between two sequences is
calculated as:

FIGURE 8
Performance comparison of our method EBD (α =0.5) and the other methods in epidemic suppression. We show the spread range (Iprop), as a
function of the faction of removed edge (β) in two generated networks (BA network and ER network). For BA network, the number of nodes equals to
5,000 and the corresponding average degree is 6; as to ER network, the number of nodes is 5,000 and the average degree is 12. For both networks, the
recovery probability γ is set to 0.5; the infectious probability μ is assigned to 0.2 and 0.06 for BA and ER networks, respectively.

FIGURE 9
The correlation heatmap for the four indices of edge importance
over BA network. Here, B, D, L and E represent ABC, ADCM, LI and EBD,
respectively.
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J a( ) � S1 a( ) ∩ S2 a( )
S1 a( ) ∪ S2 a( ), (8)

where a indicates a parameter (a ∈ [0, 1]), S1(a) and S2(a) represent
the sets formed by the first a × m elements of sequence S1 and
sequence S2, respectively. Then, we calculate the correlation for the
whole sequence:

J � 1
100

∑1
a�0.01

J a( ), (9)

where 100 indicates that we divide the sequence into 100 short
sequences of the same length, incrementally calculate the correlation
of the sequences, and eventually obtain the average. According to Eq.
8 and Eq. 9, we conduct some experiments. As shown in Figure 9, the
Jaccard indexes between our method and ABC, ADCM, and LI in
the BA network are all greater than 0.79, which reveals the edge
sequence obtained by our method is similar to those obtained by the
other methods. Therefore, the four methods can achieve good
performance in epidemic suppression.

5 Conclusion

In summary, we propose a method to rank edges according to
the degree of the connected nodes and betweenness centrality of the
edge. From the perspectives of epidemic suppression and
connectivity protection, we first consider using the product of the
degrees of the two nodes to increase epidemic threshold and protect
network connectivity. However, when some portion of edges are
removed, it has bad effect on epidemic suppression. Here, we
propose a new method (i.e., EBD) combined with EBC to
eliminate the bad effect. The experiments demonstrate that the
proposed approach achieves better results compared with the
other methods when some edges are removed. Furthermore, our
method can not only protect the connectivity of networks, but also
possess much better epidemic suppression effects. In the future, we
will study and expand our method in other spread models (e.g., SIR
and SEIR) or other types of networks (e.g., time-varying network
and double-layer network) to increase the universality of our
method.
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