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A unified theoretical framework is presented for the isomeric excitation of the
229Th nucleus via electronic processes. These processes include nuclear excitation
by electron transition (NEET), nuclear excitation by electron capture (NEEC), and
nuclear excitation by inelastic electron scattering (NEIES). Detailed calculation
results on the excitation rate and the excitation cross section are presented.
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1 Introduction

In 1976, Kroger and Reich proposed that 229Th has an isomeric state with energy below
100 eV (denoted as 229mTh) [1]. With the development of experimental techniques, the
energy of this isomeric state was estimated to be 1 ± 4 eV [2], 3.5 ± 1.0 eV [3], 7.6 ± 0.5 eV
[4], and recently 8.28 ± 0.17 eV [5]. The energy of the second excited state of 229Th is 29 keV.
The second lowest nuclear state is the isomeric state of 235U, which has an energy of 76 eV
[6–8]. Therefore, 229mTh is the only known nuclear excited state on the 1-eV order of
magnitude, and it has attracted much attention in recent years for its potential applications
in nuclear optical clocks [9–12], nuclear lasers [13], checking temporal variations of
fundamental constants [14–16], etc.

These potential applications make it desirable to prepare the isomeric state in a
controllable and efficient way. Currently, 229mTh can be obtained from α decay of 233U
or β decay of 229Ac [17]. The efficiency of the former decay is very low with the obtained
nuclei having a recoil energy of 84 keV, and the latter decay is subject to low yield of 229Ac.
Direct light excitation using vacuum ultraviolet light has been attempted by several groups
without success [18–21]. Possible reasons include inaccurate knowledge of the isomeric
energy, competing fluorescence signals from the electrons, competition with nonradiative
channels, etc. In 2019, Masuda et al. obtained this isomeric state experimentally by an
indirect light excitation approach [22]. They used narrowband 29 keV synchrotron
radiations to excite the 229Th nuclei from the ground state to the second excited state
which then decays preferably into the isomeric state [23]. Excitation processes via coupling
to electrons have also been extensively studied, for example, electronic bridge (EB) processes
[24–30], inelastic scattering of electrons [31, 32] or muons [33], and laser-driven electron
recollision [34–36].

In the current paper we consider nuclear excitation of 229Th by three different but related
electronic processes. They include nuclear excitation by electron transition (NEET) [37–41],
nuclear excitation by electron capture (NEEC) [42–50], and nuclear excitation by inelastic
electron scattering (NEIES) [31, 32, 51, 52]. Figure 1 shows an illustration of these three
processes: (a) NEET occurs when the electron transitions from a higher bound state to a
lower bound state and excites the nucleus simultaneously. It was first proposed in 1973 in
235U [37] and has been confirmed experimentally with 197Au [38, 40]. (b) NEEC occurs when
a free electron is captured by an ion and excites the nucleus with the released energy. It has
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been proposed and widely discussed for a long time, mostly with
93Mo. At present there are still discrepancies between theoretical
calculations and experimental results, and also between different
experiments [48–50]. (c) NEIES occurs when the electron
transitions from a higher continuum state to a lower continuum
state. It is a widely studied process in nuclear physics, almost all with
high-energy electrons [52–58]. Tkalya proposes to excite 229Th with
low-energy electrons on the order of 10 eV [31]. We have also
calculated and analyzed this process in depth in our previous
work [32].

The goal of the current work is twofold. One is to provide a
unified theoretical framework for the three electronic excitation
processes. They are usually studied separately, but they are in fact
related with differences only in the type of the initial or the final
electronic states. The other goal is to present the NEET, NEEC, and
NEIES results for 229mTh. Although the NEIES process has been
studied previously [31, 32], results of NEET or NEEC have not been
reported for 229Th in the literature, as far as we are aware of. Our
results presented here can be directly used for the excitation of 229Th
in complex environments, such as plasmas, beam collisions, etc.

2 Theoretical framework

2.1 Transition rate

The common point of NEET, NEEC, and NEIES is that the
electron transitions from a state with higher energy to a state with
lower energy, and the nucleus is excited simultaneously with the
released energy. No photons are emitted during these processes. The
system (consisting of a nucleus, an electron, and a quantized
radiation field) transitions from an initial state |i〉 (t = ti) to a

final state |f〉 (t = tf) under the effect of an interaction Hamiltonian
V. The time evolution operator of the system is given as

U tf, ti( ) ≡ Pe
1
iZ∫tf

ti
VI t( )dt[ ]

, (1)

where P is the chronological operator, and VI(t) is V in the
interaction picture,

VI t( ) � e
i
ZH0tVe−

i
ZH0t. (2)

Expand the time evolution operator and assume the following
three conditions: (a) |i〉 ≠ |f〉; (b) ti = 0, tf =∞; and (c) the initial and
final states have a total dissipation rate Γt, so the time evolution of
the wave function is multiplied by e−Γtt/2. After integrating over time,
the transition matrix element can be written as

Tfi � Ufi − Ifi � Vfi
1

Ef − Ei( ) + iΓt/2, (3)

where I is the unit operator. The transition rate can be given as the
transition probability divided by the lifetime τ = 1/Γt of the system

ωfi � 2π|Vfi|2Lt Ef − Ei( ), (4)

where Lt is a normalized Lorenzian function

Lt Ef − Ei( ) � Γt/2π
Ef − Ei( )2 + Γt2/4. (5)

Consider the on-shell condition of Ei = Ef, and if the dissipation
in the system or the subsequent decay process can be ignored,
then Γt approaches 0, and the Lorenzian reduces to the Dirac-δ
function

ωfi � 2π|Vfi|2δ Ef − Ei( ). (6)

FIGURE 1
Schematic illustration of NEET, NEEC and NEIES processes. NEET is associated with bound-bound electronic transitions, NEEC is associated with
free-bound transitions, and NEIES is associated with free-free transitions. The nucleus is excited from the ground state to the isomeric state by the energy
released from the electronic process.
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Given the interaction operator V and the initial and final
states of the system, the interaction matrix element Vfi can be
calculated. Then the transition rate can then be obtained with Eq.
4 or Eq. 6.

2.2 Initial and final states

The system under consideration consists of a nucleus, an
electron, and a quantized radiation field. The total Hamiltonian
can be written as

H � H0 + V � Hn +He +Hrad + V, (7)
whereHn is the Hamiltonian for the nucleus,He for the electron, and
Hrad for the radiation field. V is the interaction Hamiltonian. The
initial state |i〉 and the final state |f〉 are eigenstates of H0.

The state of the total system is written as the product of the states
of the nucleus |IM〉, of the electron |ϕ〉, and of the radiation field
with n optical quanta |n〉:

|i〉 � |IiMi〉⊗|ϕi〉⊗|0〉,|f〉 � |IfMf〉⊗|ϕf〉⊗|0〉. (8)

Here Ii,f andMi,f are the total angular momentum and the magnetic
quantum number of the initial or the final state of the nucleus.

For the nuclear part, the initial state is the nuclear ground state
with energy, Eg = 0 eV and spin parity I+g � 5/2+, and the final state is
the isomeric state with energy Eis = 8.28 eV and spin parity
I+is � 3/2+. For the radiation-field part, both the initial and the
final state is |0〉 (viz. the vacuum state) because the processes
have no absorption and emission of real photons. Exchanging of
virtual photons happens between the electron and the nucleus in
intermediate states.

The electronic wave functions are eigenstates of the time-
independent Dirac equation

−icα · ∇ + βc2 + VTh r( )[ ]|ϕ〉 � E|ϕ〉, (9)
where VTh(r) = Vnu(r) + Vel(r) is the potential energy felt by the
electron, which is provided by the 229Th nucleus and the atomic
electron cloud. The potential energies have the form

Vnu r( ) � −∫ ρnu r′( )
|r − r′| dτ′,

Vel r( ) � −∫ ρel r′( )
|r − r′| dτ′,

ρnu/el is the charge density of the nucleus/electron shell.
For the NEET process, |ϕi〉 and |ϕf〉 are both Dirac bound states

with the form

|ϕ〉 � |nηm〉 � gnη r( )Ωηm r̂( )
−ifnη r( )Ω−ηm r̂( )( ), (10)

where gnη(r) and fnη(r) are radial wave functions, n is the principal
quantum number, η is a notation determined by the total angular
momentum j and the orbital angular momentum l, and m is the
magnetic quantum number of j. η is given by

η � l − j( ) 2j + 1( ). (11)

For η < 0, l should be changed to l′ = 2j − l.Ωηm are spherical spinors

Ωηm r̂( ) ≡ Ωjlm r̂( ) � ∑
]�±1/2

〈l, 1/2, j|m − ], ], m〉Yl,m−] r̂( )χ], (12)

where χ] is

χ1/2 � 1
0

( ) and χ−1/2 � 0
1

( ). (13)

For the NEIES process, |ϕi〉 and |ϕf〉 are both Dirac scattering
states, which can be expanded into partial wave series [59, 60]:

|ϕ〉 � |k]〉 ±( )

� 4π
k

�������
E +mec2

2E

√ ∑
ηm

Ω†
ηm k̂( )χ][ ]e±idEη gEη r( )Ωηm r̂( )

−ifEη r( )Ω−ηm r̂( )( ).
(14)

The initial state (before scattering) takes the plus sign and the final
state (after scattering) takes the minus sign: |ϕi〉 = |ki]i〉(+) and |ϕf〉 =
|kf]f〉(−). k is the wave vector. dEη is the total phase shift.

For the NEEC process, |ϕi〉 is a Dirac scattering state and |ϕf〉 is a
Dirac bound state.

2.3 The interaction matrix element

The interaction Hamiltonian V is given by

V � −1
c
∫ jn r( ) + je r( )[ ] · A r( )dτ + ∫ ρn r( )ρe r′( )

|r − r′| dτdτ′, (15)

where the first integral is the couplings between the nuclear current
density jn and the electron current density je with the vector
potential A of the radiation field. The second integral is the
Coulomb interaction between the nucleus and the electron, with
ρn and ρe being the charge density operator of the nucleus and of the
electron, respectively. The vector potential of the radiation field can
be expanded in multipole components as

A r( ) � ∑
λμq

a Eλ, μ, q( )A Eλ, μ, q( )[
+ a Mλ, μ, q( )A Mλ, μ, q( ) + h.c.].

(16)

In the above expression, λ, μ, q are the angular momentum quantum
number, magnetic quantum number, and wave number,
respectively, and

A Eλ, μ, q( ) � ��������
8πc2

λ λ + 1( )R

√
∇ × L jλ qr( )Yλμ θ,ϕ( )[ ],

A Mλ, μ, q( ) � i

���������
8πc2q2

λ λ + 1( )R

√
L jλ qr( )Yλμ θ,ϕ( )[ ]. (17)

Here R is the radius of the spherical volume under consideration, L is
the angular momentum operator, jλ(qr) is a spherical Bessel
function, and Yλμ is the spherical harmonics. The expansion
coefficient a and its conjugate are the operators for photon
annihilation and creation. The matrix elements of these
operators are

〈n|a|n + 1〉 � 〈n + 1|a†|n〉 �
�����
n + 1
2qc

√
(18)

where |n〉 represents a number state with n photons.

Frontiers in Physics frontiersin.org03

Zhang and Wang 10.3389/fphy.2023.1166566

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1166566


Using Eq. 8 and Eqs 15–18, the transition matrix element Vfi can
be obtained [61]

Vfi � ∑
λμ

4π
2λ + 1

−1( )μ 〈ϕf|N Eλ, μ( )|ϕi〉〈IfMf|M Eλ,−μ( )|IiMi〉{
−〈ϕf|N Mλ, μ( )|ϕi〉〈IfMf|M Mλ,−μ( )|IiMi〉},

(19)
where M(T λ, μ) and N (T λ, μ) are the electric (T � E) or
magnetic (T � M) multipole transition operators of the nucleus
and of the electron, respectively:

M Eλ, μ( ) � 2λ + 1( )‼
κλ+1c λ + 1( )∫ jn · ∇ × L jλ κr( )Yλμ θ,ϕ( )[ ]dτ,

(20)
M Mλ, μ( ) � −i 2λ + 1( )‼

κλc λ + 1( ) ∫ jn · L jλ κr( )Yλμ θ,ϕ( )[ ]dτ, (21)

N Eλ, μ( ) � iκλ

cλ 2λ − 1( )‼∫ je · ∇ × L h 1( )
λ κr( )Yλμ θ, ϕ( )[ ]dτ,

(22)
N Mλ, μ( ) � κλ+1

cλ 2λ − 1( )‼∫ je · L h 1( )
λ κr( )Yλμ θ, ϕ( )[ ]dτ. (23)

In the above formulas κ = ΔE/c with ΔE = 8.28 eV being the energy
of the isomeric state, and h(1)λ (κr) is the spherical Hankel function of
the first kind. For κr ≪ 1 the asymptotic form h(1)λ (κr) ≈ −
i(2λ − 1)!!/(κr)λ+1 may be used [62].

2.4 Nuclear excitation rate and cross section

2.4.1 NEET rate
For NEET, the initial and final states of the electron may have

spontaneous radiation, and the isomeric state of the nucleus has an
internal conversion rate and a radiation decay rate. Thus, Γt in Eq. 5
will be ΓNEET = Γi + Γf + Γn, where Γi/f is the spontaneous emission
rate of electronic state, Γn = ΓIC + Γγ is the natural width of the
isomeric state, with ΓIC being the internal conversion rate and Γγ
being the radiation decay rate.

Introduce reduced nuclear transition probabilities

B T λ; Ii → If( ) � 1
2Ii + 1

∑
MfMiμ

|〈IfMf|M T λ, μ( )|IiMi〉|2.

(24)
With Eqs 10, 19, averaging over initial states and summing over final
states, the modulus square of the matrix element in Eq. 4 becomes

|Vfi|2 � 4π∑
T λ

B T λ; Ii → If( ) κ2λ+2

2λ + 1( )‼2 C
jf1/2

ji1/2λ0( )2

|MT λ
fi |2[ ],

(25)
where C

jf1/2
ji1/2λ0

is a Clebsch-Gordan coefficient with the relation

C
jf1/2

ji1/2λ0( )2

� 2li + 1( ) 2lf + 1( )
× 2jf + 1( ) li λ lf

0 0 0
( )2

li λ lf
jf 1/2 ji

{ }2

, (26)

and MT λ
fi are radial matrix elements given by

MEλ
fi � ∫∞

0
h 1( )
λ κr( ) gi r( )gf r( ) + fi r( )ff r( )[ ]r2dr − ∫∞

0
h 1( )
λ−1 κr( )

× ηi − ηf + λ( )
λ

gf r( )fi r( ) + ηi − ηf − λ( )
λ

ff r( )gi r( )⎡⎢⎣ ⎤⎥⎦r2dr,
MMλ

fi � ηi + ηf
λ

∫∞

0
h 1( )
λ κr( ) gi r( )ff r( ) + gf r( )fi r( )[ ]r2dr.

(27)
For Mλ type transition, one needs to change li → li′ in Eq. 26. For
κ ≪ 1, the h(1)λ−1 term in Eq. 27 can be neglected, since
h(1)λ−1(κr)≪ h(1)λ (κr) for low energy transitions.

With Eq. 4 and Eq. 25, we obtain the transition rate of NEET

ωNEET � 4π∑
T λ

B T λ; Ii → If( ) κ2λ+2

2λ + 1( )‼2 C
jf1/2

ji1/2λ0( )2

|MT λ
fi |2[ ]

× ΓNEET
Ef − Ei( )2 + ΓNEET2/4.

(28)
Here, Ei � Ei, Ef � Ef + Eis. In case of resonant condition, Ei �
Ef + 8.28 eV. This applies for NEET, NEEC and NEIES.

2.4.2 NEEC cross section
The excitation rate for the NEEC process can also be derived

from Eq. 4, except that Γt will be different, since the initial state is
now a free state. If the electron is captured into the ionic ground
state, then ΓNEEC = Γn. Otherwise ΓNEEC = Γf + Γn. With Eqs. 10, 14,
19, 24, the modulus square of the interaction matrix element
becomes

|Vfi|2 � 4π2E i +mec2

E ip2
i

∑
T λ

B T λ; Ii → If( ) κ2λ+2

2λ + 1( )‼2

×∑
ηi

2ji + 1( ) C
jf1/2

ji1/2λ0( )2

|MT λ
fi |2.

(29)

The excitation cross section can be defined through ω = σj, with j
being the flux of the initial free state

σNEEC E i( ) � 4π2

c2
E i +mec

2

p3
i

∑
T λ

[B T λ; Ii → If( ) κ2λ+2

2λ + 1( )‼2

× ∑
ηi

2ji + 1( ) C
jf1/2

ji1/2λ0( )2

|MT λ
fi |2

ΓNEEC
Ei − Ef( )2 + Γ2NEEC/4].

(30)
ΓNEEC is usually very small so the Lorenzian can be approximated as
the Dirac-δ function, which has been referred as the isolated
resonance approximation [46]. Generally speaking, if the energy
of the incoming electron has a certain distribution, it is often
necessary to integrate over the energy of the free electron. The
so-called resonant strength is defined to simplify the calculation

S � ∫ dE i σNEEC Ei( ). (31)

2.4.3 NEIES cross section
For NEIES, Fermi’s Golden Rule can be obtained by summing

over the final energy states of the electron with Eq. 6
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dσ

dΩ � 2π
vi

ρ Ef( )|Vfi|2, (32)

where Ω is the solid angle of the outgoing direction, vi � pic2/Ei is
the asymptotic incoming speed, ρ(Ef) � pfEf/(8π3c2) is the

density of the final states, Ei,f �
�����������
p2
i,fc

2 +m2
ec

4
√

is the energy of
the initial or the final state.

With Eq. 14 and 19 and Eq. 24, averaging over initial states and
summing over final states, the modulus square of the interaction
matrix element becomes

|Vfi|2 � 32π4Ef +mec
2

Efp2
f

Ei +mec
2

E ip2
i

× ∑
T λ

B T λ, Ii → If( ) κ2λ+2

2λ+1( )‼2 ∑
ηi ,ηf

2ji +1( ) C
jf1/2

ji1/2λ0( )2

|MT λ
fi |2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.
(33)

And the total NEIES cross section is

σNEIES Ei( ) � 8π2

c4
pf

pi

Ef +mec
2

p2
f

E i +mec
2

p2
i

× ∑
T λ

B T λ,Ii → If( ) κ2λ+2

2λ+1( )‼2 ∑
ηi ,ηf

2ji +1( ) C
jf1/2

ji1/2λ0( )2

|MT λ
fi |2⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
(34)

3 Numerical results

In this section, we present calculation results of 229mTh excited via
NEET, NEEC, and NEIES. For the 229Th nucleus, the spin parity of the
ground state is 5/2+ and that of the isomeric state is 3/2+, so the
transition type is magnetic dipole (M1) or electronic quadrupole (E2).
Relevant information about the nuclear transition matrix elements is
packed in the reduced nuclear transition probabilities. There are some
degree of uncertainties (roughly by a factor of two) with them, because
they are obtained from model calculations or experimental analyses
with approximations, for example, calculations in the framework of a
quasiparticle-phonon model with inclusion of Coriolis couplings [63,
64], or experimental data analyses [65–68] exploiting Alaga rules [69,
70]. Ab initio calculations of B (E2/M1) for a nucleus like 229Th are out
of reach in the foreseeable future, and there is no conclusive means to
judge which set of values is better than other sets. In this paper, we use
the values suggested by Minkov and Pálffy in 2017 [71]

B E2, is → g( ) � 27 W.u.
B M1, is → g( ) � 0.0076 W.u.

(35)

where W.u. stands for Weisskopf units. Note that the direction of
nuclear transition has the relation

B E2/M1; g → is( )
B E2/M1; is → g( ) � 2Iis + 1

2Ig + 1
� 2
3
. (36)

According to Eq. 28 and 30 and Eq. 34, the calculation of the
transition rate or the cross section eventually reduces to the calculation
of electron radial wave functions in Eq. 27. In this paper, all calculations
involving the electron radial wave functions, including the spontaneous
emission rates, are performed using the code RADIAL [72] with the
Dirac-Hartree-Fock-Slater method [73, 74] and a Fermi charge
distribution for the nucleus.

3.1 NEET rate

NEET occurs when the energy difference between two
electronic bound states matches the nuclear isomeric energy
ΔE = Eis − Eg = 8.28 eV. The finite widths of the initial and final
states allow transitions to occur when there is a little mismatch of
energy. The bigger the energy mismatch, the smaller the excitation
rate. For 229mTh, the half-life is 7 ± 1 μs (ΓIC ≈ 10–11 eV) via internal
conversion [75] and about 1880 s (Γγ ≈ 10–19 eV) via γ decay [76],
while the half-life of the electronic state is typically on the order of
1–10 ns (Γi/f ≈ 10–8 − 10–7 eV). Therefore, usually Γi/f ≫ΓIC ≫Γγ.

Because ΓNEET ≈ Γi + Γf is on the order of 10–8 eV, the width of
the Lorenzian is very narrow. To ensure a nonnegligible excitation
rate, we try to find ϕi − ϕf pairs that satisfy: (i) the energy constraint
|Ei − Ef − 8.28|< 0.1 eV, and (ii) the angular-momentum constraint
that this channel can excite the nucleus through M1 or E2
transitions.

The first ionization energy of neutral 229Th is 6.3 eV, so NEET
can not occur in neutral 229Th. The energy levels of 229Th with
different ionic states are also different. As listed in Table 1, for
229Th1+, a single transition 7p3/2 → 5f5/2 is found satisfying both
constraints (|Ei − Ef − 8.28| = 0.03 eV, M1 and E2 transitions).
Using Eq. 25

|Vfi|2 7p3/2 → 5f5/2( ) � 1.53 × 10−20 a.u. (37)
The initial electronic state 7p3/2 can decay via spontaneous emission,
the rate of which is calculated to be Γi = 3.76 × 10−9 a. u.,
corresponding to a lifetime of 6.4 ns. The final state 5f5/2 does
not have a spontaneous emission channel. For the nuclear part, the
IC channel is closed because the energy of the final electronic state
5f5/2 is below −8.28 eV. The γ decay rate Γγ (= 1.28 × 10−20 a. u.) is
negligible due to the very long lifetime. Therefore for this NEET
channel ΓNEET ≈ Γi = 3.76 × 10−9 a. u., and the rate of NEET is
calculated to be

ω 7p3/2 → 5f5/2( ) � 2.02 × 10−6 s−1. (38)
This value is the rate of NEET for a single 229Th+ ion assuming that
the ion is prepared in the 7p3/2 initial state.

Similar calculations can be performed for the 229Th2+ ion and the
229Th3+ ion. For the 229Th2+ ion, four NEET channels are found
satisfying the above two constraints, as listed in Table 2. For the
229Th3+ ion, more than 20 NEET channels are found satisfying the
above two constraints. However, most of them contribute little.
Table 3 lists the seven channels with the largest NEET rate.

3.2 NEEC cross section

The NEEC cross sections are calculated with Eq. 30. Figure 2A
presents the largest 10 NEEC channels of 229Th1+,2+,3+ ions. The peak
values of these dominant channels are on the order of 103 to 109 b.
The highest one shown by the inset corresponds to electron capture
into the ground state (7s1/2) of the 229Th1+ ion, which has no
spontaneous emission channel. In this case, ΓNEEC = ΓIC = 8 ×
10−11 eV. It should be pointed out that each line in Figure 2A is
actually a Lorenzian with a relatively narrow width, as illustrated by
the inset. The peak represents the resonant condition Ei − Ef � 8.28
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eV. From Table 1, Table 2, and Table 3 one can see the spontaneous
emission rate usually being on the order of 10–8 eV. Note that the
importance of a NEEC channel is not only determined by the peak
height, but also determined by the peak width, or the rate ΓNEEC.
After integrating over energy, we have the resonant strength S as
shown in Figure 2B. The resonant strengths of these dominant

channels are on the order of 10–4 to 1 b·eV. The cross section and
the resonant strength help us to identify the dominant NEEC
channels.

In real calculations, it is often found that the S values of some
channels are several orders of magnitude larger than other channels.
Figure 3A shows the resonant strengths of different channels

TABLE 1 NEET channels in 229Th1+.

ϕi ϕf Type |E i − Ef − 8.28| (eV) |Vfi|2 (a.u.) ΓNEET (×10–8 a.u.) ωNEET (s−1)

7p3/2 5f5/2 M1, E2 0.03 1.53 × 10−20 0.376 2.02 × 10−6

TABLE 2 NEET channels in 229Th2+.

ϕi ϕf Type |E i − Ef − 8.28| (eV) |Vfi|2 (a.u.) ΓNEET (×10–8 a.u.) ωNEET (s−1)

9p3/2 7p3/2 M1, E2 0.025 6.78 × 10−16 2.52 0.87

15d3/2 8s1/2 M1, E2 0.012 4.14 × 10−19 1.49 1.3 × 10−3

15d5/2 8s1/2 E2 0.0076 6.92 × 10−22 1.47 5.42 × 10−6

16s1/2 8s1/2 M1 0.032 3.39 × 10−15 1.54 1.57

TABLE 3 NEET channels in 229Th3+.

ϕi ϕf Type |E i − Ef − 8.28| (eV) |Vfi|2 (a.u.) ΓNEET (×10–8 a.u.) ωNEET (s−1)

12p3/2 8p3/2 M1, E2 0.055 1.70 × 10−16 2.11 0.037

24s1/2 9s1/2 M1 0.037 8.15 × 10−16 3.28 0.604

25s1/2 9s1/2 M1 0.014 7.04 × 10−16 3.27 0.075

24d3/2 9s1/2 M1, E2 0.016 8.95 × 10−20 3.24 3.39 × 10−6

26s1/2 8d3/2 M1, E2 0.006 1.59 × 10−19 2.00 2.68 × 10−3

25d3/2 8d3/2 M1, E2 0.004 4.17 × 10−19 1.98 1.91 × 10−4

25d5/2 8d3/2 M1, E2 0.003 6.77 × 10−20 1.95 3.69 × 10−5

FIGURE 2
(A) Isomeric excitation cross sections of 229Th1+,2+,3+ ions through NEEC. For each ionic state, the largest 10 NEEC channels are shown. The inset
zooms in a small energy range around 2.38 eV. (B) The corresponding resonant strengths S.
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captured into electronic states with different principal quantum
numbers and orbital angular momenta. When the principal
quantum number increases, the resonant strength decreases. And
when the orbital angular momentum increases, the resonant
strength decreases exponentially. The reason is that the radial
matrix element in Eqs 27 and 31 decreases rapidly with the
increase of n and l. Figure 3B shows the radial matrix element
Mfi as a function of the integral upper limit r. When the final state is
7s1/2, Mfi is lager than that of 10s1/2 and 7d3/2, and the value of Mfi

converges where r is very small (usually smaller than 0.1 a. u.). This
means that the wave function close to the nucleus is dominant.
These phenomena are caused by the change of the radial wave
function with n and l. For the final state of electron, the larger the n
and l, the farther away the electron from the nucleus, the smaller the
amplitude of the wave function near the nucleus. For the initial state
of electron, partial-wave components with small angular momenta
are more appreciably distorted [32, 36]. Therefore, the amplitudes of

the partial wave with large angular momenta are much smaller than
that with l = 0.

3.3 NEIES cross section

The NEIES process has been discussed in detail previously, for
229Th [31, 32] and 235U [51]. Here we just mention it briefly.

Figure 4 displays the NEIES cross sections for different ion-core
potentials. Three cases have been shown, namely, the neutral 229Th
atom, the bare nucleus 229Th90+, and without the ion-core potential
[i.e., V(r) � 0 in Eq. 9]. When the ion-core potential is taken into
account, the wave function in Eq. 14 is a distorted wave.When the ion-
core potential is ignored, the wave function in Eq. 14 is a plane wave. It
can be seen from Figure 4 that for the distorted wave, the cross sections
are on the order of 10–3 to 10–2 b for electron energies around 10 eV.
Then the cross section decreases gradually with the increase of the
electron energy. Besides, there is no significant difference between the
neutral 229Th and the 229Th90+ (except around 10 eV), telling that the
cross section has a very weak ionic-state dependency. For the plane
wave, however, the cross section is smaller by several orders of
magnitude. This is due to the failure for the plane wave to describe
the behavior of the electron wave function near the nucleus [32].

3.4 Isomer excitation in plasmas

In this section, we consider isomer excitation via the above-
explained electronic processes in plasmas, which are assumed to be
in thermal equilibrium. The distribution of ionic states can be
estimated using the Saha equation [77, 78]

nji+1
nki

� 2gj

gk

2πmekBT( )3/2
2πZ( )3ne e−

ϵjk
kBT, (39)

where nki designates the number density of the ions with charge i and
in the k-th electronic state, and ne is the number density of free
electrons. gk is the degeneracy of the k state. kB is the Boltzmann

FIGURE 3
(A) NEEC resonant strengths S for captures into ns, np, nd electronic states of the 229Th1+ ion as a function of the free-electron energy. (B) Radial
matrix element Mfi of partial wave transition channels when the free electron is captured into different bound states.

FIGURE 4
NEIES cross section of 229Th nucleus for different ion-core
potentials, as labeled.
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constant, T is the plasma temperature. ϵjk is the energy required to go
from state j to k.

The rate of exciting a single 229Th nucleus in the plasma is

W � WNEET +WNEEC +WNEIES

� ∑
ij

Pj
iω

ij
NEET + ne ∫ dEe f Ee( )ve ∑

i

Pi σ
i
NEEC Ee( ) + σ iNEIES Ee( )[ ],

(40)
where Pj

i is the probability of an atom in ionic state i and electronic
state j, calculated by Eq. 39. ωij

NEET is the corresponding NEET rate.
Pi � ∑jP

j
i is the total probability of ionic state i. f(Ee) is the

normalized distribution function of the electron kinetic energy.
Under thermal equilibrium, f(Ee) follows the Maxwell-Boltzmann
distribution, as shown in Figure 5. vE is the velocity of the free electron.

Example results are shown in Table 4 for two different
temperatures (5 eV, 20 eV) and two different electron densities
(1016 cm−3, 1020 cm−3). Under these conditions, WNEET is on the
order of 10–5 − 10–4 s−1, significantly lower thanWNEEC andWNEIES.
This is because in plasmas, the probability of the electron being in
the required ϕi is low, i.e., P

j
i is small. Meanwhile, WNEET does not

dependent appreciably on plasma parameters.
In contrast, NEEC and NEIES processes depend more

sensitively on the plasma parameters because their initial states
are free states. Whether NEEC or NEIES dominates depends on the
temperature. For example, at kBT = 5 eV, WNEEC >WNEIES but at

kBT = 20 eV, WNEEC <WNEIES. This is because at different
temperatures the kinetic energy distribution favors different
processes [79]. From Figure 5 one can see that the lower
temperature has more proportion in the NEEC zone while the
higher temperature has more proportion in the NEIES zone.

4 Further remarks

(a) Note that the NEET rates given in Sec 3.1 are based on the
assumption that the ion has been prepared in the desired excited
state ϕi. However, one needs to keep in mind that it may not be
an easy task to prepare a specific ionic excited state. As shown in
Sec 3.4, in plasma environments NEET is usually less efficient
than NEEC or NEIES. An experimental environment that can
more precisely control the ion excited state may favor the NEET
process, such as an electron beam ion trap [80].

One should also bear in mind that the energy of the 229Th isomer
is only known with an uncertainty of 0.17 eV, which may result
in an underestimation or overestimation of the calculated NEET
rate. This uncertainty may lead to an uncertainty of about
1–4 orders of magnitude in the NEET rate. However, without
a more precise determination of the isomeric energy, little can be
done further, except for more precise calculations of the
electronic structure and listing out possible NEET channels
based on the current value of the isomeric energy.

(b) The NEEC process mostly occurs with free-electron energies
within the range (0, Eis) because the final state of the electron
is a bound state with a negative energy. Rare exceptions
might exist if the final state is a bound state within the
continuum, for example, a doubly excited state. These
exceptions are beyond the scope of the current study, but
might worth an investigation.

(c) The NEIES process can be realized more straightforwardly by
using an external electron beam with electron energies tuned to
values corresponding to the highest excitation cross sections,
i.e., around 10 eV from Figure 4.

(d) Parallel to these nuclear-excitation processes are a few atomic
processes, including electron-impact ionization, electron-
impact atomic excitation, and radiative recombination. The
cross section of electron-impact ionization is usually on the
order of 10–16 cm2 [81]. The cross section of electron-impact
atomic excitation is usually on the order of 10–19 cm2 [81]. And
the cross section of radiative recombination is usually between
10–18 to 10–23 cm2 [82]. They are at least several orders of
magnitude stronger than the nuclear excitation processes and

FIGURE 5
The kinetic energy distribution of the electrons for kBT= 5 eV and
20 eV. The gray area (Ee < 8.3 eV) indicates the NEEC zone, and the
white area (Ee > 8.3 eV) indicates the NEIES zone.

TABLE 4 Rate of exciting a single 229Th nucleus via NEET, NEEC, and NEIES in plasma conditions.

kBT (eV) ne (cm−3) WNEET (s−1) WNEEC (s−1) WNEIES (s−1) W (s−1)

5 1016 9.20 × 10−4 0.013 0.003 0.016

5 1020 9.76 × 10−4 122.29 30.42 152.7

20 1016 1.17 × 10−5 0.002 0.005 0.007

20 1020 1.46 × 10−4 19.76 52.28 72.03
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little interference is expected between the atomic processes and
the nuclear-excitation processes [83].

5 Conclusion

In this paper, we consider nuclear excitation of 229Th from the ground
state to the low-lying isomeric state via electronic processes including
NEET,NEEC andNEIES.We present a unified theoretical framework for
the three processes with formulas for the excitation rate and the excitation
cross section. These three processes are usually discussed separately for
different nuclei, and we believe that a unified theoretical framework is
helpful and useful for the general reader in this community. We
emphasize that this is the first time the NEET and NEEC processes of
229Th are investigated, although the accuracy of theNEET rates are limited
by the current uncertainty in the isomeric energy. Detailed numerical
results are presented which can be used directly in future studies.
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