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We theoretically prove that it is possible to realize strong photon blockade at
n-order exceptional points (EPn) in a two-level quantum emitter (QE)–cavity
quantum electrodynamics (QED) system even if the emitter–cavity coupling
strength is weak. When the single-mode cavity is gain, we show that the
ultrastrong single-photon blockade (1 PB) emerges at two-order exceptional
points (EP2), avoiding the strong non-linearity of the system. In addition, we
first give the pseudo-Hermitian condition for the non-Hermitian cavity QED
system and find that the third-order exceptional points (EP3) can be predicted
under certain constraints of the parameters. For this case, the pronounced 1 PB at
EP3 will be triggered. Furthermore, we also consider the usual EP2-enhanced 1 PB
existing in the system with or without the dipole–dipole interaction (DDI) under
the pseudo-Hermitian condition. A striking feature is that the system without DDI
can realize more obvious 1 PB at EP2 than the case of with DDI. What is important
is that both EP2 and EP3 will appear in the weak coupling regime. Our proposal
sheds new light on strong EP-engineered photon blockade in the weak coupling
regime, providing a unique platform for making high-quality single-photon
sources.
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1 Introduction

As a significant area of quantum optics, the generation and manipulation of single
photons have been making great strides in the past few decades and possess a wide array of
applications in the fields of quantum communications [1], quantum cryptography [2], and
quantum information processing [3-4]. One of the basic physical mechanisms for generating
single photons is the photon blockade (PB) effect. What we called PB is that the first photon
within an optical system will block the transmission of the second photon, leading to the
phenomenon of photon antibunching in the system. This effect is first produced by
Imamoglu et al. in 1997 [5], which plays key roles in exchanging and dealing with
photonic quantum information [6–8].

So far, there are two main methods that have been used to generate strong photon
blockade effects. One is the conventional photon blockade (CPB), and the other is the
unconventional photon blockade (UPB). The CPB schemes require strong non-linear
interactions between polaritons, which lead to a quantum anharmonic ladder in the
energy spectrum. If a photon is tuned to resonantly excite the system from its ground
state to the lowest excited states, the population of the two-photon state will be suppressed
and only one photon is allowed in the system. The CPB effect has been achieved in various
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systems, including atom–cavity QED systems [10-12], cavity
optomechanical systems [14], spinning Kerr cavity [16-17], and
superconducting qubit systems [18-19].

Different from CPB, the physical mechanism of UPB relies on
the quantum destructive interference between two or more quantum
transition pathways in weakly non-linear systems. In the
experiment, the phenomenon of UPB can be observed in the
quantum dot–cavity QED system [21–23] and coupled
superconducting resonators [24]. With the development of
experiments, theoretical research has also been expanded in
different quantum systems, for example, the couple cavities with
second-order or third-order non-linearities [25–27], the cavity QED
systems based on whispering-gallery-mode resonators [28-29], and
the non-reciprocal devices such as spinning optomechanical
systems [30].

Although both CPB and UPB can realize photon blockade, each
type of PB has its own disadvantages in practice. Specifically, the
realization of CPB depends on the strong light–matter interaction of
the system, which is a big challenge in a few quantum systems. In
particular, a fundamental CPB system typically requires a
microcavity with a high Q factor [31], which is difficult to
fabricate due to technical limitations. As for UPB, it may be hard
to realize strong PB with large average photon numbers, resulting in
the difficulty to obtain high-quality single-photons.

To solve these problems existing in the system, researchers try to
achieve strong PB at the critical points, especially at exceptional
points (EPs). EPs can be treated as critical points of the quantum
phase transition from the PT-symmetric phase to the PT-
symmetric-broken phase, where two or more eigenvalues and
corresponding eigenvectors simultaneously coalesce [32–34]. EPs
are one of the peculiar characteristics of the non-Hermitian systems
[35], and there are lots of fascinating phenomena around these
points such as single-mode lasers [36-37], unidirectional invisibility
[38–40], sensitive enhancement [41–45], and topological energy
transfer [46-47]. Very recently, EP-tuned purely quantum effects
and their applications have been researched like non-reciprocal
devices [48–50] and steady Bell-state generation [51].

Additionally, Mostafazadeh defined a new Hamiltonian that
exists in the non-Hermitian systems, i.e., pseudo-Hermitian
Hamiltonian [52–54]: a Hamiltonian H with a discrete spectrum
that satisfies H† � UHU−1, where U is a linear Hermitian operator.
The eigenvalues of this Hamiltonian are either real or complex
conjugate pairs. So far, pseudo-Hermiticity plays an important role
in the formation of higher-order exceptional points [55] and gives
rise to a rich phenomenon in different fields of physics [56–58].

In this work, we theoretically propose a cavity QED system
consisting of a gain single-mode cavity and a pair of two-level
quantum emitters (QEs). First, we analytically demonstrate that the
use of the gain cavity can provide relatively strong PB compared
with the loss cavity even if the QE-cavity coupling strength is weak.
For this case, we further prove that EP2 can be predicted in
parameter space when the cavity and the QEs share the same
frequency detuning. At EP2, we can obtain ultrastrong photon
blockade effects with large mean photon numbers. Then, we
prove that EP3 can be predicted in this system under the
pseudo-Hermitian conditions. At this operator regime, the strong
PB phenomenon can still be found. Compared with the PB effect
that occurs at EP3 and EP2, we find that the PB effect enhanced at

EP2 is stronger than that enhanced at EP3. Our proposal provides a
new method to realize strong single-photon blockade in the weak
coupling regime.

The paper is organized as follows: in Section 2, we give a detailed
description of the physical model. By analytically solving a group of
dynamics equations, we can obtain the expression of the second-order
correlation function and mean photon number. Then, we discuss the
origin of the PB effect in the normal loss cavity. In Section 3, we
demonstrate that the strong PB effect can be achieved at EP2 in the
weak coupling regime, and the physical mechanism can be analyzed in
different quantum phase transition regions. In Section 4, we derive the
pseudo-Hermitian condition for this considered system; both EP3 and
EP2 can be predicted under specific parameter conditions.We study the
EP3-enhanced strong PB phenomenon in Section 5. In Section 6, we
compared the PB effect enhanced at EP3 and EP2 under different
pseudo-Hermitian conditions. Finally, we give the conclusion of the
whole work in Section 7.

2 Physical system of the two-level QE-
cavity QED system

We construct two two-level QEs (e.g., two-level atoms,
molecules, ions, or quantum dots) with the resonant frequency
ωi(i � 1, 2) located in a single-mode cavity with the resonant
frequency ωc. The ground (excited) QE state is expressed as
|g〉i ( | e〉i), and gi denotes the coupling strength between the QE
and single-mode cavity. This cavity is coherently driven by a
classical field with the Rabi frequency ε and pump frequency ωd,
as illustrated in Figure 1. Using the rotating-wave

FIGURE 1
Schematic illustration of the two-level quantum emitter (QE)–
cavity QED system with the cavity-mode frequency ωc and QEi
resonant frequency ωi. A classical field with the intensity ε and the
angular frequency ωd is used to drive the cavity. Here, |g〉i and
| e〉i represent the ground state and excited state of QEi, respectively.
κ is the effective decay rate of the cavity, and γi is the decay rate of QEi.
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approximation, the Hamiltonian of the system can be described
as (setting Z � 1)

H1 � Δca
†a +∑2

i�1
Δiσ

†
i σ i + gi a†σ i + aσ†i( ) + ε a† + a( ), (1)

where Δc � ωc − ωd and Δi � ωi − ωd are the cavity and QEi
frequency detunings, respectively. Here, a (a†) is the annihilation
(creation) operator of the cavity mode and σ i � |g〉i〈e | is the
lowering operator of the ith two-level QE.

The dynamics of this cavity-driven QED system is governed by
the quantum master equation:

zρ

zt
� −i H1, ρ[ ] + Lκ ρ[ ] + Lγ ρ[ ], (2)

where ρ is the system densitymatrix and the Liouvillian operatorsLκ[ρ] �
κ
2 (2aρa† − a†aρ − ρa†a) and Lγ[ρ] � ∑2

i�1
γi
2 (2σ iρσ†i − σ†i σ iρ −

ρσ†i σ i) describe the cavity decay rate with κ and the QEs with rate γi,
respectively. In the case of weak driving, we can neglect the quantum jump
term o†ρo (o � a, σ i) to obtain the effective non-HermitianHamiltonian:

Heff � H1 − κ

2
a†a − γ1

2
σ†1σ1 −

γ2
2
σ†2σ2. (3)

Here, we take γ1 � γ2 � γ in the following calculation.
In order to give a better understanding of the PB effect from the

physical point of view, we need to calculate the zero-delayed second-
order correlation functiong(2)(0). Under the weak driving assumption,
i.e., ε≪ γ (in this paper, we only analyze the case of weak drive), we

assume that the total excitation number of the system is truncated to 2.
As a result, the time-dependent wave function can be written as

ψ t( )∣∣∣∣ 〉 � C000 0, 0, 0| 〉 + C100 1, 0, 0| 〉 + C010 0, 1, 0| 〉
+ C001 0, 0, 1| 〉
+ C101 1, 0, 1| 〉 + C110 1, 1, 0| 〉
+ C011 0, 1, 1| 〉 + C200 2, 0, 0| 〉, (4)

where Crst is the coefficient of the quantum state | r〉 | s〉 | t〉. r stands
for the photon number in the cavity. | s〉, | t〉 � 0 and 1 represent the
two QEs in the ground states and excited states, respectively. First of all,
it is necessary to obtain the steady-state solution of Crst. We start from
solving the Schrodinger equation iz |ψ(t)〉/zt � Heff |ψ(t)〉 and
then obtain a set of equations of motion for coefficients:

i
z

zt
C100 � Δ′

cC100 + g1C010 + g2C001 +
�
2

√
εC200 + εC000,

i
z

zt
C010 � Δ1

′C010 + g1C100 + εC110,

i
z

zt
C001 � Δ2

′C001 + g2C100 + εC101,

i
z

zt
C200 � 2Δ′

cC200 +
�
2

√
g1C110 +

�
2

√
g2C101 +

�
2

√
εC100,

i
z

zt
C110 � Δ′

c + Δ1
′( )C110 +

�
2

√
g1C200 + g2C011 + εC010,

i
z

zt
C101 � Δ′

c + Δ2
′( )C101 + g1C011 +

�
2

√
g2C200 + εC001,

i
z

zt
C011 � Δ1

′ + Δ2
′( )C011 + g1C101 + g2C110, (5)

FIGURE 2
In the systemwith the gain (dissipation) cavity, the logarithmic plots of the second-order correlation function g(2)(0) as a function of the normalized
detuning Δ/γ for two cases: (A, C) the system in the strong coupling regime, while (B, D) in the weak coupling regime. Here, the other parameters are
chosen as Δ1 � Δ2 � Δc � Δ. The driving strength takes as ε � 0.1γ in the following figures.
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where Δ′
c � Δc − i κ2,Δ′

i � Δi − i γi2 . Under the weak driving condition,
one can assume that C000 ≃ 1≫ C100, C010, C001{ }
≫ C101, C110, C011, C200{ }. By setting izC

.
.rst/zt � 0, we can

easily obtain the steady-state solution of the aforementioned
equations, which are expressed as

C100 ≈
−εΔ1

′Δ2
′

D1
, C010 ≈

εg1Δ2
′

D1
, C001 ≈

εg2Δ1
′

D1
, (6)

C200 ≈

−
�
2

√
ε C001 g2t1 − g1t2( ) + C010 g1t3 − g2t2( ) + C100 t22 − t1t3( )[ ]

2 g2
2t1 + g2

1t3 − 2g1g2t2 + Δ′
c t22 − t1t3( )[ ] ,

(7)
where t1 � Δ1

′ + Δ′
c − g2

2/(Δ1
′ + Δ2

′), t2 � −g1g2/(Δ1
′ + Δ2

′), t3 � Δ2
′+

Δ′
c − g2

1/(Δ1
′ + Δ2

′) and the determinant

D1 �
Δ′
c g1 g2

g1 Δ1
′ 0

g2 0 Δ2
′

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣ � Δ′

cΔ1
′Δ2

′ − g2
2Δ1

′ − g2
1Δ2

′. (8)

According to Eqs 6–8, the second-order correlation function g(2)(0)
can be approximately yielded byg(2)(0) ≈ 2|C200|2/|C100|4 and themean
photon number in the cavity is Ic � 〈a†a〉 � |C100|2
+|C101|2 + |C110|2 + 2|C200|2. The expression of g(2)(0) can be
expanded as

g 2( ) 0( ) ≈
g2Δ1

′ g2t1 − g1t2( ) + g1Δ2
′ g1t3 − g2t2( ) − Δ1

′Δ2
′ t22 − t1t3( )∣∣∣∣ ∣∣∣∣2

g2
2t1 + g2

1t3 − 2g1g2t2 + Δ′
c t22 − t1t3( )∣∣∣∣ ∣∣∣∣2 D1| |2

Δ1
′Δ2

′
∣∣∣∣ ∣∣∣∣4.

(9)

2.1 The PB in the QE-cavity QED systemwith
the gain (loss) cavity

For simplicity, we assume that the two-level QE-cavity coupling
strengths are the same (i.e., g1 � g2 � g) and that the QE and cavity
frequency detunings are also identical (i.e., Δ1 � Δ2 � Δc � Δ) in this
section. Next, we prove the validity of our previous calculations by
comparing the analytical results with the numerical results given by Eq.
2 under the weak driving assumption shown in Figure 2. The analytical
results are in good agreement with the numerical results for the second-
order correlation function. In the same strong coupling regime, the use
of the gain cavity can show more obvious photon blockade effects (See
Figures 2A,C). As for the same weak coupling regime, the choice of the
active or passive cavity has a little effect on PB effects (See Figures 2B,D).
Therefore, it is worth presenting a new physical model for realizing
strong PB effects at a specific area in the weak coupling regime.

For a better understanding of the physical mechanism of the PB
effect in the system with the loss- or gain-cavity mode, we consider
the system by utilizing the dressed-state representation. Specifically,
this coupled system has a discrete spectrum consisting of a ladder-
type dressed state, |±, n − 1〉 with separated energy levels and other
collective states are |gg, n〉 and | ee, n − 2〉 [59]. Owing to the whole
system being under the weak driving assumption, the principal
quantum number of the system is truncated to n≤ 2.

In the case of the loss cavity, when a photon is resonantly excited
from the ground state of the system to the states of the lowest
doublet, i.e., Ψ(±)

1 , the absorption of the subsequent photon at the
identical pump frequency will be blocked due to the large mismatch
energy induced by energy-level anharmonicity (see Figure 3A). This
is the blockade mechanism of the well-known CPB scheme.

FIGURE 3
(A) Anharmonic ladder-type energy-level diagram to explain the PB effect in the systemwith the loss cavity. (B)Quantum transition pathways of the
system for different quantum states | r〉 | s〉 | t〉.
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Neglecting the dipole–dipole interaction (DDI) between two
QEs, there is a direct transition pathway induced by the pump
field, i.e., | 1, 0, 0〉→

�
2

√
ε �

2
√

ε | 2, 0, 0〉, and two indirect pathways
induced by the QE-cavity coupling strengths,

i.e., | 1, 0, 0〉→g1 g1 | 0, 1, 0〉→ε ε | 1, 1, 0〉 →
�
2

√
g1 �

2
√

g1 | 2, 0, 0〉 and

| 1, 0, 0〉→g2 g2 | 0, 0, 1〉→ε ε | 1, 0, 1〉 →
�
2

√
g2 �

2
√

g2 | 2, 0, 0〉 (see
Figure 3B). The direct transition pathway for the two-photon
excited states will be forbidden, owing to the quantum destructive
interference with the indirect pathways [32-60]. Consequently,
the probability of the two-photon excited states will be reduced,
which means that the weak coupling condition can still induce
the PB effect. This is the blockade mechanism of the UPB scheme.

2.2 The exceptional point of the system with
the gain cavity

In this section, we study the strong PB at a certain characteristic
value in a weak coupling limit. This QE-cavity QED system can be

described by the Hamiltonian without a driving term in the matrix
form as

Hr �
Δ′
c g1 g2

g1 Δ1
′ 0

g2 0 Δ2
′

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (10)

Here, we choose κ � −γ and Δ1 � Δ2 � Δc � Δ. The eigenvalues
of the system in single-photon space are expressed as

λ0 � Δ − i
γ

2
, λ± � Δ±

����������
g2
1 + g2

2 −
γ2

4

√
, (11)

with the corresponding eigenvectors given by

λ±| 〉 � −i γ2 ±
����������
g2
1 + g2

2 − γ2

4

√
g2 g1( )T

, λ0| 〉 � 0 g2 g1( )T.
(12)

According to Eq. 11, we find that when g2
1 + g2

2 � γ2

4 , the two
eigenvalues λ± and the corresponding eigenvectors | λ±〉 will
coalesce simultaneously, which indicates that the second-order
exceptional point (EP2) will appear. Considering special
circumstances, we think the two-level QE-cavity system has
the same coupling strength, i.e., g1 � g2 � g. In Figure 4, we
plot the real [see Figure 4A] and imaginary parts [see Figure 4B]
of eigenvalues as a function of the coupling strength g. For the
case of g> γ

2
�
2

√ , the two eigenvalues λ± are real and non-
degenerate, indicating that the system is in the PT-symmetric
phase (PTSP). When g< γ

2
�
2

√ , the eigenvalue is a pair of complex
conjugates, which is the significant feature of the PT-symmetry-
broken phase (PTBP). When g � gEP2 � γ

2
�
2

√ , both the
eigenvalues and corresponding eigenvectors are degenerated.
The pink and yellow areas indicate the PT-symmetric phase
and PT-symmetry-broken phase, respectively. Subsequently,
we will analyze the single-photon blockade effect at and
around EP2.

3 EP2-enhanced strong PB effects in
the system

In order to demonstrate the optimal photon blockade at EP2,
we plot both the mean photon number Ic and second-order
correlation function g(2)(0) in two scenarios: i) the system
with the gain cavity (i.e., κ< 0) or ii) with the
dissipation (i.e., κ> 0) cavity, as shown in Figure 5. It is easy
to find that when g � γ

2
�
2

√ , the ideal photon blockade will appear at
κ � −γ, where the minimal value of g(2)(0) and the maximum
value of Ic will be achieved simultaneously. For the case of the
system with the gain cavity, there are two dips, one of which is
located at EP2. However, for the cases of loss cavity, with the
increase in the dissipation rate of the cavity, the PB effect will
decrease rapidly. Therefore, compared with the gain cavity and
loss cavity, the gain cavity provides a new possibility for
imperfect photon blockade.

Furthermore, we can prove the optimal photon blockade at
EP2 by calculating the value of g(2)(0). By setting g(2)(0) → 0 in Eq.
9, we can seek out the positions where the pronounced photon
antibunching phenomenon appears. The realization of the
minimum value of g(2)(0) requires |D1| → 0, that is,

FIGURE 4
(A) Real and (B) imaginary parts of the eigenvalues are obtained
by Eq. 12 with κ � −γ versus the same coupling strength g (i.e.;
g1 � g2 � g). Green dots show the position of EP2 when Δ � 0. The
pink and yellow areas represent the PT-symmetric phase (PTSP)
and PT-symmetry-broken phase (PTBP) area, respectively.
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D1| | � Δ + i
γ

2
( ) Δ − i

γ

2
( )2

− 2g2 Δ − i
γ

2
( )

� Δ − i
γ

2
( ) Δ2 + γ2

4
− 2g2( ) � 0. (13)

Therefore, the strong PB effect can be obtained around g � γ
2
�
2

√
for Δ � 0. We noted that the coefficient of C100 → ∞ when
|D1| → 0, which indicates that Ic will reach its maximum value
and g(2)(0) will reach its maximum value at g � gEP2.

For the general case of g1 ≠ g2, we plot g(2)(0) (see Figure 6A)
and Ic (see Figure 6B) in terms of g1 and g2, respectively. The black
dashed lines of EP2 denote the optimal condition of the PB effect,
i.e., g2

1 + g2
2 � γ2

4 . Under this optimal condition, g(2)(0) of the PB
effect may reduce to 10−4 and Ic will increase to 0.32. For better
proof that the PB effect enhanced at EP2, as shown in Figure 7A, we
provide g(2)(0) as functions of normalized detuning Δ/γ and the
same coupling strength g/γ. It is worth pointing out that the EP2 will

be emerged at g � gEP2 � γ
2
�
2

√ < γ, indicating that the strong PB
phenomenon has occurred in a weak coupling limit. This result is
demonstrated in Figure 7B.

In the following section, we study the reason for the PB effect in
different regions. On one hand, to explain the PB effect when g> γ

2
�
2

√
(i.e., in the PT -symmetric region), we draw the ladder-type energy level
of the quantum state, as shown in Figure 8A. According to the
eigenvalues of the system, this physical mechanism can be
understood as follows: when g> γ

2
�
2

√ , the single-photon state is a
single state. If the driving frequency ωd equals to E1, a photon is
excited from the ground state to the single excited state resonantly, so
the single-photon probability increases dramatically. However, the two-
photon excitation probability may decrease due to the detuning.

On the other hand, when g< γ
2
�
2

√ , there are two quantum
paths that suffer from different efforts, i.e., the photon gain in the
path | 1, 0, 0〉→

�
2

√
ε �

2
√

ε | 2, 0, 0〉 and the photon loss in the two
paths, i.e., | 1, 0, 0〉→g1 g1 | 0, 1, 0〉→ε ε | 1, 1, 0〉 →

�
2

√
g1 �

2
√

g1 | 2, 0, 0〉

FIGURE 5
Second-order correlation function g(2)(0) and themean photon number Ic as functions of κ in the systemwith the gain cavity (Panel (A)) andwith the
loss cavity (Panel (B)). Here, we take the coupling regime at g � gEP2 � 1

2
�
2

√ γ and Δ � 0, and the other parameters are same as those in the main text.

FIGURE 6
When the coupling strengths are different, i.e., g1 ≠ g2, (A) the logarithmic plots of g(2)(0) and (B) 〈a†a〉 are as functions of the coupling strengths g1/γ
and g2/γ. The black dashed lines indicate the area of EP2 in the condition of g2

1 + g2
2 � γ2

4 . The other parameters are similar to those in Figure 4.
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and | 1, 0, 0〉→g2 g2 | 0, 0, 1〉→ε ε | 1, 0, 1〉 →
�
2

√
g2 �

2
√

g2 | 2, 0, 0〉.
Therefore, the total loss and gain rate are unbalanced in this
model. The gain of the photons in the cavity will compensate for
the photon loss of the system, which makes the single-photon
probability increase. This is the main reason for the PB effect
occurring in the PT-symmetric-broken region. Through our
calculation of the second-order correlation function by Eq. 9,

one can easily adjust the coupling strength to realize the optimal
photon blockade. Additionally, in the PT-symmetric-broken
region (i.e., g<gEP2), the photon blockade will be more
obvious with the increase in the coupling strength g. However,
in the PT-symmetric region (i.e., g>gEP2), the photon
antibunching phenomenon will be transformed into photon
bunching with the increasing coupling strength.

FIGURE 7
EP2-enhanced strong PB effect in the condition of g1 � g2 � g and Δc � Δ1 � Δ2 � Δ. (A) Logarithmic plots of g(2)(0) as functions of normalized
detuning Δ/γ and the same coupling strength g/γ. The red circle shows the position of EP2, where the extremely small g(2)(0) can be achieved. (B) Plots of
g(2)(0) (see blue curves) and Ic (see red curves) versus the coupling strength g/γ. The pink dashed line indicates the position of EP2. We choose Δc � 0 in
panel (B).

FIGURE 8
Level diagram of the quantum states for the cavity QED with the gain cavity under the weak cavity-driven assumption: (A) dressed states and (B)
quantum states.
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4 Pseudo-Hermitian conditions for
EP3 in the system

In addition to EP2, whether high-order exceptional points
(i.e., EP3) will also affect the PB effect is worth studying. In this
part, we further show the strong PB at EP3. First, we need to
find the pseudo-Hermitian (pH) condition of the
system. Following [52–54], the non-Hermitian Hamiltonian
Hr without DDI becomes pseudo-Hermitian when its
eigenvalues satisfy one of the following conditions: i) all three
eigenvalues are real or ii) one of the eigenvalues is real and the
others are a pair of complex conjugates. Solving
Det(Hr −ΩI) � 0, i.e.,

Δc − i
κ

2
−Ω g1 g2

g1 Δ1 − i
γ

2
−Ω 0

g2 0 Δ2 − i
γ

2
−Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
� 0, (14)

where I is an identity matrix. We can obtain three eigenvalues
from Eq. 14. Then, in order to meet the pseudo-Hermitian
condition, both Eq. 14 and its complex conjugation

expression, i.e., Det(H*
r −ΩI) � 0, should have the same

solutions. Solving these two equations gives rise to the
pseudo-Hermitian conditions of the Hamiltonian (14) as

κ � −2γ,
δ1 + δ2 � 0,

δ1δ2 − γ2

4
+ 1
2

g2
1 + g2

2( ) � 0, (15)

where δ1,2 � Δ1,2 − Δc is the frequency detuning of the cavity and
QEs. In the following calculation, we give the conditions

κ � −2γ,
δ1 � −δ2 � δ,

δ � ±

�������������
1
2

g2
1 + g2

2( ) − γ2

4

√
. (16)

From the first condition in Eq. 16, it is easy to see that the gain
cavity must be introduced to the QED system to keep the gain and
loss balanced. From the last equation in Eq. 16, it should satisfy the
condition of δ ≥ 0. By setting δ � 0, the relationship of minimal
values of two-level QE-cavity coupling strength is given by
[g2

1 + g2
2] min � γ2

2 , which is a basic condition that should be met
in our system. When the system is pseudo-Hermitian, the

FIGURE 9
(A) Quantum phase of the discriminant in Eq. 19 under the pseudo-Hermitian conditions in Eq. 16 as a function of coupling strengths g1/γ
and g2/γ. (B) The yellow dots represent the ranges of 0<g1/γ≤2 and 0<g2/γ≤ 2 are plotted to predict EP3. (C, D) Real and imaginary
parts of the eigenvalues Ω0 (see the black lines) and Ω± (see the red and blue lines) versus the same coupling strength g/γ in the conditions of
Eq. 20.
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characteristic equation Det(Hr − ΩI) � 0 can be specifically
written as

Δc − Ω( )3 + c2 Δc − Ω( )2 + c1 Δc − Ω( ) + c0 � 0, (17)
where

c2 � δ1 + δ2,

c1 � δ1δ2 − γ2

4
− κγ

2
− g2

1 − g2
2,

c0 � −κγ
4

δ1 + δ2( ) − g2
2δ1 − g2

1δ2. (18)

According to Cardano’s formula and methods [61], the solution
of the characteristic equation in Eq. 16 can be determined by the
discriminant

η � B2 − 4AC, (19)

with A � c22 − 3c1, B � c1c2 − 9c0, andC � c21 − 3c0c2. If η< 0, Eq.
17 has three real solutions, but the solutions are one real root and
a pair of complex conjugates if η> 0. In the critical point at η � 0,
these three real solutions coalesce to the same value,
i.e., Ω � ΩEP3. In other words, when A � B � 0, EP3 will
appear. If the Hamiltonian in Eq. 11 satisfies the conditions of
(16), this non-Hermitian Hamiltonian will transform into a
pseudo-Hermitian Hamiltonian.

To prove the aforementioned analysis, we plot the phase
transition in Figure 9A, where the green and blank areas
represent η< 0 and η> 0, respectively. The black lines, blue
dashed lines, and a red curve denote the conditions of η � 0,
B � 0, and A � 0, respectively. The yellow crossing points
produced by the black, blue, and red lines indicate EP3s in
math. We can only find one EP3 in our system when two-level
QE-cavity coupling strengths are the same, i.e., g1 � g2 � gEP3

(see Figure 9B). Furthermore, we analytically prove this critical
condition for the existence of EP3.

We noted that when g1 � g2, the pseudo-Hermitian conditions
in Eq. 16 reduce to

κ � −2γ, δ1 � −δ2 � δ, δ � ±

������
g2 − γ2

4

√
. (20)

Moreover, the coefficients in Eq. 18 become

c2 � c0 � 0, c1 � −δ2 + 3γ2

4
− 2g2. (21)

The discriminant in Eq. 19 is η � B2 − 4AC � 12c31. We
substitute the coefficients in Eq. 21 into Eq. 17 and obtained

Δc − Ω( ) Δc −Ω( )2 + c1[ ] � 0. (22)
Three roots can be obtained by solving the equation

Ω0 � Δc,Ω± � Δc ±
���−c1√

. (23)
It is obvious that the three real solutions coalesce into one when

c1 � 0, i.e.,

c1 � γ2 − 3g2 � 0, gEP3 � γ�
3

√ . (24)

This is EP3 of the proposed QE-cavity QED system. However,
when c1 ≠ 0, two roots of Eq. 17 coalesce to a typical point, Ω � ΩEP2,
which means that EP3 transformed into EP2. To verify this result, we
plot the real and imaginary parts of the eigenvalues of Eq. 17 in Figures
9C,D, respectively. We noted that the minimum value of the coupling
strength gmin � γ

2 is smaller than that of gEP3 � γ�
3

√ . Clearly, when
gmin ≤g<gEP3, one eigenvalueΩ0 is real and the other eigenvalue Ω±

is a pair of complex conjugate. For g>gEP3, all three eigenvalues are
real. At a critical point g � gEP3, these eigenvalues coalesce to EP3,
i.e., Ω0 � Ω± � Δc.

5 EP3-enhanced strong PB effects in
the system

According to the analysis in Section 4, we demonstrate that
there is a typical EP3 in the pseudo-Hermiticity condition. In this
section, we will study the PB effect at EP3. First, in order to get the
minimum value of g(2)(0), we should substitute Eq. 20 into Eq.
9, i.e.,

FIGURE 10
Logarithmic plots of g(2)(0) and Ic as a function of the cavity
frequency detuning Δc/γ in the cases of (A) g<gEP3, (B) g � gEP3, and
(C) g> gEP3. The green dots represent the optimal operator regime for
the realization of the strong PB phenomenon at Δ0

c and Δ(±)
c .
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D1| | � Δ′
cΔ1

′Δ2
′ − g2 Δ1

′ + Δ2
′( )

� Δc + iγ( ) Δ2
c − g2 − iγΔc[ ] − g2 2Δc − iγ( )

� Δc Δ2
c + γ2 − 3g3( ). (25)

Therefore, we can obtain the conditions for |D1| → 0 as

Δ0
c � 0,Δ ±( )

c � ±
�������
3g2 − γ2

√
. (26)

Obviously, when 3g2 − γ2 � 0 (i.e., g � gEP3 � γ�
3

√ ), the
corresponding cavity detuning at Δ0

c � Δ(±)
c � 0. This desired

operator regime is found, which result in a strong photon blockade
phenomenon, as shown in Figure 10B. In addition, when g<gEP3, only
detuning Δ0

c � 0 is allowed. The maximum value of the mean number
photon Ic and the minimum value of g(2)(0) can be achieved at this
position, as described in Figure 10A. In the case of g>gEP3, all of the
detunings in Eq. 26 are allowed, as shown in Figure 10C. Therefore, we

FIGURE 11
EP3-enhanced strong PB effect in the pseudo-Hermitian conditions. (A) Plot of g(2)(0) as functions of normalized detuning Δc/γ and the coupling
strength g/γ. EP3 is marked by the red circle. In (B), the pink dashed area indicates the obvious PB effect at g � gEP3. We take the parameters as
Δc � 0, κ � −2γ and δ1 � −δ2 �

������
g2 − γ2

4

√
.

FIGURE 12
Explanation of the PB effect of the non-Hermitian system in the pseudo-Hermitian condition for different regions: (A) in theΩ± region and (B) in the
Ω0 region.
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can observe the PB effect in three regimes with the increase in the
coupling strength. The aforementioned results exhibit that under
pseudo-Hermiticity conditions, the strong PB phenomenon will be
observed at EP3 even if the coupling strengths are weak.

We can also find out EP3 in the logarithmic plot of g(2)(0) as
functions of the normalized detuning Δc/γ and QE-cavity coupling
strength g/γ, which is shown in Figure 11A. The strong PB
phenomenon is obtained at g � gEP3, which is shown as the pink
area in Figure 11B. In the following section, to explain reasons for the
photon blockade in theΩ± region, we give the anharmonic ladder-type
energy-level structure in this region (see Figure 12A), where the
absorption of the second photon will be blocked, owing to the
energy mismatch. This physical mechanism is similar to CPB. On

the contrary, in the Ω0 region, the obvious PB located at the optimal
detuning at Δc � 0 comes from the destructive interference between
different transition paths (see Figure 12B), which is similar to UPB. At
EP3, the PB effect will be significantly enhanced through the coinciding
cases of CPB- and UPB-based photon blockade.

6 Comparison with the enhanced PB
effect at EP2 and EP3 in the pseudo-
Hermitian condition

In practice, the QE-cavity coupling strengths are position-
dependent. Hence, the two coupling strengths are usually

FIGURE 13
In the pseudo-Hermitian conditions when g1 ≠ g2, EP3 is transformed into EP2. (A) The minimum value of g(2)(0) (see the blue areas) is in good
agreement with the real parts of solutions in Eq. 17, where the black dashed line denotesΩ0 and the red and blue dashed lines denoteΩ±. (B) Around EP2,
the minimum value of g(2)(0) and the large mean photon number Ic are achieved simultaneously, indicating the strong PB effect. We take the parameter
as Δc/γ � 0.43, and the others are same as those in Figure 11.

FIGURE 14
In the pseudo-Hermitian conditions when g1 � g2 � g and J � 0.2g, there is also an EP2 in the system. (A) Plots of g(2)(0) versus the normalized
detuning Δc/γ and the coupling strength g/γ. In (B), the strong PB effect is shown at gEP2/γ � 0.711. We choose detuning as Δc/γ � 0.417, and other
parameters are same as those in Figure 11.
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different for more general cases. For these cases, the
transformation between EP3 and EP2 is achieved by changing
the coupling strength. As an example, we take g2 � 0.8g1, which
meet the condition of [g2

1 + g2
2]≥ γ2

2 . In Figure 13A, we
numerically plot the real parts of eigenvalues of the
Hamiltonian (11) as a function of the coupling strength g1/γ.
It is not difficult to find that there is a typical EP2 at
g1/γ � gEP2/γ � 0.752. As expected, the minimum areas in the
g(2)(0) spectrum (see the blue pattern) are very well in agreement
with the real eigenvalues of the effective non-Hermitian
Hamiltonian Hr in Eq. 11, as shown by the dashed lines. One
of the eigenvaluesΩ0 is always real for arbitrary g1/γ (as the black
lines show), and the other two eigenvalues Ω± are a pair of
complex conjugates (as the blue and red lines show) when
g1 >gEP2.

Clearly, by comparing the results of Figure 11B and
Figure 13B, it is obvious that this new scheme with different
coupling strengths exhibits a very strong PB effect at EP2,
having approximately two orders of magnitude reduction of
g(2)(0). However, the mean photon number is almost invariant,
which implies that it is independent of the transformation
of EPn.

Moreover, considering the two-level QE interaction with the
dipole–dipole interaction, we can still find EP2 at gEP2/γ � 0.711 by
taking g1 � g2 � g and J � 0.2g via using the same method explained
in Section 4 (Appendix A). By numerically solving Eq. 17, we can obtain
the position of EP2, as shown in Figure 14A. Similarly, we can clearly see
the obvious PB effect at g1 � gEP2 in Figure 14B. By comparing the
results in Figures 11B, 14B, the system with DDI shows stronger PB
effects at EP2 than the system without DDI.

According to aforementioned analysis, we find that the PB
effect at EP2 is more obvious than that at EP3 in the condition of
the balanced gain–loss rate. When the coupling strength is
different, i.e., g1 ≠ g2, the photon loss in the paths
| 1, 0, 0〉→g1 g1 | 0, 1, 0〉→ε ε | 1, 1, 0〉 →

�
2

√
g1 �

2
√

g1 | 2, 0, 0〉 and
| 1, 0, 0〉→g2 g2 | 0, 0, 1〉→ε ε | 1, 0, 1〉 →

�
2

√
g2 �

2
√

g2 | 2, 0, 0〉 is
asymmetric, which strengthens the quantum interference of
the transition paths. In addition, when we consider the
influence of DDI between the two emitters, photon loss will
emerge in three or more paths. Therefore, the destructive
interference between different paths of two-photon excitation
will be enhanced, resulting in the more apparent photon blockade
effect.

7 Conclusion

In short, we have studied the photon blockade effects in a
cavity QED system, where the single-mode cavity is gain and the
emitters are loss. Through the analytical solution and numerical
results, we, respectively, obtain the equal-time second-order
correlation functions to describe the intensity of photon
blockade for different cases. We find an interesting
phenomenon that there is an EP2 in the system in specific
conditions. At this point, the perfect photon antibunching can
be observed. Moreover, we find that the physical mechanism of
the photon blockade is completely different in PT-symmetric and
PT-symmetric-broken regions. For the PT-symmetric region, the

anharmonicity of the eigenenergy spectrum occurs, which is
similar to CPB. However, in the PT-symmetric-broken region,
the interference paths with the photon gain and loss result in
UPB. At EP2, the UPB phenomenon is most obvious.

Then, we derive the pseudo-Hermiticity conditions for
predicting EP3. The PB effect is also improved at EP3, and we
can also explain the photon blockade in different regions.
Compared with EP3- and EP2-enhanced PB in different
pseudo-Hermiticity conditions, we find that the EP2-enhanced
PB may exhibit smaller second-order correlation function. Our
work provides a new theoretical foundation for the realization of
strong PB effects without strong enough non-linearity of the
system under the existing experimental conditions. Our research
mainly focused on the theoretical model of photon blockade
without experiments. With the development of quantum
technologies, we believe that high-quality single-photon
sources will be prepared based on EPs in the future.
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Appendix A

When two QEs are close enough, the dipole–dipole interaction
(DDI) between two QEs will not be neglected. Hence, the Hamiltonian
in Eq. 1 will add the DDI term, i.e.,HI � J(σ†1σ2 + σ1σ

†
2), where J is the

strength of DDI. Using the same method in Section 4, we obtain the
pseudo-Hermitian conditions of the system as

κ � −2γ, δ1 � −δ2 � δ, δ � ±

����������
g2 − J2 − γ2

4

√
. (A1)

Here, we take g1 � g2 � g for simplicity. In this case, the
coefficients in Eq. 17 become

c2 � 0,

c1 � −δ2 + 3
4
γ2 − 2g2 − 0,

c0 � 2g2J. (A2)

Specifically, we choose J � 0.2g, which satisfy the condition of
δ2 ≥ 0. In Figure 15, we plot the real and imaginary parts of the
solutions of Eq. 17. It is not difficult to find if one of the roots (Ω0)
is real and the others (Ω±) are a pair of complex conjugates.
This result shows that there is a typical EP2 at g/γ � gEP2/γ �
0.711.

FIGURE 15
Real (see panel (A)) and imaginary parts (see panel (B)) of the eigenvalues Ω0 (see the black lines) and Ω± (see the red and blue lines) versus the
coupling strength g/γ in the conditions of Eq. (A2). The parameters are chosen as J � 0.2g.
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