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Vital nodes identification is the problem of identifying themost significant nodes in
complex networks, which is crucial in understanding the property of the networks
and has applications in various fields such as pandemic controlling and energy
saving. Traditional methods mainly focus on some types of centrality indices,
which have restricted application cases. To improve the flexibility of the process
and enable simultaneous multiple nodes mining, a deep learning-based vital
nodes identification algorithm is proposed in this study, where we train the
influence score of each node by using a set of nodes to approximate the rest
of the network via the graph convolutional network. Experiments are conducted
with generated data to justify the effectiveness of the proposed algorithm. The
experimental results show that the proposed method outperforms the traditional
ways in adaptability and accuracy to recover the dynamical process of networked
system under different classes of network structure.
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1 Introduction

The last decade has witnessed great advances in complex networks from diverse branches
of science. In complex networks, elements like nodes and edges have explicit functions,
which arouses increasing interest among researchers in the last decade. A typical problem in
this field is known as vital nodes identification, which uncovers the properties of nodes that
contain the most significant information in the network. As the nodes in the network have
different numbers of connections, distances from each other, their abilities in affecting other
nodes and the whole network differ to a large extent. Among all the nodes in a network, there
exist some nodes containing relatively more information about the network, thus reaching
the best recovery of the network when some data are missing, which we call vital nodes. Due
to the nice properties of vital nodes, this problem has practical applications in various
domains. Firstly, vital nodes identification helps in identifying critical locations in
transportation networks such as airports, train stations, and bus terminals, improving
the overall resilience of the network. Secondly, it can also identify critical components of
power grids, such as transformers and substations, which are important for maintaining the
stability and reliability of the grid. Thirdly, vital nodes identification does help in identifying
influential individuals in social networks, such as key opinion leaders and social hubs.
Understanding the role of these individuals can help in designing effective marketing
campaigns and social interventions. In addition, by identifying vital nodes, such as
individuals or locations that are likely to play a significant role in the transmission of
infectious diseases, effective strategies for disease control and prevention can be designed.
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However, the method to identify these vital nodes is not
trivial due to the diverse criteria for quantifying vital nodes.
Therefore, it is impossible to find a universal indicator that best
defines the significance of a node. Moreover, most known
methods only deal with individual vital nodes, rather than a
set of nodes, which lack real-world applications. Therefore,
identifying a set of influential nodes is a significant yet
challenging problem.

The traditional approaches mostly identify the vital nodes by
some defined centrality indices. Up to now, many classical
indices have been proposed which can be mainly separated
into two categories, structural centralities including degree
centrality, LocalRank [1], K-shell [2], eccentricity [3],
closeness centrality [4] betweenness centrality [5], and
iterative refinement centralities including eigenvector
centrality [6], PageRank [7], etc. However, centrality is only
capable of identifying one node at a time, which lacks
practical application. To enable multiple nodes identification
simultaneously, we found the solutions to influence
maximization problems (IMP) can be applied to our problem.
Solutions to IMP identify a set of vital nodes subject to the global
maximal influence of the nodes on the whole network, however,
these methods also suffer from time complexity and high
computational costs. To improve the generality and simplify
the process, along with the current prosperity of machine
learning, algorithms based on machine learning were
proposed. Recently, a machine learning-based approach was
invented [8], which shows improved adaptability to various
settings and dynamics compared to the previous methods.
However, the approximation ability of support vector
machines (SVM) involved in it is limited, and it does not
specifically deal with graph data.

Inspired by the learning-based method and the better ability
of graph convolutional networks (GCN) to deal with graph data,
we proposed a deep learning-based, data-driven approach. Deep
learning-based methods are rarely applied in vital nodes
identification before. The mainstream approaches to the
problem are mainly composed of centrality-based methods or
influence maximization algorithms. However, a deep learning-
based method does provide a powerful and flexible approach to
this problem, with potential advantages in accuracy, scalability,
adaptability. Firstly, a deep learning-based method leverages
complex nonlinear relationships in the network data to
identify vital nodes, with greater accuracy than traditional
methods. Secondly, a deep learning-based method can handle
large-scale complex networks with millions of nodes and edges,
which would be challenging or impossible for other methods.
Also, a deep learning-based method can adapt to changes in the
network structure over time, making them more suitable for
dynamic networks. In our model, the score of each node that
reflects its importance is to be learned, which implements the
encoder. During each update, we use the selected temporary vital
nodes to restore the original network by GCN, which serves as the
decoder. The training consists of two main parts: top-k
transformation and data restoration. In the top-k
transformation part, we apply a differentiable top-k algorithm
[9] to select the most significant nodes of a specified number,
which supports the backpropagation.

2 Related work

In this section, we present some related studies in vital nodes
identification from the literature. We first review the classical
algorithms based on centralities that identify a single node at a
time. On the basis of that, to enable the identification of multiple
vital nodes at a time, we review the solutions to influence
maximization problems (IMP). To improve the generality for
various conditions and cut down the computational cost, an
algorithm based on machine learning was introduced, which
inspired the invention of our method.

2.1 Centrality-based algorithms

The benchmark centralities can be categorized into two types,
structural centralities and iterative refinement centralities [10].

2.1.1 Structural centralities
Structural centralities are the most fundamental indices which

utilize the structural information without considering any
dynamical processes. Because the importance of a node implies
its ability to impact the behaviors of its neighbors, the most direct
algorithm is to count the number of neighbors as the index of
significance, which is called degree centrality. Degree centrality
performs well due to its simplicity and low computational
complexity. However, the degree centrality sometimes lacks
accuracy because of the limited information. Therefore, Chen
et al. [1]presents an improved algorithm, LocalRank, which takes
in the information of the fourth-order neighbors of each node. The
LocalRank algorithm comes in a reduced complexity than degree
centrality but is limited to certain circumstances. Moreover, Kitsak
et al. [2] argued that the location of a node rather than its neighbors
is more significant to its influence, thus proposing coreness obtained
by K-shell decomposition to be a more accurate centrality.

The above three indices are neighborhood-based centralities,
however, information dissemination should also be considered in
the identification of vital nodes. Since a node that potentially spreads
the information faster and further is more vital, the distances
between a vital node and its neighbors are expected to be
shorter, resulting in a better path of propagation. Hage et al. [3]
proposed a path-based centrality named Eccentricity centrality
(EC). The eccentricity of a node vi is defined as the maximal
distance of all the shortest paths to other nodes. However,
eccentricity centrality is quite sensitive to unusual paths. Then,
closeness centrality was proposed to address this problem. It is
defined as the inverse of the average distance from node vi to other
nodes, thus summarizing the properties of all the distances.
However, when it comes to dynamic large-scale networks,
methods based on closeness centrality tend to be time-consuming
and have high computational complexity. Salavati et al. [11]
proposed an improved closeness centrality which mainly
considers the local structure of nodes. In this algorithm, a set of
the most influential nodes for each community are selected, with and
without considering the interconnection between communities,
respectively. Afterward, the final vital nodes are obtained among
the candidates by sorting and ranking according to closeness
centrality. To reach a more comprehensive state, the potential
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power of a node to control the information flow should also be
counted, that is how betweenness centrality was proposed. The
betweenness centrality of a node i is the summation of the
proportion of the number of paths that pass through node i
among all the shortest paths between any other two nodes in the
network.

2.1.2 Iterative refinement centralities
To better study the structural properties, iterative refinement

centralities were proposed which utilize the dynamical processes and
iterative methods along with the structural information. They have
improved performance by considering the mutual enhancement
effect between a node and its neighbors, the most representative
examples among which are eigenvector centrality and PageRank.
The eigenvector centrality of a node i is in relation to the summation
of the eigenvector centralities of all connected nodes, which takes the
influence of neighbors into consideration. Moreover, the index can
be applied to more complex graphs as well. Tudisco et al. [12]
performed a vital nodes mining operation based on eigenvalue
centrality and showed that the approach can also be extended at
little cost to the general hypergraphs. As a variant of eigenvector
centrality mentioned above, PageRank has famous applications for
website ranking. PageRank conducts random walking on the
network and calculates PR values of nodes till they converge.
Inspired by this, Liu et al. [13]proposed an improved version
called Edge-Centrality-Preferential Ranking (ECP-Rank), which
considered the tendentiousness of the random walker in the real
world. In this method, the possibility of a random walker’s
movement from one node to another is proportional to the
centrality score of the corresponding edge assigned by a link
prediction index, which results in higher accuracy in real-world
problems. Therefore, the improved algorithm is a hybrid strategy
combining both edge centrality and vertex centrality, outperforming
the traditional ones.

The centralities discussed above are only capable to identify one
node at a time, which lacks practical application. The following
review of IMP satisfies our need to identify multiple nodes at a time.

2.2 Influence maximization problems

Instead of directly choosing k most influential individual nodes
to form the target set, whichmay result in inefficiency when nodes of
the highest degrees cluster in the network, influence maximization
problems (IMP) focus on multiple influential nodes in the network,
whose solutions can be applied to identifying vital nodes. It is first
formulated by Kempe et al. in 2003 [14] as a combinatorial
optimization problem and was originally raised as the task to
identify a subset of nodes in a network, the influence of which
reach the most number of nodes in the network. The influence here
refers to anything that can be propagated through connected nodes,
such as information, behaviors, etc. The problem has various
applications in viral marketing, preventing disease spreading, and
so on. Unlike some methods based on centralities that only identify
one node at a time, IMP aims to find a k sized set of nodes (the seed
set) with the maximum influence spread, which is represented by the
influence function σ(·). However, the IMP is NP-hard under
diffusion models such as IC, LT, TR, CT, etc., and existing

methods are mainly categorized into greedy-based algorithms,
heuristic-based algorithms, and community-based algorithms,
which are discussed in detail below.

Greedy-based algorithms are mostly used in hard optimization
problems, which are based on general greedy algorithms in the
earliest stage. Some of the examples are General Greedy [14], CELF
[15], StaticGreedy [16]and SMG [17]. The main idea of the greedy
algorithm is to repeat Monte Carlo simulation to calculate the
influence speed. In each round of the simulation, we find the
most influential node and add it to the optimal set (the seed set),
then find the node with the next greatest marginal influence and
repeat the process till k nodes are found. In most cases, greedy
algorithms provide accurate approximations. Based on this, Tang
et al. [18]proposed an improved strategy for influence maximization
which conducts discrete particle swarm optimization based on the
topology of the network.

On the other side, an abundance of heuristic algorithms has been
designed, which yield near-optimal results of hard optimization
problems at a relatively high speed compared to greedy algorithms.
Some of the examples are High Degree [14], VoteRank [19], LIR
[20], HybridRank [21]. The main idea is to study the topological
features of the graph to identify seed nodes. Based on this, He et al.
[22]proposed a 3-hop heuristic algorithm for influential
maximization for opinion formation (IMOF) in social networks.
Recently, Zhang et al. [23]proposed a heuristic leader fake labeling
mechanism for IMP which generates node labels to help select vital
nodes. The method shows high efficiency over some latest heuristic
IMP algorithms.

However, greedy-based algorithms are time-consuming to reach
an accurate result, especially in large-scale networks with a large
propagation probability. On the other side, heuristic algorithms
suffer from great memory costs and risk falling into local optimal
points. To confront this, meta-heuristic algorithms were proposed,
which yield locally optimal solutions in various networks.
Algorithms as SA [24], DPSO [25], GWIM [26] are some
examples. The main idea is using expected diffusion value as a
cost function with less complexity and initializing population with
candidate nodes, together with some discretization rules and
operators [27]. Tang et al. [28] supported the efficiency of meta-
heuristics by designing a discrete shuffled frog-leaping algorithm
based on swarm intelligence.

To further improve the scalability of various types of graphs,
community-based algorithms have been presented to tackle IMP,
which is based on the common interests between nodes in each
community. Some of the examples are CGA [29], CoFIM [30], C2IM
[31], ComBIM [32]. The main idea is to eliminate unsuitable
communities to reduce computational costs. Inspired by this,
Huang et al. [33] proposed a new community-based method and
applied it to viral marketing. Their innovative point is to combine
conventional community detection and influence diffusion
modeling to improve quality.

2.3 Learning-based method

Although IMP aims to identify multiple nodes at a time, it
suffers from high computational costs and limit on specific settings
and dynamics. To reach higher adaptability to various conditions,
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the growing power of machine learning can be applied. Recently,
Rezaei et al. [8] proposed a machine learning-based, data-driven
approach to vital nodes identification, which trains the model where
a small portion of nodes predicts the rest of the nodes with support
vector regression machine (SVM) with RBF kernel. It reaches more
adaptability to changing dynamic parameters, has stable
performance across different influence probabilities, and high
uniqueness of ranking. However, SVM has limited performance
on approximation and does not specifically deal with graph data.
Therefore, in view of the excellent ability of GCN to handle graph
data and the greater power of deep learning, we combine deep
learning and GCN to design our model.

3 Methodology

Inspired by the advantages and defects of the above methods, we
proposed a novel deep learning-based algorithm for mining multiple
vital nodes. The encoder focuses on a learnable parameter
containing the scores of all the nodes which reflect their
influence on the network. The corresponding nodes of the top k
scores are considered the temporary vital nodes, which are extracted
by a differentiable top-k algorithm. The decoder is implemented by
GCN, which restores the missing information based on the selected
temporary vital nodes. Then we train the model by minimizing the

reconstruction error of approximating the original data by the
generated data. The proposed algorithm consists of two parts:
Spatio-temporal data acquisition and vital nodes selection, which
can be further elaborated into two stages: top-k transformation, and
data restoration. To better explain the process, we list the symbols
used in our algorithm in Table 1.

3.1 Preparation

We use a graph G(V, E) to denote the network, where V is the
set of nodes, and E is the set of edges. V* represents the temporary
set of vital nodes, and the adjacency matrix A shows the
connection between nodes, i.e., the element of A is 1 if the
two nodes are connected, and 0 otherwise. We assume there
are N nodes in the network, n out of which are vital nodes. We use
a m × 1 vector (xi)m×1 called the score vector of the node (i = 1, 2,
. . ., N) to describe the feature of the node. As the score vector
varies over time, we use xi(t) to represent the score vector of node
i at time t. If we take L as the total observation time, we get L score
vectors for node i at each t, forming a m × L matrix when
combined, denoted as Xi,

Xi � xi 1( ), xi 2( ), . . . , xi L( )( ). (1)
If we combine Xi of all the nodes, we can get a N × m × L tensor,
denoted as X,

X � X1, X2, . . . , XN( ). (2)
Since a node is unable to impact an unconnected node, in order to
look into the relationship between the variance of one particular set
of nodes and the feature of other nodes, we need to observe the
changes in the feature of the network in a period of time. Starting
from time t, when assuming the observation interval is l, we can
define the score tensor of all nodes observed in t to t + l as follows:

X t( ) � X1( ) t( ), X2( ) t( ), . . . , XN( ) t( )( ). (3)

Further, we can denote the version with only the vital nodes as
follows:

X*( ) t( ) � Xi1( ) t( ), Xi2( ) t( ), . . . , Xin)( ) t( )( ),
i1, i2, . . . , in ∈ V*.

(4)

We notice that if there exists a set of nodes whose features
effectively indicate those of other nodes in the network, then we
can draw the conclusion that the certain set of nodes includes
more information about the network than other random nodes.
In other words, the changes in features of the other nodes in the
network have the most correlation with a certain set of nodes.
Therefore, these particular nodes are the most influential in the
network, called the vital nodes. Let r � r((X*)(t)) be an estimator
for X(t), R be the set of r, and E(t)(r) represents the estimation error
for r, which can be defined as the mean squared error (MSE)
which is the case in our experiment or mean absolute percentage
error (MAPE), etc., the final set of vital nodes can therefore be
denoted as follows:

Vfinal � argmin
V*

min
r∈R

1
L − l + 1

∑L−l+1
t�1

E t( ) r( )⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (5)

TABLE 1 Parameters in our algorithm.

Symbol Meaning

G Network

V Set of nodes

E Set of edges

V* Temporary set of vital nodes

A Adjacency matrix

N Number of nodes in V

n Number of temporary vital nodes in V

Xi Eigenvectors of node i at time t

X Eigenvectors of all nodes at all time

X(t) Eigenvectors of all nodes at time t

L Total observation time

l Length of the observation interval

r (X(t)) Estimator for X(t)

R Set of each r

E(t)(r) Estimation error for r

Vfinal Final set of vital nodes

f Intrinsic dynamics of a node

g Contribution of each edge

bi Indicator of whether node i is vital

b̂i Estimator of bi
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3.2 Spatio-temporal data acquisition

The acquisition of spatio-temporal data can be separated into
two scenarios, one with observed data and one not. When the
observed data is available, we only need to split the observed data
into L sections. Otherwise, if we only have access to the topology of
the network without the corresponding observed data, we can apply
the dynamical model in complex networks to generate the observed
data. Here is a brief introduction to the dynamical model in complex
networks:

Assume that the eigenvector of node i is (xi)m×1, then the kinetic
equations of the network can be written as below:

dxi

dt
� f xi( ) +∑

j≠i
aijg xi, xj( ), (6)

where f determines the intrinsic dynamics of the node, which is the
evolution regularity of the network where there is no connected
node for node i or the adjacency matrix for node i is A =O. g denotes
the contribution of each edge, which is the coupling between
different nodes. Based on this, we can choose suitable functions f
and G to generate the data in the network for further vital nodes
mining according to the type of the network or the problem we are
looking at. For example, if we are to study the possible group of vital
spreaders in some kind of epidemic, then we can generate the data
with the epidemic model of the network.

3.3 Vital nodes selection

Vital nodes selection comes in two separate stages: top-k
transformation implemented in the encoder, and data restoration,
which serves as the decoder.

The node selection is conducted on a set of n-dimensional
vectors, each element within which represents the score of the
corresponding node, where a higher score indicates a greater
significance of the node. Throughout the experiments, we found
that the choice of the initial node scores does not affect the final
convergence, therefore, the choice can be random. Then we select

the temporary vital nodes with the top scores, whose information is
preserved while all others are ignored. Afterward, the topological
information concerning the connections in the network and the
attribute information concerning the choice of vital nodes are
utilized to restore the original data, which are compared to the
real data to calculate the reconstruction error. Last, we use backward
propagation to do the training. During the training process, each
score is updated in every iteration, giving higher scores to the more
influential nodes, till the scores converge. Then the n nodes which
score the most are considered the n most significant nodes in the
network. Figure 1 shows the framework of node selection. The top-k
transformation and data restoration stages are discussed in detail
below.

3.3.1 Top-k transformation stage
During the top-k transformation stage, we aim to restore the

ignored data with only the information of the temporary vital nodes,
which involves locating the top scores of nodes by top-k algorithms.
To screen the required data, We transform X(t) as below:

Xvital( ) t( ) � b1 X1( ) t( ), b2 X2( ) t( ), . . . , bn XN( ) t( )[ ]
� b1, b2, . . . , bn[ ] ⊙ X1( ) t( ), X2( ) t( ), . . . , XN( ) t( )[ ]
� b ⊙ X t( ),

(7)

bi � 0 i ∉ V*
1 i ∈ V*,

{ (8)

where ⊙ denotes the element-wise multiplication of two matrices.
The process above which preserves the information of only the vital
nodes is named top-k transformation, which is supported by top-k
algorithms.

However, the normal top-k operation is neither differentiable
nor continuous, which results in the problem in the above
transformation that the derivative of almost every point is zero,
in other words, the transformation is not differentiable on most
objectives, hence there are no gradients passed into the backward
propagation for the training process. This results in the failure to
update each node’s score. Therefore, we adopt the differentiable top-
k algorithm proposed by Xie et al. [9]. The differentiable top-k
algorithm is an approach that enables the selection of the top k

FIGURE 1
Framework of node selection where the nodes’ scores are updated.
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elements of a vector in a differentiable manner. In the proposed
approach, the differentiable top-k algorithm is used to identify
the most important nodes in a graph, and to remove information
about the non-critical nodes. This is achieved by mapping the
scores of the nodes to a number close to 1 if they belong to the top
k scores, and close to 0 otherwise. By multiplying the information
of the nodes with their scores, the algorithm retains the
information of the current critical nodes and removes the
information of other nodes.

The main advantage of the differentiable top-k algorithm over
traditional approaches is its differentiability. Unlike traditional top-
k algorithms that are non-differentiable, the differentiable top-k
algorithm can be used in deep learning models without affecting
their backpropagation.

With this algorithm, we can adjust the above transformation by
turning the score of node i into b̂i ∈ [0, 1], such that if i ∈ V*, then b̂i
is approaching 1, otherwise 0. Algorithm 1 illustrates the acquisition
of the improved indicator b̂i.

Require: X � [xi]Ni�1 ,k,M
1: Y � [y1,y2]T
2: μ = 1N/N

3: v = [k/N, (N − k)/N]T

4: Cij � |xi − yi|2
5: Gij � e−Cij

ϵ

6: q = [1/2,1/2]T

7: m ← M

8: while m ≠ 0 do

9: p = μ/(Gq), q = v/(GTP)

10: m ← m − 1

11: end while

12: Γ = diag(p) ⊙ G ⊙ diag(q)

13: b̂ � NΓ · Y

Algorithm 1. A differentiable Top-k algorithm.
Let b̂ =[b̂1, b̂2, . . . , b̂N], then we can estimate b by b̂,

furthermore:

X̂vital
t( ) � b̂1X

t( )
1 , b̂2X

t( )
2 , . . . , b̂NX

t( )
N[ ] � b̂ ⊙ X t( ). (9)

Therefore, (X̂vital)(t) serves as an estimation for (Xvital)(t), when
b̂ → b, there is (X̂vital)(t) → (Xvital)(t).

3.3.2 Data restoration stage
To do data restoration, we use GCN to approximate the data of

the entire network X(t) based on (X̂vital)(t) from the top-k
transformation stage, and then compute the reconstruction error
to do backward propagation (BP).

Figure 2 illustrates the design of GCN in our work. The detailed
design of GCN structure is included in the experimental
settings part.

4 Experiments and results

In this section, we conduct a comprehensive evaluation of the
proposed model for vital nodes mining. For the first part, we provide
our experimental settings. For the second part, we present the
experimental results with comparisons to other state-of-art
methods.

4.1 Experimental settings

Our experiments are conducted on three types of networks:
scale-free network (generated by the Barabási–Albert model) [34],
small-world network (generated by the Watts and Strogatz model)
[35], and random network (generated by the Erdős–Rényi
model) [36].

In our experiments, we adopted the SIR (Susceptible-
Infected-Recovered) model to generate the dynamic data,
which is a widely-used epidemiological model for the spread
of infectious diseases. The model has three main parameters: the
infection rate β, the recovery rate γ, and the initial number of
infected individuals.

FIGURE 2
Illustration of GCN adopted to recover the data.
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In our experiments, we set the infection rate β to 0.02 and the
recovery rate γ to 0.01, based on previous studies on similar diseases
and to reflect a realistic scenario. The initial number of infected
individuals is randomly chosen from a uniform distribution between
1% and 5% of the total population. The process is illustrated as
follows:

si, xi, and ri are defined as the possibility of node i being in the
susceptible, infected, and recovered states, respectively. Aij

represents the adjacency matrix of the network. The evolution of
si is manipulated by the equation as follows:

dsi
dt

� −βsi ∑
j

Aijxj. (10)

Meanwhile, xi and ri satisfy the equation as follows:

dxi

dt
� βsi ∑

j

Aijxj − γxi, (11)

dri
dt

� γxi, (12)

The data set has a length of 500, eighty percent out of which is
the training set while the rest is the testing set.

As for restoring the data, we designed a GCN model, which
consists of five layers: four layers of graph convolution and one layer
of fully connected layers. The graph convolution layers are used to
extract features from the input, while the fully connected layer maps
these features to the final output.

To activate each layer, we use the rectified linear unit (ReLU)
activation function. ReLU is a popular choice for deep learning
models because of its simplicity and effectiveness in preventing the
vanishing gradient problem.

To optimize the model, we use the Adam algorithm, which is a
widely used optimization algorithm for deep learning. We set the
learning rate of Adam to 0.001, which is a commonly used value for
training deep learning models. During the training process, we did
not use regularization techniques such as L2 regularization or
dropout.

In order to demonstrate the advantages of the proposed method
over other traditional methods, we conduct vital nodes mining with
various indices under the same setting, including random choice,
degree centrality, betweenness centrality, k-shell, and closeness
centrality. The setting is repeated for every method involved in
our experiments. We introduce the settings for each type of network
below.

4.1.1 Scale-free network
We first generate the scale-free network by Barabási–Albert

model [36]. To be specific, we start with a connected network with
m0 nodes, then we add one node at a time and connect it to m
existing nodes, wherem ≤m0. We add two connections at a time and
the possibility of connecting a new node to an existing node i is
denoted as Πi, which has the relationship with degree ki of node i as
follows:

Πi � ki∑jkj
. (13)

As mentioned in Section III, if we only have the topology of a
graph without the corresponding data, we apply coupled SIR model
to generate the data.

In this experiment, we conduct two controlled variable
experiments. Firstly, we fix the number of vital nodes to be
identified and vary the total number of nodes. Secondly, we fix
the total number of nodes and vary the number of vital nodes to be
identified. For the first part, we set three scenarios where the total
number of nodes is 20, 30 and 50, respectively. Then we aim to
identify 2 nodes in each scenario. For the second part, we focus on a
graph with 30 nodes, while the number of vital nodes to be identified
is 1,2, and 3, respectively.

FIGURE 3
Different graphs with 30 nodes.

TABLE 2 The reconstruction error (MSE) comparison on a scale-free network
using various methods (n = 2).

Methods N = 20 N = 30 N = 50

our method 1.53E-06 3.83E-04 4.61E-03

Random 5.99E-06 5.05E-03 8.57E-03

Degree 1.19E-04 7.97E-02 8.31E-01

Betweenness 5.13E-04 5.61E-03 5.51E-03

K-shell 5.81E-04 1.66E-03 1.29E-01

Closeness 3.81E-04 6.13E-03 1.26E-01
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These specific scenarios result from the following
considerations. Firstly, the complexity should be kept under
control. Complex networks are characterized by non-trivial
topologies and intricate interconnections between nodes. As
the number of nodes in a network increases, its complexity
grows exponentially. Secondly, performance matters. The
performance of methods depends on the size of the network,
the sparsity of the data, and the quality of the available
information. In general, more nodes and more data improve
the accuracy, however, beyond a certain point, the improvement
in performance diminishes, and the computational cost and the
risk of overfitting increase. Thirdly, the scale should not be too
small as well, as a moderate number of nodes serve as
representative samples of the data and the networks. It helps
ensure that the experiments represent the underlying network
structures and data distributions. As for the number of vital
nodes to be selected, we keep it small because we want to
maximize the superiority of the proposed method, as a larger
portion of selected nodes results in similar accuracy. In summary,
we choose the number of nodes we used in experiments to
balance the trade-off between complexity, performance, and
generalizability. These scenarios (N = 20, N = 30, N = 50, and
n = 1, n = 2, n = 3) ensure that the experiments are feasible,
statistically significant, and representative of the underlying
structures and patterns.

4.1.2 Small-world network
Firstly, we generate a small-world network by the Watts and

Strogatz (WS) model [35]. The process is introduced as follows.
Given a cyclic nearest-neighbor coupling network containing N

nodes, where each node is connected to each of the K/2 nodes
adjacent to its left and right, and K is an even number. Then, we
reconnect each of the original edges in the network randomly with
probability p, i.e., leave one endpoint of each edge unchanged and
take the other endpoint as a randomly chosen node in the network
instead. Also, there must be no overlapping edges or self-loops. In
our experiment, N = 4 and p = 0.5.

With the graph at hand, we then generate the data with the same
dynamical model as in the previous experiment, the coupled SIR
model. The scale of the data set remains the same, with the training
set taking up eighty percent of the total data set length of 500. Then
we conduct controlled variable experiments on the network with the
same settings as on scale-free networks.

4.1.3 Random network
We first construct a random network G(N, M) based on

Erdős–Rényi (ER) model. The construction is specified as follows.
Firstly, the graph is initialized with N given nodes and M edges to be
added. Then we randomly select a pair of different nodes that are not
connected by an edge and add an edge between the pair. This step is
repeated until M edges are added between different pairs. After that, we

FIGURE 4
Selection of 2 vital nodes on scale-free networks (N = 30) where red nodes are labeled as vital nodes.
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apply the same dynamical model as the previous two experiments to
generate the data. The settings for the controlled variable experiments
are the same as well, which is captioned in the table of experiment
results. Figure 3 shows the generated graph with 30 nodes, under three
types of networks respectively.

4.2 Experiment results and comparisons

In this subsection, we give the result of the experiments and the
comparisons between different methods. The evaluation of accuracy

is based on mean squared error (MSE), which is the data shown in
the table. In the table, N denotes the total number of nodes in the
network and n represents the number of vital nodes to be chosen.
We choose MSE over other measures here because MSE is sensitive
to both large and small errors, as it squares the differences between
the predicted and actual values. Also, MSE is a differentiable
function, which means it can be used in optimization algorithms
to minimize the error between the predicted and actual values. This
makes it useful in machine learning applications, where the goal is
often to find the best set of parameters that minimize the error
between the predicted and actual values. In addition, MSE is robust

FIGURE 5
Selection of 3 vital nodes on scale-free networks (N = 30) where red nodes are labeled as vital nodes.

TABLE 3 The reconstruction error (MSE) comparison on a scale-free network
using various methods (N = 30).

Method n = 1 n = 2 n = 3

our method 8.17E-06 3.40E-04 6.69E-05

Random 2.21E-03 8.74E-03 7.75E-05

Degree 1.50E-03 3.47E-02 1.92E-03

Betweenness 9.88E-04 1.42E-02 3.57E-04

K-shell 1.20E-03 7.14E-03 1.81E-03

Closeness 1.45E-03 1.76E-03 1.29E-02

TABLE 4 The reconstruction error (MSE) comparison on a small-world network
using various methods (n = 2).

Method N = 20 N = 30 N = 50

our method 9.43E-06 9.93E-05 7.37E-04

Random 3.81E-05 4.57E-04 7.99E-03

Degree 7.92E-05 8.09E-04 7.78E-01

Betweenness 1.49E-04 1.93E-04 1.32E-02

K-shell 9.54E-06 1.05E-03 8.65E-02

Closeness 4.19E-05 5.93E-04 4.79E-03
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to outliers, meaning that it is less affected by extreme values in
the data.

4.2.1 Experiment results on scale-free networks
As mentioned in the experimental settings, we conduct two

controlled variable experiments on the scale-free networks. Firstly, we
aim to identify two vital nodes out of three networks whose total number
of nodes is 20, 30, and 50, respectively, which is shown in Table 2.

Secondly, we fix the total number of nodes in the network as
30 and conduct the identification for 1, 2, and 3 vital nodes,
respectively. Figure 4 and Figure 5 show the result of node
selection when n = 2 and n = 3, where red nodes represent vital
nodes. The reconstruction errors are shown in Table 3.

In both figures, the results with the tested centralities algorithms
are the same, except for K-shell being a bit different. Also, the vital

nodes for these algorithms are clustered and located in the center of
the graph. However, in our method, the network of the vital nodes is
quite sparse, where vital nodes have relatively larger distances from
each other and locate at the periphery of the graph. This difference
shows the great discrepancy between identifying one node and
multiple nodes at a time. Because centralities algorithms rank all
the nodes based on their individual influence, simply choosing the top
few nodes provides no guarantee that the joint influence of these
nodes is still maximal in the network. Also, the identified vital nodes
tend to cluster as neighboring nodes have similar structural properties,
which results in the loss of overall information. In comparison, our
method focuses on the joint influence of the selected nodes,
maximizing the control of the vital nodes over the whole network.
To be more specific, the nodes we selected may not be the most
influential nodes individually, but they reach the maximal influence
when combined, which is valid for real-life applications.

As can be seen from the table, the proposedmethod outperforms
all other methods in accuracy in every scenario.

4.2.2 Experiment results on small-world networks
For small-world networks, we conduct similar experiments to

test the performance of the proposed method. Table 4 shows the
error of conducting various approaches to identify two vital nodes
from different scales of small-world networks.

Table 5 shows the error of conducting various approaches to
identify different vital nodes from a small-world network with
30 nodes in total.

As the table demonstrates, on small-world networks, the
proposed method has noticeably better performance in accuracy
than other tested methods in most scenarios.

4.2.3 Experiment results on random networks
For random networks, we repeat the experiments to test the

performance of the proposed method. Table 6 shows the error of
conducting various approaches to identify two vital nodes from
different scales of small-world networks.

Table 7 shows the error of conducting various approaches to
identify different vital nodes from a random network with 30 nodes in
total.

The data serves as strong evidence that the proposed method has
much higher accuracy than the other traditional methods on random
networks, which is consistent with the previous results on other types
of networks.

In summary, the proposed method shows more adaptability to
various types of networks and requirements. It also reaches higher
accuracy compared to the state-of-art methods tested in our paper,
though the choice of vital nodes differs a lot due to the focus on
maximizing the joint influence.

5 Discussion

Vital node mining has attracted much attention in many research
fields. Traditional strategies based on centralities face challenges in
generality and time complexity. In this paper, we propose a novel
deep learning-based algorithm that identifies multiple vital nodes
simultaneously. In the proposed algorithm, we first generate the
spatio-temporal data by dynamical model, then apply our vital nodes

TABLE 5 The reconstruction error (MSE) comparison on a small-world network
using various methods (N = 30).

Method n = 1 n = 2 n = 3

our method 1.66E-05 9.93E-05 1.64E-04

Random 1.05E-05 4.57E-04 1.52E-04

Degree 3.02E-03 8.09E-04 3.84E-04

Betweenness 4.65E-04 1.93E-04 7.15E-03

K-shell 6.66E-05 1.05E-03 1.13E-04

Closeness 2.33E-05 5.93E-04 2.04E-03

TABLE 6 The reconstruction error (MSE) comparison on a random network
using various methods (n = 2).

Method N = 20 N = 30 N = 50

our method 5.80E-06 7.98E-04 1.15E-03

Random 1.55E-05 1.63E-03 6.06E-03

Degree 4.83E-05 3.76E-03 6.53E-02

Betweenness 2.01E-05 7.30E-02 1.66E-01

K-shell 5.79E-06 7.08E-02 7.28E-02

Closeness 7.77E-05 3.17E-03 1.53E-02

TABLE 7 The reconstruction error (MSE) comparison on random network using
various methods (N = 30).

Method n = 1 n = 2 n = 3

our method 1.13E-05 7.98E-04 1.21E-04

Random 2.55E-05 1.63E-03 1.80E-03

Degree 2.13E-04 3.76E-03 2.25E-03

Betweenness 2.15E-04 7.30E-02 1.60E-02

K-shell 9.50E-04 7.08E-02 2.32E-02

Closeness 2.67E-04 3.17E-03 5.18E-03
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selection model to them. In the node selection process, we use a
differentiable top-k algorithm to screen the information of the
temporary vital nodes. Then we adopt GCN to restore the rest of the
information and conduct backward propagation to obtain the final vital
nodes set. Experiments on generated data show that our method
outperforms other state-of-the-art methods, especially in adaptability
and accuracy. Therefore, the presented algorithm serves as an effective
way to identify vital nodes in networks, which has wide applications in
transportation, power grids, social networks, disease transmission
prevention, etc. In the follow-up work, we will improve the efficiency
of our method and explore more applications on real networks.
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