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The study of nonlocal nonlinear systems and their dynamics is a rapidly increasing
field of research. In this study, we take a closer look at the extended nonlocal
Kadomtsev—Petviashvili (enKP) model through a systematic analysis of explicit
solutions. Using a superposed bilinearization approach, we obtained a bilinear
form of the enKP equation and constructed soliton solutions. Our findings show
that the nature of the resulting solitons, such as the amplitude, width, localization,
and velocity, can be controlled by arbitrary solution parameters. The solutions
exhibited both symmetric and asymmetric characteristics, including localized
bell-type bright solitons, superposed kink-bell-type and antikink-bell-type
soliton profiles. The solitons arising in this nonlocal model only undergo elastic
interactions while maintaining their initial identities and shifting phases.
Additionally, we demonstrated the possibility of generating bound-soliton
molecules and breathers with appropriately chosen soliton parameters. The
results of this study offer valuable insights into the dynamics of localized
nonlinear waves in higher-dimensional nonlocal nonlinear models.
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1 Introduction

The study of nonlinear waves has been a captivating subject for many researchers for
centuries. With recent advancements in mathematical methods, computational techniques,
and experimental demonstrations, the investigation of nonlinear waves has gained
increasing attention [1]. Described by nonlinear partial differential equations (PDEs), the
study of nonlinear waves encompasses a wide range of disciplines, including mathematics,
physics and engineering. As computational power and data analysis methods continue to
improve, researchers are exploring new techniques to leverage the potential of nonlinear
waves in various fields such as telecommunications, optics, and material sciences [1-3]. The
exploration of these waves requires a combination of precise mathematical modeling, solving
equations, analyzing their dynamics, and verifying the results through experiments.

Solitons are unique self-sustaining waves that maintain their shape and velocity as they
propagate. Unlike other waves that tend to spread out or change form, solitons maintain
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their characteristics even as they move through various systems,
including water, plasma, and optical fibers. Mathematically, solitons
are solutions to nonlinear PDEs in which the nonlinearities of the
underlying physical systems balance the dispersive effects. These
solutions exhibit notable properties such as energy conservation and
unchanging waveforms [4]. Although first discovered in water
waves, solitons have since been observed in many other areas of
study, including plasma physics, nonlinear optics, and even some
biological systems. However, solitons are just one type of nonlinear
waves with distinct properties, and exploring their dynamics holds
tremendous promise for a multitude of applications, including
telecommunications, optics, Bose-Einstein condensates, water
waves, and biological systems [1-6].

The study of nonlinear waves is a fascinating field that
encompasses various models, including the Korteweg-de Vries
(Kdv), (KP), (sG),
Boussinesq, and nonlinear Schrdédinger (NLS) equations [1-4].

Kadomtsev—Petviashvili sine-Gordon
The KP equation, introduced by Boris Borisovich Kadomtsev
(1928-1998) and Vladimir Iosifovich Petviashvili (1936-1993),
models the propagation of shallow-water waves in the presence
of weakly nonlinear restoring forces and frequency dispersions [7].
This is a two-dimensional integrable generalization of the classical
KdV equation, which describes the propagation of unidirectional
shallow-water waves. Both KP and KdV equations are examples of
completely integrable systems and admit a range of solutions,
including N-soliton solutions, Lax pairs, solvable inverse
scattering transform (IST), Painlevé integrability, and exact
analytical solutions for localized, interacting, periodic, elliptic,
and quasi-periodic nonlinear waves. Additionally, they have an
infinite number of conservation laws [8-10].

The KdV equation, introduced by Dutch mathematicians
Diederik Johannes Korteweg (1848-1941) and Gustav de Vries
(1866-1934) in 1895, is a mathematical model that effectively
describes the long-term evolution of dispersive wave phenomena.
In the KdV equation, the nonlinear influence of wave steepening is
balanced by the dispersion effect [11]. The KP equation is an
extension of the KdV equation and includes wave dynamics in
the transverse direction. The KdV and KP equations can be written

as follows, respectively [1-11]:

Uy — 6uuxx t Uyxx = 0) (1)

(g = 6Ly + Usnr), + 3071y, = 0. )

The wave functions u = u(x, t) and u = u(x, y, t) are both scalar fields,
where x, y, and t € R represent the longitudinal spatial coordinate,
transverse spatial coordinate, and temporal variable, respectively.
The subscripts indicate partial derivatives with respect to the
associated variables. The KP equation is commonly used to
model water waves with weak surface tension (KP II equation,
with 0 = 1) or waves in thin films with strong surface tension (KP I
equation, with o= 1) [3, 12, 13]. In addition to water waves [14-17],
the KP equation has been applied as a model for other physical
systems, such as nonlinear optics [18], ferromagnetic media [19],
plasma physics [20], Bose-Einstein condensates [21], and many
more.

Ma et al. (2021) developed an extended yet integrable KP
equation and obtained soliton, breather, and lump interaction
solutions using the Hirota bilinear form [22]. In a separate study,
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they extended the integrable KP equation to a 3D case and observed
abundant dynamic behaviors, such as fusing and splitting
phenomena in lump wave interactions [23]. Recently, Rao et al.
(2021) have studied resonant collisions among localized lumps and
line solitons of the KPI equation, resulting in the discovery of “rogue
lumps,” which are completely localized in both space and time and
possess the features of two-dimensional rogue waves. Analytically,
these solutions are constructed using the KP hierarchy reduction
method and Hirota’s bilinearization procedure, and the phenomena
of resonant interactions and rogue lumps are expected to persist for
other
dimensions [24].

nonlinear evolution equations with two spatial

Whereas solitons in one-dimensional systems have already
garnered significant attention from researchers due to their
intriguing complexity, solitons in higher-dimensional settings
often display more complex dynamics arising from the interplay
between different types of nonlinearity, dispersive effects, geometric
factors, and varying nonlocalities. Carr and Brand (2008) explored
the extension of 1D solitons into 2D and 3D in a book chapter,
highlighting that trapped BECs can stabilize these solitons and lead
to the emergence of new nonlinear objects and topological solitons,
depending on whether the nonlinearity is repulsive or attractive
[25]. Mihalache (2021) provided a comprehensive overview of
recent theoretical and experimental studies on localized
structures in optical and matter-wave media, covering various
physical contexts such as light bullets, solitons, and rogue waves
[26]. Malomed’s (2016) review on multidimensional solitons
discussed the stabilization of soliton states in both 2D and 3D
physical settings. In 2D, the solitons form a stable ground state,
whereas in 3D, they form metastable solitons [27]. In his latest
monograph, published in 2022, Malomed addressed the potential
benefits of extending solitons from 1D to higher-dimensional
systems while highlighting the challenges, particularly regarding
stability. These challenges open up many interesting and unresolved
problems in the area of nonlinear waves [28].

The NLS equation is a well-known integrable system that was
initially proposed as a nonlocal nonlinear evolution equation. This
equation has an infinite number of conservation laws in the context
of Hamiltonian dynamical systems, making it integrable and also
exhibiting parity-time (P7) reversal symmetry in its self-induced
potential [29, 30]. The feature of nonlocality in the NLS equation can
appear in the spatial, temporal, or both spatial and temporal
variables. Several other integrable nonlocal nonlinear evolution
equations have been identified, which can be obtained through
simple symmetry reductions of the general
Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy that is solvable
by the inverse scattering transformation [31]. In (1 + 1)-dimensions,
other nonlinear evolution models such as the derivative NLS,
modified Korteweg-de Vries (mKdV), and sine-Gordon equations
also exhibit nonlocality. In (2 + 1)-dimensions, other PDE models
such as the three-wave interaction, generalized NLS, and
Davey-Stewartson (DS) display this
property too [32].

Research on nonlocal models in the NLS equation and its related

equations nonlocallity

models, such as the Gross-Pitaevskii (GP) equation, has gained
momentum in the third decade of this century. For example, Li et al.
(2020) presented one- and two-bright-soliton solutions of the
generalized nonlocal GP equation with an arbitrary time-
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dependent linear potential obtained through the improved Hirota
method, which can describe the dynamics of soliton solutions in
quasi-one-dimensional BEC and may be useful for understanding
physical phenomena in nonlinear nonlocal soliton equations [33].
Interestingly, Yu et al. (2021) combined the feature of both locality
and nonlocality in the NLS equation and obtained its one- and two-
soliton solutions using Hirota’s bilinearization transformation. This
mixed local-nonlocal nonlinear system can be useful for understanding
physical phenomena in nonlinear wave propagation and applied in
fields such as nonlinear optics and meteorology [34]. Recently, Li et al.
(2023) presented a novel application of Darboux transformation for
solving the (2 + 1)-dimensional nonlocal NLS equation with reverse
time field g(x, y, — ), deriving various soliton solutions on a background
of kink waves, which can be extended to other nonlocal nonlinear or
higher-dimensional soliton equations [35].

Apart from the above NLS type nonlocal systems, the KP
equation has been the subject of investigation for nonlocal
models and their corresponding dynamics, with rich variations of
wave motion observed in lump solutions, line breathers, and
periodic normal breathers [36]. These nonlocal KP equations
were inspired by Lou’s Alice-Bob (AB) system, which explored
two-place physics and multi-place physics [37-39]. Lou and
Huang’s pioneering work in 2017 established that an extension to
shifted parity and delayed time reversal was advantageous for
seeking group-invariant solutions for such models [38].

Recent studies in the published literature have employed the Hirota
bilinear technique to explore various extended KP equations and
nonlocal AB systems, highlighting the integrability of these systems.
Despite the variety of solutions obtained—including solitons, breathers,
lumps, and rogue waves—they share a common approach. Among the
novel solutions discovered, some exhibit intriguing dynamical
behaviors, such as semi-rational solutions with elastic interactions
and symmetry-breaking solitons. For instance, Manukure et al.
(2018) provided conditions for the rational localization of solutions
and presented lump solutions for an extended KP equation [40]. Fei
et al. (2019) derived the nonlocal AB-Boussinesq system for surface
gravity waves, investigated its residual and finite symmetries, and
obtained several exact solutions [41]. Wu and Lou (2019) also found
solitons, breathers, and lump solutions using shifted parity and delayed
time reversal to explore the exact solutions of the AB-KP equation [42].

Guo et al. conducted two studies using the Hirota bilinear technique
to investigate an extended KP equation. In their 2020 study, they
obtained exact analytical expressions for the higher-order soliton and
breather solutions of the equation and discovered novel semi-rational
solutions that exhibit elastic interactions [43]. In their 2021 study, they
constructed multiple-order line rogue wave solutions using the Hirota
bilinear method and a symbolic computation approach [44]. Shen et al.
(2020) investigated the nonlocal AB Benjamin-Ono system using parity
and time-reversal symmetry reduction and obtained breather, lump, and
symmetry-breaking soliton solutions via an extended Backlund
transformation and Hirota bilinear form [45]. Cao et al. (2021)
studied another nonlocal ABKP system and proposed a constant
dependence in the Bécklund transformation to solve the system
using the Hirota bilinear form. They found that this constant affects
the symmetry-breaking characteristics of the solutions and obtained
various analytical solutions, including single solitons, breathers, lumps,
entangled lumps, and a pair of stripe solutions [46]. Recently, Dong et al.
(2023) presented an integrable AB system for the (1 + 1)-dimensional
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Boussinesq equation with shifted parity and delayed time-reversal
symmetry. To obtain explicit solutions, including line solitons,
breathers, and lumps, the authors introduced an extended Backlund
transformation [47].

In this study, we aim to investigate the nonlocal version of the (2
+ 1)-dimensional extended Kadomtsev-Petviashivili (eKP) equation
introduced by Manukure et al. (2018), which they solved to obtain
the lump wave solution using the Hirota bilinear method with
quadratic polynomials [40]. The eKP equation is given by

(U + OUL, + Uyry), — Uyy + QU + Pudy, = 0, (3)

where x, y, and ¢ represent the two spatial dimensions and time variables,
respectively. It features second-order temporal and spatio-temporal
dispersion coefficients a and f3, respectively. While the equation is
non-integrable for arbitrary o and f values, it becomes Painlevé
integrable when a = —f*/4 [22]. The literature reports various exotic
nonlinear wave solutions for this model, such as solitons and breathers
[43], multi-line rogue waves [44], and interacting wave structures [22].
Although the local eKP Eq. 3 has been extensively studied, there has been
little investigation of its nonlocal counterpart, which is the focus of our
research. We seek to utilize the AB approach to construct exotic nonlinear
wave solutions, such as solitons and lumps, for the nonlocal version of the
eKP Eq. 3 and examine their evolutionary dynamics under nonlocal
effects to uncover physically interesting wave phenomena. Our objective
is to contribute to the understanding of the nonlocal eKP equation and
provide insights into its potential applications in various fields.

The remainder of this article is organized as follows. In Section 2,
we derive the nonlocal version of the eKP Eq. 3 and provide its
Bécklund transformation and bilinear formalism. Section 3 presents
one- and two-soliton solutions, including their propagation
characteristics and symmetric and asymmetric interactions, as
well as bound states and breathers. In Section 4, we introduce a
rational and well-localized lump wave solution. Finally, we conclude
with a summary of our findings in the final section.

2 Backlund transformation and bilinear
form

By implementing the AB physics approach, the nonlocal
counterpart of the considered Eq. 3 can be obtained through the
substitution u (x, y,t) = % (P(x,9,t) + Q(x, y,1)):

a(Ptt + Q!t) + ﬁ(Pyt + Qyt) + (th + th) - (Pyy + ny)
+ S(Px + Qx)2 + 3(P + Q) (PXX + QXX) + (PXXXX + Qxxxx) = 0'
(4)

Further, it can be explicitly written in the following two-coupled
equations:

Py + PPy + Py — Py + Pryax
3
+5 (P + Q)" +3P(Pec + Qu) + H(P,Q) =0, (52)
aQtt + ﬁQyt + th - ny + Qxxxx

+§(Px+Qx)2+3Q(Pxx+Qxx)_H(P:Q):O> (5b)
where  Q(x,y,t) is related to  P(x,y,t) through
Q(x, y,t) = PXP/PYy = P(=x + po,—y + qo, —t +19), PT; are
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parity transformation and time reversal, respectively, and H(P, Q) is
an arbitrary function of both P and Q, which can have infinitely
many choices. Moreover, we choose the following form for H(P, Q):

H(P,Q) == (P2-Q>- (P-3Q)P. + (Q-3P)Q.). (6)

W

Finally, we obtain the required Alice-Bob nonlocal version of the
eKP Eq. 3, which we refer to as the extended nonlocal KP (enKP)
model, given as follows:

4(“Ptt+ﬁpyt+th_Pyy+Pxxxx)+3(Px+Qx)(3Px+Qx)
+3(P+Q)(3Pxx + Qxx) = 0, (7a)

4(0¢Qtr + /3er + th - ny + Qxxxx) +3 (Px + Qx) (Px + 3Qx)
+3(P+ Q) (Pyx +3Qu) = 0. (7b)

It is interesting to check the integrability of the model, for
which we have performed the Painlevé analysis [48] for the above
Eqs 7a, 7b in the local setting for simplicity. From the result, we
found that the above coupled Eqs 7a, 7b becomes non-integrable
not only for arbitrary « and 3 parameters (as expected) but also
for B = —a’/4, for which the single-component eKP Eq. 3 is
integrable. We do not present the details of the Painlevé analysis
for the sake of space and its not-so-interesting mathematical
equations. One can also view the above enKP model Eqs 7a, 7b as
a particular form of coupled KP systems. For example, the enKP
system Eqs 7a, 7b can be obtained as a special case from the
following generalized version of coupled KP type equation
(similar to the equations studied in Refs. [39, 49]) for an
appropriate choice of y;, j = 0, 1 ...10, coefficients:

yOPtt + [(VIP + yZQ)t + (Y3P + Y4Q)xxx + (YSP + ysQ)Px

+ (P + 7,QQu] . + Yo Pyy + 1Py = 0, (8a)
ontt + [(le + sz)t + (V3Q + y4P)xxx + (Y5Q + yGP)Qx
+(1,Q + Y P)Psli + ¥5Qyy + ¥10Qy: = 0. (8b)

To be precise, our enKP model Eqs 7a, 7b can be reduced
from the above Eqs 8a, 8b for the choice yo =4a, y; =y =4, y, =
Y4=0,y5=96=9, Y7 = ys = 3, y9 = —4, and y;o = 4f. In order to
solve our intended enKP model Eqs 7a, 7b, we adopt Hirota’s
bilinearization method [50-54], which is one of the efficient
analytical techniques available for solving different classes of
nonlinear equations. For this purpose, we consider the following
superposed variable transformation:

P=2(InF), + A(InF),,
Q=2(nF), - A(InF),,

(92)
(9b)

where F(x, , ) is the required function to be determined while A is an
arbitrary real constant. It is clear to find that one can obtain the standard
bilinearizing transformation when A = 0. However, we utilize the
superposed bilinear transformation with A # 0 to deduce the
Note that the superposed
bilinearization Eqs 9a, 9b is quite different from the standard
bilinearization procedure [50-54], and there are a few recent reports

required  bilinear  equation(s).

on similar superposed techniques in the literature [37-39, 46]. On
applying the above bilinearizing transformation to Eqs 7a, 7b and after
its simplification, we get the following bilinear equation in a standard D-
operator form:
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(DD, + D} - D, + aD} + BD,D,)F - F = 0, (10)
where D;j=x,y,t are standard Hirota derivatives [50]. Further, the
above bilinear equation can be written in its equivalent expanded
form as below for a clear inference of Hirota derivatives.

(FFy = FyF,) + (FFygxy = 4FF e + 3F2,) = (FF,, - F)

+a(FFy - F}) + p(FF,, - F,F,) = 0. (11)
Thus from the above bilinear Eq. 10 or its equivalent form Eq. 11,
one can find a number of exact solutions to the considered enKP Eqs
7a, 7b through different forms of explicit F(x, y, t) computed for
appropriate initial seed solutions.

3 Dynamics of solitons and their
interactions

In this section, we construct exact soliton solutions of the
enKP model Egs. 7a, 7b
propagation as well as interaction dynamics in detail for different

considered and explore their

choices of parameters.

3.1 First-order solitons

To obtain the first-order (or one) soliton solution of the
considered model, we consider the following form of initial seed
solution:

F(x, y,t) = cosh (7, (x, y,1)), (12)

1, (5, v, 1) = k1 ((x = po/2) + 11 (y — qo/2) + my (t —1o/2)).
On applying the seed Eq. 12 into the bilinear form Eqs 9a,

where

9b and solving it, we obtain the explicit form of m; as
my = (1= Bl £ /(1 + BL)* ~ 4a(4k} ~ ) )/2a. Thus, from the

dependent variable transformation Eq. 11, we obtain the exact

form of the first-order soliton solution as given below.

P(x, y,t) = 2kisech’ (,) + Ak, tanh (7,),
Q(x, y,t) = 2k’sech® (11,) — Ak, tanh (7,).

(13a)
(13b)

The above solution preserves symmetry under both spatial (x —
y) inversion-shift and time reversal, which can be represented as
Q(x, y, t) = P(=x + po, — ¥ + qo>» — t + 1p), and quantifies that the
dynamics of mode Q can be explored straightforwardly through the
space-time reversal operation on the mode P. The solution Eqs 13a,
13b has five arbitrary parameters (k;, [}, A, &, and ) in addition to
space-time inversion parameters po, qo, and r,. Here the first two
parameters k; and /; represent the amplitude of the bell-kink soliton
and spatial localization (soliton angle), respectively. However,
among the latter, the parameter A denotes the presence and
absence of superposed kink-wave with bell-type soliton, and its
magnitude contributes to the amplitude of the background wave.
The parameters o and f3 are real system quantities arising from the
model Eqgs 7a, 7b, and they control the second-order temporal and
spatio-temporal dispersion, which shift the resulting soliton in
spatial and time domain. It is essential to note from the above
solution Eqs 13a, 13b that the superposed bilinear transformation
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FIGURE 1
The evolution of symmetric bell-type bright soliton (P

Q) arising for vanishing background (A = 0, absence of superposed wave) at three different

times (t = =1.0, 0, 1.0) for ; = 0.5 (left panel) and (; = =0.5 (right panel) with other values are kept same as « = =0.25, =1,k =1, and pg = qo = 1o = 1.

enables us to obtain rich characteristics arising from both localized
bell (sech) and kink (tanh) type wave structures. Here the amplitude
of bright bell-type soliton is described by 2k?, while Ak, defines that
of the background kink-soliton. At the same time, their velocity
along xt- and yt-planes are defined by —m; and —m,/I;, respectively,
where m; takes the form as given below Eq. 12 involving all arbitrary
parameters. Further, the amplitude defining parameter k; along with
l;, « and f3 influence the position of the soliton at any given time.

One of the exciting features of the present solution Eqs 13a,
13b depends on the superposition parameter A by admitting
symmetric or asymmetric solitons based on its absence (A = 0)
or its presence (A # 0), respectively. Here we classify the soliton as
symmetric and asymmetric purely based on the nature (appearance)
of the profile structure. We found that the symmetric soliton results
in a bell-type soliton (the so-called bright soliton, a localized and
stable profile on zero background). We have shown such symmetric
profiled bright soliton evolution in Figure 1 for the parametric
choice @ = -0.25, =1, k; = 1,and [; = 0.5 (I; = -0.5) by keeping the
nonlocal parameters py = qo = 7o = 1. Further, this symmetric
property of the present eKP system can be interpreted as
degenerate-type solitons when their nature and amplitude are
precisely the same in both modes P and Q (i.e., P = Q) at any
specific time. However, in the latter case, asymmetric soliton
resulting from the non-vanishing background parameter (A # 0)
leads to the formation of a superposed profile comprising both
bell and kink solitons. This superposed wave structure can be
referred to as bell-type bright soliton appearing on a kink-
soliton and anti-kink soliton backgrounds, respectively, in
components P and Q or vice-versa. Contrary to the previous
case, the present asymmetric soliton leads to non-degenerate
structures with distinct natures in each component. For a better
understanding, we have depicted an asymmetric superposed
soliton in Figure 2 for the choice &« = -0.5, f = 1, k; = 1.25, and
I, = 0.5 with A = 0.5. Note that superposed solitons in both
components become equal under the nonlocal (two space-
reversal and time-inversion) symmetry transformation
Q(x, y,t) = P;‘Pﬁ’P& =P(—x+ po,—y +qo,—t +19), which can
also be visualized from the demonstrated Figure 2.

We wish to note despite the fact that the two-coupled enKP
model Eqs 7a, 7b is non-integrable (at least in the Painlevé sense, as
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mentioned in Section 2), it is still possible to observe soliton-like
behavior in the obtained solutions to Eqs 7a, 7b. These “solitons”
are not true solitons in the strict mathematical sense, but rather
they are solitary waves that behave in a similar manner to solitons,
like the elastic nature of collision (as shown in the forthcoming
Section 3.2.1) where they reappear without changing their shape or
amplitude and emerge from the collision essentially unchanged.
For the sake of simplicity and ease of understanding, it is often
convenient to refer to these waves as solitons, even though they are
not strictly solitons.

3.2 Second-order soliton solution and
interaction dynamics

Next, we construct a two-soliton solution to the enKP
model Eqs 7a, 7b. For this purpose, we extend the similar
procedure as performed in the case of first-order soliton
solution by considering the following form of initial seed
solution for F:

F(x, y,t) = By cosh(n, +1,) + By cosh (1, — 1,), (14a)

where

n; (x, yt) = kj ((x = po/2) +1;(y — qo/2) + m; (t = 70/2)), j=1,2,

while B; and B, are functions to be determined. On substituting the
above seed into the bilinear Eq. 10 or Eq. 11 and solving
categorically, we obtain the explicit form of amplitude parameters
as below,

By =\ (1+Bl) (1 + Bl) + da(12kik, — 8 + ) + L) — y, 7,0

(14b)
B, = \/(1 + A1) (1 + Bl) — 4a(12k Ky + 8 (K2 + K2) — L) — 9,7,
(14¢)
where the quantities y; and y, are identified as
yy = \1+4a (@ - 4k) + 2L+ FE, j=1,2 (14d)

In the above solution, the form of mj,j=1,2, reads as below.
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FIGURE 2

Nature of asymmetric structured one-soliton evolution resulting in the combined bright bell-type and kink-type soliton in mode P for A = 0.5 with
a=-05=1k =1251,=05andpg=qgo=ro=1att=0.75. The evolution in Q is nothing but the nonlocal symmetry-preserving pattern of the mode P

revealing the superposed bright soliton with anti-kink soliton.

m; = 2—10‘(—1 Bl + (14 L)~ da (4 - F) ) j=12

(14e)

Thus, upon substituting the above explicit expression for F
into the dependent variable transformation Eqs 9a, 9b, the
explicit form of the required two-soliton solution can be
obtained as shown below:

(ki + k2)* By cosh (1, + 1,) + (ks = ky)’ B, cosh (17, = 1,)
By cosh(n, +1,) + By cosh (1, — 11,)
K . 2
(ks + ky)B, sinh (1, +1,) + (ki = ky)By sinh (5, - 112)> }
B, cosh (1, +11,) + B, cosh (11, — 17,)

<(k1 +k;)By sinh (1, +1,) + (ki — k;)B, sinh (17, — m))

+A ?
By cosh(n, +1,) + B, cosh (1, — 11,)

P(x,y,t) = 2[

(15a)

(ki +k,)*By cosh (4, +,) + (ky — k,)*B, cosh (4, — 1)
B cosh (1, +1,) + B, cosh (7, — 1)
_ (ky + kz)By sinh (17, +11,) + (k1 — ky)B, sinh (77, — ’72)>2]
B, cosh (17, +1,) + By cosh (7, — 11,)
_A( (ky +k)By sinh (1, +1,) + (ki — k»)B, sinh (1, — 112)>
B cosh(#, +1,) + B, cosh (#, — 1,) ’

Q(x)}”t) :2[

(15b)

Note that the above two-soliton solution preserves the combined
(xy) space-inversion and time-reversal symmetry given by Q =
P(—x + po, — ¥ + qo» — t + 19) as required. The above solution
Eqs 15a, 15b consists of four arbitrary parameters (kj and l] withj=1,
2), along with three nonlocal real parameters (py, qo, 7o), and two
arbitrary real system parameters (« and f). Interestingly, the above
explicit two-soliton solution involves a combination of both
hyperbolic and trigonometric functions for different complex
conjugate values of parameters, giving rise to localized and
periodic structures during their propagation. The identities of
these two solitons can be controlled by appropriately tuning the
available arbitrary parameters, as discussed in the one-soliton case.
Hence one can obtain the occurrence and absence of the hyperbolic
and trigonometric functions appearing in the solution Eqs 14a-14e.
In return, we can witness several physically attractive nonlinear wave
profiles that result in different types of dynamical characteristics,
and we shall discuss each of them in the forthcoming part.
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3.2.1 Elastic collision of solitons

One of the fundamental properties of the two-soliton
solution Eqs 14a-14e is to study the collision behaviour. In
the present enKP model, the two solitons undergo an elastic
collision without changing their identities, such as amplitude,
width, and velocity, except for a slight phase shift. Notably, we
can categorize the collision scenario into two branches based on
the vanishing and non-vanishing background parameter A.
Similar to the one-soliton case, the present two-soliton
solution described by Eqs 14a-14e and Eqs 15a, 15b admit
symmetric and degenerate (P = Q) bell-type bright solitons
on a vanishing (zero) background when the parameter A = 0.
For this case, one can easily observe their elastic type head-on
collision with a clear phase-shift after interaction as depicted in
the left panel of Figure 3. On the other hand, when the
background parameter is non-zero A # 0, we obtain localized
bell-type solitons appearing on a kink-anti-kink background in
PQ components, which arise asymmetrically in their amplitude
and localization. Here also, the basic bell-solitons undergo only
elastic collision and the kink-anti-kink background induces a
small (observable) change in their amplitude as shown in the
middle and right panels of Figure 3 for A = 0.2. On increasing
the parameter A we can observe a steady increase in the kink
and anti-kink background on which the bright solitons exist
which consequently modifies the amplitude of asymmetric
solitons before and after the interaction.

3.2.2 Generation of soliton bound states

Beyond the standard elastic collisions discussed above, the
two-soliton solution Eqs 15a, 15b leads to various other exciting
dynamics, which can be achieved through the appropriately
chosen soliton parameters. Soliton bound states are a special
entity that can be generated when the underlying solitons travel
with the same/resonance velocity. Such solitons result in long-
lasting interaction without passing through each other and
exhibit periodic attraction and repulsion throughout their
propagation. The soliton bound states exhibit various features
in certain models, including parallel and periodic-type
propagation dynamics. The former seems to be both solitons
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FIGURE 3

Head-on interaction of two solitons in the enKP system Eqgs 7a, 7b undergoing elastic collisions. Left panel P = Q: Elastic collision of symmetric
solitons for A = 0. Middle P and Right Q panels: Elastic collision of bright solitons with induced amplitude by kink—anti-kink background when A = 0.2. The
other parameters are chosen as a« = =0.5, § = 1.0, k; = 1.0, k» = 0.75, [; = 0.5, [, = =0.75, and pg = go = ro = 1.0 at a given time t = 0.5.
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FIGURE 4

Evolution of two soliton bound states resulting in a chain-like pattern in the enKP system Eqs 7a, 7b. Left panel: Bound state of symmetric profiled
solitons for vanishing background A = 0. Middle and right panels: Asymmetrically structured soliton bound states for non-vanishing background A = 0.75.
Other parametersarea =-15,3=1.0,k1 =k, =1.0,[, =15+ [, =15~} and pg = Qo = ro = 0.5. The bottom panels show the corresponding contour plots.
Here and in the forthcoming figures, we have plotted only the absolutes |P| and |Q).

traveling adjacent to each other as there is no contact/
interaction. However, for the latter case, one can observe a
chain-like pattern formation of the soliton bound-state, which
can also be referred to as soliton-chain. In recent years, these
resonant velocity solitons have been called soliton molecules too.
The present enKP model Eqs 7a, 7b admits periodically
oscillating and parallel soliton bound states along the spatial
coordinates. The dynamics of bound state exhibiting chain
structure involving two symmetric and asymmetric solitons
are shown in Figure 4 resulting from zero (A = 0) and non-

Frontiers in Physics

zero (A # 0) backgrounds, respectively. One can proceed further
to obtain the parallel (bound state) propagation of these
symmetric-asymmetric solitons for an appropriate choice of k;
and [; parameters.

3.2.3 Formation of soliton breathers

Apart from the above-explained bound states, the two-soliton
solution Eqs 15a, 15b exhibits breather characteristics. To
understand the dynamics of breathers, let us consider the
parametric restriction k; = ki and I, = If (which eventually gives
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FIGURE 5

Nature of inclined/oblique breathers localized neither in x nor in y for the enKP system Egs 7a, 7b resulting from two-soliton solution Eqs 16a—16¢ for

a specific choice of soliton parameters. Left panel: Degenerate type (P = Q) symmetric breather on vanishing A = 0 background. Middle and right panels:
Breathers with asymmetric structure (P # Q) on non-vanishing A = 1.5 background. Other parameters for both cases are taken as a = =15, § = 1.0,
ko = k; =05-i b= II =-0.5+0.5/,and po = go = ro = 0.1 at t = 0.5. The bottom panels show the corresponding contour plots.

my = mf). For this choice, one can rewrite the general form of
F(x, y,t) in Eq. 14a as below.

Fbreather (x> Y t) = Bl cosh (El (x) Y t)) + BZ cos (EZ (x> Y t))) (163.)

where Ei(x, y, t) = 2kip(x — po/2) + 2(kirhir — kihiD(y — qo/2) +
2(kygmyg = kypmy)(t = 1o/2) and Ex(x, y, t) = 2ky1(x = po/2) + 2(kirh;
+ kihR) (Y = qo/2) + 2(kirmyp + kypmi)(t — 1o/2). Here kg, Lig
and m;g represent the real part of k;, [; and m;, respectively, while
kip, iy and mj; denote their imaginary parts. The above explicit
form of Fypeather along with Eqs 14a—14e results in the following

two-soliton breather solution:

S[kfRBl cosh(E;) — kf,Bz cos (Ez)]
B, cosh(E,) + B, cos(E,)
_ klRBl Sinh(El) - kuBz sin (Ez) ?
B, cosh (E,) + B, cos (E,)
kizB; sinh (E,) — kB, sin (E,)
+2 N
B, cosh (E,) + B, cos(E,)
8 [kfRBl cosh(E;) — kfIBz cos (Ez)]
B, cosh (E,) + B, cos(E,)
<k1RBl sinh (El) - kuBz Sil’l(Ez))2

Pbreather (X, b2 t) =

(16b)

Qbreather (X, 2 t) =

B, cosh (E,) + B, cos(E,)

~ 2A(k,RBl sinh (E,) — ky;B, sin(E2)>

B, cosh (E,) + B, cos (E,) (160)
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From the breather solution reduced from the two-soliton
soliton, we observed that both participating solitons undergo
mutual interaction and give rise to an oscillating wave structure
with periodically varying amplitude and position/localization.
Remarkably, these breathers can be further classified into the
following three types based on the appropriately chosen choices
of k; and I, parameters:

« inclined or oblique or general breathers without localization in
xory,

o x-localized breathers with periodical variation along y, and

o y-localized breathers with periodical variation along x.

We can shed more light on these different breathers by analysing
the above solution Eqs 16a, 16b. Here the cos-hyperbolic term
appearing in Eq. 16a is responsible for the type of its localization
(whether localized in x or y), while the cosine function facilitates the
periodic oscillation of the breather. To be precise, when k;glir — kil #
0 and k, i # 0, we obtain inclined breathers which is neither localized in
x nor in y. To illustrate the fact more clearly, we have shown such kinds
of inclined breathers in Figure 5 for particular choices of parameters as
given in the captions. When kgl — kyfir = 0 and keep kg # 0, the
form of E(x, y, t) reduces to E;(x, t) = 2kip(x — po/2) + 2(kygmig —
kymyp)(t — 19/2) and the resultant solution becomes simpler than that of
Eqgs 16b, 16c. The corresponding solution gives a breather oscillating
along y and localized in the x direction, which falls under the second
case. Such x-localized-y-periodic breathers are depicted graphically in
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FIGURE 6

Breathers localized in x and periodic in y arising from two-soliton solution Eqs 16a-16c for the choice k; = k; =1-05iand , = [I =-0.25+0.5/.
Here we obtain (left panel) degenerate type P = Q symmetric breather on vanishing A = 0 background and (middle and right panels) asymmetric breathers
P # Q on non-vanishing A = 1.05 background with other parameters similar to that of Figure 5.
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FIGURE 7

The evolution of breathers localized in y and periodic in x at time t = 0.5 in the enKP system Eqs 7a, 7b arising from two-soliton solution for the choice
ko = k] = -0.75iand [ = [; = 0.5 + 0.5i. Here we obtain (left panel) degenerate type P = Q symmetric breather on vanishing A = 0 background and (middle
and right panels) asymmetric breathers P + Q on non-vanishing A = 0.75 background with other parameters similar to that of Figure 5.

Figure 6 by keeping all other parameters the same as that of Figure 5.
Finally, the third type of breather can be obtained when k;r = 0 and
keeping ki gl r — ki1 # 0, the corresponding E; (x, y, t) form reduces to
Ei(y, ©) = —2kyih(y — qo/2) — 2kypmny(t — 19/2). The resultant simplified
form of y-localized breather solution can be written as below from Eqs
16b, 16c.

—2k,1B, [4k,; cos (E,) + Asin(E,)]
B, cosh (E;) + B, cos (E,)
k2, B2 sin® (E,)

Py—breather (x: Y, t) =

- . (%)
[By cosh (E;) + B, cos (E,)]
Q (x t) _ —ZkUBZ [4k1[ COoSs (Ez) — Asin (Ez)]
y-breather (X5 > )= B, cosh (E;) + B, cos(E,)
2 ;22
_ ki, B; sin” (E,) (17b)

[B; cosh (E;) + B, cos (E,)]*

The above solution represents the breather localized in y and
periodic along x, which is given in Figure 7 for completeness. Note
that here all three types of breathers admit single-peak structures with
symmetric character for vanishing background A = 0 and asymmetric
profiles for non-vanishing background A # 0. Further, one can control
other properties of these breathers by suitably tuning the arbitrary
parameters by following the above-mentioned relationships.
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3.2.4 Dynamics of periodic and rational line
solitons

The final class of nonlinear wave structures we obtain from the two-
soliton solution Eqs 14a-14e are rational line solitons and periodic
solitons/solutions by suitably tuning the k; and I; parameters. These
rational line solitons arise when the periodic functions play less or no
role; hence, the hyperbolic function gives a localized wave structure. Such
symmetric and asymmetric type rational line solitons are shown in
Figure 8. On the other hand, the periodic solitons become significant,
with the trigonometric/periodic functions becoming influential in
deciding the resulting dynamics, where the hyperbolic functions
localising the wave structures vanish and have no effect. For
completeness and better understanding, we have depicted asymmetric
periodic wave structures of the enKP Eqs 7a, 7b in Figure 9.

Additionally, one can obtain higher-order (three-, four-,..., N-)
soliton solutions comprising multiple solitons and analyze the
phenomena mentioned above, which is beyond the scope of the
present work and can be considered for future assignments.
Specifically, the study can explain the collision of multiple solitons,
the formation of multi-soliton bound states, the interaction between
solitons and bound states, and the collision dynamics of breathers with
solitons, bound states and breathers. Upon the construction of N-
soliton solution, one can investigate the dynamics of different pattern
formations leading to T, Y, M, H, and complex web-like wave structures
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The evolution of a rational line soliton arising from the two-soliton solution Eqs 14a—-14e of the enKP system Eqs 7a, 7b. Left panel: Symmetric
rational line soliton P = Q for A = 0. Middle and Right panels: Asymmetric rational solitons P # Q for non-vanishing A = 0.75 background. Other parameters
are taken as « = -=1.5, =10, k; = 055 + i/, ko, =055 -i, [ =, =05 and pp = go =rp = 0.1 at t = 0.5.

FIGURE 9

~3 -
5 ~/ =8

The evolution of asymmetric (P # Q) periodic solitons in the enKP system Eqs 7a, 7b arising from two soliton solution forA = 0.5, « = =0.5, $=1.0, k; =
i, ko = =i, ly = =15, =15, and pg = go = ro = 1.0 at t = O (top panels) and t = —0.5 (bottom panels).

through the resonant mechanism of multiple solitons with long-time
interactions. Further, the creation and analysis of other localized waves
like breathers, lumps, and rogue waves in the intermediate interaction
regime are also of considerable future interest [52, 56-58].

4 Dynamics of lump solutions

Lump solutions are localized rational nonlinear waves that
generally evolve in higher dimensional systems. This prototype
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structure gained much attention because of its occurrence in
several classes of physical systems. Though the lump can be
obtained through the long-wave limit by the reduction of N-
soliton solution, there are still several nonlinear models for
which the construction of lump solutions is tedious because of
their non-bilinearizable nature. To overcome this critical issue,
Ma has recently proposed a positive quadratic function
approach [36, 55], which can be successfully applied to both
integrable and nonintegrable equations admitting either
bilinear or multi-linear form. Even though the present enKP
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Nature of asymmetric (left and middle panels) and symmetric (right panel) single lump solution for the enKP system Eqs 7a, 7b. The parameters are
chosenasa=0.1,8=156,=05,0:=0.5,605=15, 60 = 0.75,and po = qo = ro = 0.5 at time t = 0.25 for (A) asymmetric lump waves in Pand Q with A = 0.75
and (B) symmetric lump wave in P = Q with A = 0. The bottom panels correspond to their contour plots.

model Eqs 7a, 7b admits a compact bilinear equation, we
construct a lump solution adopting Ma’s approach to test the
applicability of the alternate tool [36]. In order to find such a
lump solution, we choose the following positive quadratic
function for F(x, y,t) [58]:

Frump = X, (%, 9, £)? +x, (%, y, 1) + 6, (18a)
where
Po 9o 7o
4 =Gl(x—?>+92<y—?>+93(t—5), (18b)
Po 9o 7o
L =94(x—7)+95(y—7)+96(t—5). (18¢)
Here 9]-, j=1,2,...,7, are the real parameters to be determined. On

substituting Fiump given by Eq. 18a into the bilinear equation and
solving the resulting equation, we obtain

_ 93 (9; - 9:) + 2929596

6, e - BO; — abs, (18d)
26,6505 — 6205 + 626,
b= = 595 +Ze§6 = - pos — b, (18¢)
3
0, = 0" — 28020 + 20"
’ (9§+e§)(9395-9296)2[ 2~ 2P0 + a6,
+ (a2 + P00 — 62)°+62 (2 + f1)-
+2ap0506 + 20°62) + 20,05 (aB (6% + 62)
— BO% — 4a0505)+67 (B - 2a)0%
+202 - 280505 + Ca+ B O], (18f)

where the constraint condition 6505 — 8,0, # 0 has to be satisfied.
Further, we can obtain the explicit lump form using a variable
transformation. The evolutionary dynamics of the obtained lump
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waves are provided in Figure 10. The received lump waves have
four arbitrary parameters with the restriction 0505 — 0,6 # 0. It is
evident from the demonstration that the lump solution
approaches zero when (x, y) approaches infinity. The left and
middle panels show asymmetric singly localized bright-dark type
lump waves, appearing with the peak bump on the right and left
sides, respectively, for non-vanishing background A # 0.
Meanwhile, it is interesting to observe a bright symmetric
lump structure shown in the right panel for A = 0.

Apart from the above first-order lump solution, the occurrence
and extraction of higher-order lump solutions to address local and
nonlocal characteristics of the present systems involve tedious
mathematical derivations, which we have skipped in this work,
considering the length of the manuscript. One can study such
higher-order lumps and their interaction dynamics with other
localized nonlinear waves as open questions and shall form a
separate project.

5 Summary and conclusion

To summarize, the study investigates the dynamics of nonlinear
waves in a (2 + 1)-dimensional extended nonlocal Kadomtsev—
Petviashvili (enKP) model. The enKP model was obtained from the
KP equation using the Alice-Bob (AB) approach but was found to be
non-integrable according to the Painlevé test in its local setting.
Using a superposed blinearization technique, we obtained explicit
soliton and lump wave solutions that highlight the nonlocal effects
on wave structures. The study also explored the wave dynamics of
two-soliton solutions, including elastic collisions and breather
solutions, and discussed their evolutionary dynamics with
graphical demonstrations.
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The results of our study demonstrated the impact of nonlocality
on the formation of nonlinear waves, resulting in both symmetrical
and asymmetrical wave patterns. A single soliton solution highlights
the emergence of symmetrical and asymmetrical waves from a
combination of bell-type and kink-anti-kink solitons due to the
nonlocal background and symmetrical bell-type solitons. Our
analysis of the two-soliton solution revealed a range of
fascinating wave dynamics, including elastic collisions that can
occur as head-on or oblique interactions. By adjusting the soliton
parameters (k; and [, where j = 1, 2), we discovered soliton bound
states undergoing periodic attraction and repulsion without
intersecting.

We have made a significant discovery in our study by
obtaining an explicit form of breather solution from the
reduction of the two-soliton solution for specific values of k; =
ki and I, = If. This breather solution encompasses various forms,
such as inclined or oblique breathers, localized breathers in both
the x and y directions, rational line solitons, and periodic
solitons/structures. To provide a complete understanding of
the
dynamics

solution, we have briefly analyzed its evolutionary

and presented clear graphical illustrations.
Furthermore, we obtained a lump wave solution through the
use of a quadratic function as a seed solution and discussed its
The of the the

understanding of localized waves in nonlocal nonlinear models

behavior. results study contribute to
and have the potential to be generalized to other integrable and

non-integrable nonlocal models.
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