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Optimizing the quantum circuit for implementing Advanced Encryption Standard
(AES) is crucial for estimating the necessary resources in attacking AES by the
Grover algorithm. Previous studies have reduced the number of qubits required for
the quantum circuits of AES-128/-192/-256 from 984/1112/1336 to 270/334/398,
which is close to the optimal value of 256/320/384. It becomes a challenging task
to further optimize them. AimTaking aim at this task, we find amethod for how the
quantum circuit of AES S-box can be designed with the help of the automation
tool LIGHTER-R. Particularly, the multiplicative inversion in F28 , which is the main
part of the S-box, is converted into themultiplicative inversion (andmultiplication)
in F24 , then the latter can be implemented by LIGHTER-R because its search space
is small enough. By this method, we construct the quantum circuits of S-box for
mapping |a〉|0〉 to |a〉|S(a)〉 and |a〉|b〉 to |a〉|b ⊕ S(a)〉 with 20 qubits instead of
22 in the previous studies. In addition, we introduce new techniques to reduce the
number of qubits required by the S-box circuit for mapping |a〉 to |S(a)〉 from 22 in
the previous studies to 16. Accordingly, we synthesize the quantum circuits of
AES-128/-192/-256 with 264/328/392 qubits, which implies a new record.
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1 Introduction

The parallelism of quantum computing makes quantum computers have significant
speed-up compared with classical computers in certain specific problems, such as solving
linear systems [1–3], classification [4–8], dimensionality reduction [9–12], linear regression
[13–15], association rule mining [16], anomaly detection [17,18] and so on. Quantum
algorithms, such as Shor [19], Grover [20], and Simon [21], seriously threaten the security of
modern cryptography. Although the scale of quantum computers is not enough to break
through the cryptographic primitives so far, with the development of technology, these
quantum algorithms will be realized in the future. Thus, accurately estimating the actual
arrival time of quantum threats is the key to ensuring the steady renewal of the cryptosystem.
With the steady development of quantum computing hardware, evaluating the minimum
quantum resources required to realize Shor, Grover, Simon, and other cryptanalysis
quantum algorithms has become one of the main factors affecting the actual arrival time
of quantum threats. For example, because T-depth and number of qubits realized by current
quantum computers are limited, they are regarded as the main optimization goal in most
previous studies about the quantum circuit implementations of the above algorithms.

It is significant to estimate the cost of the Grover algorithm attacking Advanced
Encryption Standard (AES) [22]. On the one hand, AES is one of the most studied and
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popular symmetric ciphers in the world. On the other hand, the cost
was used as the benchmark to define different security levels of post-
quantum public-key schemes when the National Institute of
Standards and Technology (NIST) [23] called for proposals for
the standardization of post-quantum cryptography. In the
implementation, the quantum circuit of AES is the core of
Grover oracle, which is the most complicated part of the whole
algorithm. For this reason, optimizing the quantum circuit of AES
becomes an important method of reducing the quantum resources
required for Grover-algorithm-attacking AES. Among the tasks
necessary to optimize the quantum circuit for AES, how to use
fewer resources to realize the AES S-box, the only non-linear
component, is one of the main influencing factors.

Some quantum circuits of AES were designed to reduce the T-
depth. In 2020, Jaques et al. [24] constructed a quantum circuit of
S-box for |a〉|b〉 → |a〉|b ⊕ S(a)〉 (a, b and S(a) are 8-bit vectors)
with T-depth 6, and then synthesized the quantum circuit of AES-
128 with a T-depth of 120. In 2022, Li et al. [25] proposed the S-box
circuits for |a〉|0〉 → |a〉|S(a)〉 and |a〉|b〉 → |a〉|b ⊕ S(a)〉 with T-
depth 4, and then reduced the T-depth required for the quantum
circuit of AES-128 to 80. Huang et al. [26] gave the circuit for |a〉|b〉
→ |a〉|b ⊕ S(a)〉with a T-depth of 3, and then further reduced the T-
depth required for the quantum circuit of AES-128 to 60. Jang et al.
[27] synthesized the quantum circuit of AES-128 with a T-depth of
30 by introducing an improved pipeline method for round function
iteration.

At the same time, quite a few quantum circuits of AES were
designed to reduce the number of qubits (see Table 1). In 2016,
Grassl et al. [28] implemented the quantum circuit of AES-128 with
984 qubits by presenting the 40 qubits quantum circuit of S-box for
C1: |a〉|0〉→|a〉|S(a)〉 and introducing zig-zag method for round

function iteration. In 2018, Almazrooie et al. [29] reduced the
number of qubits required for the quantum circuit of AES-128 to
976 by finding an improved key expansion iteration method. In
2020, Langenberg et al., [30] constructed the S-box circuit for C1
with 32 qubits and completed key expansion iteration by zig-zag
method, then realized the quantum circuit of AES-128 with
864 qubits. Zou et al., [31] proposed a circuit for C1 with
22 qubits and gave an improved zig-zag method for round
function iteration and key expansion iteration by introducing the
23 qubits quantum circuits of S-box and its inverse for
C2: |a〉|b〉→|a〉|b ⊕ S(a)〉 and C3: |a〉|S(a)〉→|0〉|S(a)〉, then
used 512 qubits to construct the quantum circuit of AES-128. In
2022, Wang et al. [32] synthesized the 400 qubits quantum circuit of
AES-128 by giving a straight-line method for key expansion
iteration. Huang et al., [26] proposed the S-box circuit for C2
with 22 qubits, and introduced a straight-line method for round
function iteration by giving the 22 qubits quantum circuit of S-box
for C4: |a〉→|S(a)〉, then implemented the quantum circuit of AES-
128 with 374 qubits. In the same period as Huang et al., Li et al. [25]
synthesized the quantum circuit of AES-128 with 270 qubits by
presenting the 22 qubits quantum circuits of S-box for C1, C2 and C4
as well as adopting the straight-line method for round function
iteration.

It can be seen that the number of qubits required for the
quantum circuit of AES has been greatly improved through the
efforts of scholars, approaching the optimal value of 256/320/384. It
seems that further reducing them has become a challenging task. In
this work, we study how the AES S-box can be constructed with
fewer qubits, thereby reducing the number of qubits required for the
quantum circuit of AES. Note that any mention of qubits in this
work refers to logical qubits. Our contributions are as follows:

TABLE 1 Summary of the number of qubits required for implementing AES-128. “RFIM” and “KSIM” represent the round function iteration method and key
expansion iteration method respectively.

Schemes S-box (#qubits) RFIM (#qubits) KSIM (#qubits) #Total qubits

Grassl et al. [28] C1(40) Zig-zag (536) Pipeline (448) 984

Almazrooie et al. [29] C1(64) Zig-zag (560) Pipeline (416) 976

Langenberg et al. [30] C1(32) Zig-zag (528) Zig-zag (352) 880

Zou et al. [31] C1(22) Improved zig-zag (256) Improved zig-zag (256) 512

C2(23)

C3(23)

Wang et al. [32] C2(32) Improved zig-zag (256) Straight-line (144) 400

Huang and Sun [26] C2(22) Straight-line (240) Straight-line (134) 374

C4(22)

Li et al. [25] C1(22) Straight-line (142) Straight-line (128) 270

C2(22)

C4(22)

This work C1(20) Straight-line (136) Straight-line (128) 264

C2(20)

C4(16)
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• We find a method to construct the quantum circuit of AES
S-box with the help of automation tool LIGHTER-R, which
can reduce the number of qubits required by C1 and C2 from
22 in the previous studies [25, 26, 31] to 20. Particularly, the
quantum circuit of the multiplicative inversion in F28 is the
main factor affecting the number of qubits required by the
quantum circuit of the S-box. But there is no automatic tool to
optimize it. Dasu et al. [33] presented an automatic tool,
namely, LIGHTER-R, that can generate the quantum circuit of
effectively implementing the multiplicative inversion in F24 .
Unfortunately, the tool LIGHTER-R cannot give the quantum
circuit for implementing the multiplicative inversion in F28

since it requires greater search space. We find that the
multiplicative inversion in F28 can be computed through
multiplicative inversion (and multiplication) in F24 , and the
latter can be realized by the tool LIGHTER-R.

• We introduce a new technique to construct the quantum
circuit of S-box for C4: |a〉→|S(a)〉 with only 16 qubits
instead of 22 in the previous studies [25, 26]. Different
from connecting C1: |a〉|0〉→|a〉|S(a)〉 and
C3: |a〉|S(a)〉→|0〉|S(a)〉 to obtain C4, we synthesize it in a
direct way.

• We find that uncomputation for removing ancilla qubits
(i.e., reinstate the initial state |0〉) in some cases can be
completed with fewer Toffoli and CNOT gates (without adding
additional qubits). Therefore, our S-box circuit for C1 also requires
fewer Toffoli and CNOT gates than the previous studies [25, 31].
Note that the number of Toffoli and CNOT gates is often regarded
as a secondary optimization goal.

• By employing the above quantum circuits of S-box, we
synthesize the quantum circuit of AES-128 with 264 qubits
instead of 270 in a previous study [25], which implies a new
record. Similarly, we also synthesize the quantum circuits of
AES-192/-256 with 328/392 qubits instead of 334/398 in a
previous study [25].

The rest of this paper is organized as follows. In Section 2, we
briefly review the S-box of AES. In Section 3, we use the tool
LIGHTER-R to obtain the quantum circuit of implementing the
multiplicative inversion in F24 . In Section 4, our quantum circuits of
the S-box are given. In Section 5, we synthesize the quantum circuit
of AES. In Section 6, we conclude the paper.

2 Preliminaries

2.1 The S-box of AES

2.1.1 Algebraic structure of S-box
The non-linear transformation S-box first takes a byte input

a ∈ F28 � F2[x]/(x8 + x4 + x3 + x + 1), then replaces a with its
multiplicative inversion a−1 (when a = 0, set a−1 = 0), and finally
performs an affine transformation which is composed of
multiplication by an invertible matrix and the addition of a
constant vector. Specifically, the S-box transformation is
expressed as

S a( ) � Aa−1 ⊕ c, (1)

where

A �

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, c �

1
1
0
0
0
1
1
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The computation of the S-box can be divided into two steps,
i.e., computing the multiplicative inversion a−1 and performing the
affine transformation. The affine transformation can be
implemented with CNOT and NOT gates only. Thus, how to
realize the quantum circuit of finding a−1 with low costs becomes
one of the main factors optimizing the quantum circuit of the S-box.

2.1.2 A decomposition of S-box
In Ref. [34], Wolkerstorfer et al. constructed the following

composite field F(24)2 isomorphic to F28 ,

• The field polynomial of F24 is x
4 + x + 1;

• The field polynomial of F(24)2 is x2 + x + λ, where λ ≔ x3 +
x2 + x ∈ F24 .

Due to isomorphism, the mapping matrix M: F28 → F(24)2 and
its inverse matrix M−1: F(24)2 → F28 are determined as

M �

1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 1 1 1 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, M−1 �

1 0 1 1 0 1 0 0
1 0 0 1 1 1 1 0
0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2)
Based on the composite field F(24)2 , AES’s S-box can be

rewritten as

S a( ) � AM−1 Ma( )−1 ⊕ c, a ∈ F28 . (3)
The multiplication by invertible matrices M, AM−1 (merging of
matrices A and M−1) and the addition of a constant vector c can be
implemented with CNOT and NOT gates only. Thus, the key to
optimizing the S-box circuit becomes how the quantum circuit of
finding (Ma)−1 (Ma ∈ F(24)2 ) can be implemented with low costs.

As pointed out in Ref. [34], any element p ∈ F(24)2 can be
represented as a linear polynomial with coefficients in F24 ,
i.e., p = p0 + p1x, p0, p1 ∈ F24 , and its multiplicative inversion p−1

can be expressed as

p−1 � p17( )−1 p0 + p1( ) + p17( )−1p1x ≔ n0 + n1x,
p17 � p2

1 × λ + p0 + p1( )p0 ∈ F24 .
(4)

where λ ≔ x3 + x2 + x ∈ F24 . It is necessary for finding p−1 to
compute (p0 + p1)p0, p2

1 × λ, (p17)−1(p0 + p1) and (p17)−1p1,
which mainly involve the multiplication (including constant
multiplication p2

1 × λ) and multiplicative inversion operations
in F24 .
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It can be seen that the implementation of the S-box can be
divided into three modules, i.e., the multiplication in F24 , the
multiplicative inversion in F24 , the multiplication by invertible
matrices M, AM−1 and the addition of a constant vector c.

3 Quantum circuit of implementing the
multiplicative inversion in F24

Some quantum circuits of implementing the multiplicative
inversion in F24 have been proposed. Almazrooie et al. [35]
constructed it by employing the quantum circuit of
implementing the multiplication in F24 many times. Saravanan
et al. [36], Chung et al. [37] and Wang et al. [32] implemented it
respectively based on a composite field F(22)2 . Recently, Li et al. [25]
constructed it by converting its classical circuit in Ref. [38] into a
quantum version. See Table 3 for specific resource estimates.

In Ref. [33], Dasu et al. presented an automation tool, namely,
LIGHTER-R1, which can give the quantum circuit implementation
of any 4-bit S-box based on a lookup table. The quantum circuit
given by LIGHTER-R requires the optimal number of qubits.
Recently, the tool has been widely applied in the quantum circuit
implementation of other cryptography, such as Present and Gift
[39], RECTANGLE and KNOT [40], DEFAULT [41] and so on.

We found that the multiplicative inversion in F24 can be seen as
a 4-bit S-box, whose lookup table is shown in Table 2. Thus, to
obtain the quantum circuit of implementing the multiplicative
inversion in F24 , we employ the tool LIGHTER-R directly. The
resulting circuit is shown in Figure 1.

The Tof4/C
3(X)/CCCNOT gate2 in the dashed box of Figure 2

realizes the function of |a〉|b〉|c〉|d〉→ |a〉|b〉|c〉|d ⊕ abc〉 and can be
decomposed by some Toffoli gates with an ancilla qubit (see

Figure 2). Specifically, if the ancilla qubit is an unknown
quantum state |g〉, the CCCNOT gate can be decomposed
by using the circuit in Figure 2A. If the state of |g〉 is known to
be |0〉, the last Toffoli gate in Figure 2A is unnecessary which
corresponds to Figure 2B. Thus, according to Figures 1, 2, we can
obtain two quantum circuits of implementing the multiplicative
inversion in F24 for F24 inv0: |b〉|0〉→|b−1〉|0〉 and
F24 inv1: |b〉|g〉→|b−1〉|g〉. These two quantum circuits will be
used to implement the quantum circuit of the AES (8-bit) S-box.
In the process, if there is an idle quantum state |0〉, we use F24 inv0.
Otherwise, we use F24 inv1.

The resource estimates of these two quantum circuits for F24 inv0
and F24 inv1 are given in Table 3. Compared with the previous
studies, our quantum circuits require fewer qubits.

4 Quantum circuits of S-box

In the section, we propose three quantum circuits of S-box for
C1: |a〉|0〉→|a〉|S(a)〉, C2: |a〉|b〉→|a〉|b ⊕ S(a)〉 and
C4: |a〉→|S(a)〉 respectively3. Along the way, we directly adopt Li
et al.’s [25] quantum circuits, including UM, UAM−1 , Mul, B−Mul
and Uq2λ.

• UM: |x〉→ |Mx〉 requires 8 qubits, 15 CNOT gates, and a total
depth of 8;UAM−1 : |x〉→|AM−1x〉 requires 8 qubits, 26 CNOT
gates and a total depth of 10. Here, x ∈ F28 . Matrices A andM
are referred in Eqs 1, 2 respectively.

• Mul: |f〉|g〉|04〉 → |f〉|g〉|f · g〉 requires 12 qubits,
9 Toffoli gates, 23 CNOT gates and a Toffoli depth of 6;
B−Mul: |f〉|g〉|h〉→ |f〉|g〉|h ⊕f · g〉 requires 12 qubits, 9 Toffoli
gates, 28 CNOT gates and Toffoli depth 6. Here, f , g , h ∈ F24 ;

TABLE 2 Lookup table of the multiplicative inversion in F24 .

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

x−1 0 1 9 E D B 7 6 F 2 C 5 A 4 3 8

FIGURE 1
Quantum circuit of implementing the multiplicative inversion in F24 . Here, b = (b0, b1, b2, b3) and its inverse b−1 � (b−1

0 ,b−1
1 ,b−1

2 ,b−1
3 ) are the input

vector and output vector, respectively. Note that b corresponds to an element in F24 . Swap operation only changes the index of qubits and does not
require quantum gates.

1 The source code of LIGHTER-R is available at https://github.com/vdasu/
lighter-r.

2 They refer to the same quantum gate. Only CCCNOT is mentioned below.

3 The code that verifies the correctness of these S-box circuits is available at
https://github.com/lzq192921/quantum-circuit-implementation-of-
AES.git.
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• Uq2λ: |q〉→|q2 × λ〉 requires 4 qubits, 3 CNOT gates, and a
total depth of 3. Here λ ≔ x3 + x2 + x ∈ F24 , q is an arbitrary
element in F24 .

4.1 Quantum circuit of S-box for C1
In order to implement the quantum circuit of S-box for C1, we

first propose a quantum circuit of finding p−1 for |p〉|0〉→ |p〉|p−1〉.
Here p � p0 + p1x ∈ F(24)2 and its multiplicative inversion is p−1 �
(p17)−1(p0 + p1) + (p17)−1p1x ≔ n0 + n1x.

We divide into four steps, i.e., computing p17, calculating the
multiplicative inversion (p17)−1 of p17, obtaining p−1 and
uncomputation (i.e., clear up ancilla qubits), to construct the
quantum circuit for |p〉|0〉 → |p〉|p−1〉. Specifically, we first give
the quantum circuit for Up17 : |p〉|04〉 � |p0〉|p1〉|04〉→|p〉|p17〉.
According to p17 � p2

1 × λ + (p0 + p1)p0 ∈ F24 , Up17 can be
realized by performing Mul, Up2

1λ
(take q≔p1) and some CNOT

gates (see the red box in Figure 3). Then |(p17)−1〉 is obtained by
performing F24 inv0 on |p17〉|0〉. Here, instead of adding a new qubit,
we use an idle quantum state |0〉 from output qubits as an ancilla
qubit. Next |p−1〉 � |(p17)−1(p0 + p1)〉|(p17)−1p1〉≔|n0〉|n1〉 is
obtained in output qubits by performing Mul two times. At this
time, the circuit is in state |p〉|(p17)−1〉|p−1〉. In the end, |(p17)−1〉 in
ancilla qubits has to be removed for reuse, i.e., completing
uncomputation. As mentioned in Ref. [25], the general idea of
completing the uncomputation is to perform F24 inv

†
1 (since there is

no idle quantum state |0〉) and U†
p17 on |p〉|(p17)−1〉. However, due

to (p17)−1 � (p−1)17, (p17)−1 can also be expressed as
n21 × λ + (n1 + n0)n0. Therefore, we only apply U†

p17 (the inverse
circuit of Up17 ) to implement
U†

(p−1)17 : |p−1〉|(p17)−1〉 � |p−1〉|(p−1)17〉→|p−1〉|0〉. The resulting
quantum circuit, as shown in Figure 3, requires 20 qubits instead
of 22 in a previous study [25].

By combining the quantum circuit in Figure 3 with UM and
UAM−1 , we obtain the quantum circuit of S-box for C1 in Figure 4,
which requires 20 qubits.

The quantum resource estimates of C1 are shown in Table 4.
Compared with the previous studies, our S-box circuit for C1
requires fewer quantum resources including the number of qubits.

Remark 1. Compared with the circuit outlined by Li et al., our
circuit is different in two aspects. First, we take an idle qubit from
output qubits as ancilla qubits and then compute (p−1)17 by F24 inv0.
Second, we find that uncomputation can be completed only by
performing circuit U†

p17 without F24 inv
†
1. As a result, our S-box

circuit for C1 requires not only fewer qubits but also fewer Toffoli
gates and lower Toffoli depth. Cost estimates can be found in
Table 4.

Our results show that uncomputation for removing ancilla
qubits (i.e., reinstate the initial state |0〉) can be optimized when
the algebraic relationship between the value in ancilla qubits and f(x)
is simpler than that between x and the value in ancilla qubits. Here,
assume that f(x) is an arbitrary invertible non-linear transformation,
the goal circuitUf: |x〉|0〉→ |x〉|f(x)〉 is implemented by introducing
some ancilla qubits. For example, in Figure 4, x≔p, f(x)≔p−1, after

FIGURE 2
Quantum circuits of CCCNOT.

TABLE 3 Quantum resource estimates for the implementation of the multiplicative inversion in F24 . #Toffoli/CNOT means the number of Toffoli and CNOT gates.
#qubits means the number of qubits.

Schemes #Qubits #CNOT #Toffoli Toffoli depth

Saravanan and Kalpana [36] 18 22 9 4

Almazrooie et al. [29] 16 47 48 39

Chung et al. [37] 16 — 9 6

Wang et al. [32] 8 20 14 14

Li et al. [25] 6 22 6 6

This work 5 5 8 8

5 5 9 9

CNOT, and NOT, gates typically are much cheaper than the Toffoli gate. Based on this, in this article we only focus on Toffoli depth instead of the total circuit depth.
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getting the output information p−1, as analyzed above, the value
(p17)−1 in ancilla qubits has simpler algebraic relationship with p−1

than with p.

4.2 Quantum circuit of S-box for C2
In order to implement the quantum circuit of S-box for C2, we

first proposed an improved quantum circuit for |p〉|h〉 → |p〉|
h ⊕p−1〉.

Similar to Figure 3, we divide into four steps to implement |p〉|h〉
→ |p〉|h ⊕p−1〉. First, |p17〉 is obtained by performing Up17 on |p〉|04〉.
However, unlike Figure 3, we only use F24 inv1 to compute |(p17)−1〉

since there is no idle quantum state |0〉. The input state in output qubits
is |h〉 = |h0〉|h1〉 instead of |08〉. Next, |h ⊕p−1〉 = |h0 ⊕n0〉|h1 ⊕n1〉 is
obtained by using B−Mul twice instead of Mul. In the end, we need to
clean up |(p17)−1〉. Unfortunately, the removal has to be completed by
F24 inv1 andU

†
p17 because the output qubits are in state |h ⊕p−1〉 instead

of |p〉. Note that because of the same function, we only use F24 inv1
instead of F24 inv

†
1 (i.e., |b

−1〉|g〉 → |b〉|g〉, (b−1)−1 � b). The resulting
quantum circuit, as shown in Figure 5, requires 20 qubits instead of
22 in a previous study [25].

By combining the quantum circuit in Figure 5 with UM and
UAM−1 , we construct the quantum circuit of S-box for
C2: |a〉|b〉|04〉→|a〉|b ⊕ S(a)〉|04〉 in Figure 6, whose number of
qubits is 20.

FIGURE 3
Quantum circuit for |p〉|012〉→ |p〉|p−1〉|04〉. p = (p0, p1) and p−1 = (n0, n1) are 8-bit input and output vectors respectively. CNOT gates between four
qubit-sizedwires should be read asmultiple parallel CNOT gates applied bitwise. Dashed lines indicatewires that are not used in the corresponding circuit
of the square box. UsingUq2λ to implementU†

p2
1 λ
due to p1 ∈ F24 .U

†
p2
1 λ
is implemented by the inverse circuit ofUp2

1 λ
. A quantum state |0〉 from output qubits

is used as ancilla qubit of F24 inv0.

FIGURE 4
Quantum circuit of the S-box for C1: |a〉|012〉→|a〉|S(a)〉|04〉. The input is one element a ∈ F28 . The output is S(a).Uout(Ma)−1 : |Ma〉|0〉→|Ma〉|(Ma)−1〉 is
implemented by the quantum circuit in Figure 3 since Ma is contained in F(24)2 . UM−1 is implemented by the inverse circuit of UM. ⊕ represents that the
constant vector c is added by flipping four qubits with four NOT gates.

TABLE 4 Comparison of our S-box circuit for C1 with previous works.

Schemes #Qubits #Toffoli #CNOT #NOT Toffoli depth

This work 20 44 197 4 32

Li et al. [25] 22 48 236 4 36

Zou et al. [31] 22 52 326 4 41

Langenberg et al. [30] 32 55 314 4 40

Grassl et al. [28] 40 512 369 4 144
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Table 5 summarizes the quantum resources needed to realize C2.
Compared with previous studies, our S-box circuit for C2 requires fewer
qubits.

Remark 2. Compared with the circuit described by Li et al., we take
an idle qubit from output qubits as ancilla qubits and then compute
(p−1)17 by F24 inv1, resulting in a reduction in the number of qubits.
Cost estimates can be found in Table 5.

4.3 Quantum circuit of S-box for C4
Based on the idea mentioned in Ref. [42], Li et al [25] and

Huang et al. [26] realized the goal by connecting two quantum
circuits for |a〉|0〉 → |a〉|S(a)〉 and |a〉|S(a)〉 → |0〉|S(a)〉. Here,
different from the previous method, we realize the goal by
proposing a quantum circuit for |p〉 → |p−1〉.

Similar to Figure 3, we first obtain |p17〉 by performing Up17

on |p〉|04〉, and then compute |(p17)−1〉 by performing F24 inv0 on
|p17〉|0〉 (since there is idle quantum state |0〉). Next, we
perform the circuit In−Mul in Eq. 5 of Observation 1 twice
to obtain |n0〉 and |n1〉 respectively, i.e., the circuit is in state
|n1〉|04〉|(p17)−1〉|n0〉. Along the way, instead of adding
additional qubits, |p0〉 is removed for gaining storage space
to place n1 after obtaining |n0〉. In the end, |(p17)−1〉 is removed
by executing U†

(p−1)17 on |n0〉|n1〉|(p17)−1〉 � |p−1〉|(p17)−1〉. The
resulting quantum circuit, as shown in Figure 7, requires
16 qubits.

Observation 1. The quantum circuit for In−Mul: |f〉|g〉|0〉→ |0〉|g〉|f
· g〉 can not only get f · g, but also release storage space to place other
values if f is useless in subsequent operations. In−Mul can be
implemented as follows

FIGURE 5
Quantum circuit for |p〉|h〉|04〉→ |p〉|h ⊕p−1〉|04〉. h = (h0, h1) is an arbitrary 8-bit vector. F24 inv1 applies an unknown quantum state |g〉 from output
qubits as its ancilla qubit, which is returned to the same state at the end of the circuit.

FIGURE 6
Quantum circuit for C2: |a〉|b〉|04〉→|a〉|b ⊕ S(a)〉|04〉. UMA−1b⊕(Ma)−1 : |Ma〉|MA−1b〉→|Ma〉|MA−1b ⊕ (Ma)−1〉 is implemented by the quantum circuit in
Figure 5 because MA−1b and Ma are contained in F(24)2 . UMA−1 is implemented by the inverse circuit of UAM−1 .

TABLE 5 Comparison of our S-box circuit for C2 with previous works.

Schemes #Qubits #Toffoli #CNOT #NOT Toffoli depth

This work 20 54 238 4 42

Li et al. [25] 22 48 272 4 36

Huang and Sun [26] 22 52 336 4 41

Zou et al. [31] 23 68 352 4 60

Wang et al. [32] 32 55 322 4 40
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|f 〉|g〉|04〉 


























→F24 inv1
·Mul |f 〉|g−1〉

|f · g〉 

































→F24 inv0
·Mul† |04〉|g〉|f · g〉 (5)

Due to (f · g) ·g−1 = f, the circuitMul† (|f〉|g〉|f · g〉→ |f〉|g〉|0〉) is
used to convert |f〉|g−1〉|f · g〉 into |0〉|g−1〉|f · g〉. At this
moment, there exist an idle quantum state |0〉, so |g−1〉 is
converted back into |g〉 by F24 inv0.

By combining the quantum circuit in Figure 7 with UM and
UAM−1 , we obtain the S-box circuit for C4: |a〉|08〉 → |S(a)〉|08〉 in
Figure 8, which requires 16 qubits.

Table 6 summarizes the quantum resources needed to
implement the S-box circuit for C4. Compared with previous
studies, our S-box circuit for C4 requires fewer qubits.

In order to reduce the number of qubits, we often would like to
compute f(x) with an in-place circuit, i.e., |x〉→ |f(x)〉. For example, we
directly obtain the in-place quantum circuit F24 inv0 by the tool
LIGHTER-R. However, for some complex functions f(x) (e.g., the
multiplicative inversion in F28 ), directly designing an in-place
quantum circuit is difficult. As mentioned in Ref. (Huang and Sun,
2022), a natural idea is to construct an in-place circuit based on out-of-
place sub-circuits. Huang et al. (Huang and Sun, 2022) proposed an in-
place quantum circuit for |x〉 → |f(x)〉 by connecting two out-of-place
circuit |x〉|0〉 → |x〉|f(x)〉 and |f−1(y)〉|y〉 → |0〉|y〉 (f−1 is invertible
function of f). Thus, their in-place circuit requires at least 4n qubits if

f(x): {0,1}2n → {0,1}2n is an arbitrary invertible non-linear
transformation. By connecting |a〉|0〉 → |a〉|S(a)〉 and |a〉|S(a)〉 →
|0〉|S(a)〉, Huang et al. (Huang and Sun, 2022) and Li et al. (Li et al.,
2022b) gave the quantum circuit of S-box for C4, whose cost estimates
can be found in Table 6.

Observation 2. |x〉 → |f(x)〉 can be constructed with at least 3n
qubits. If f(x) can be expressed as f(x) = f0(x0)‖f1(x1) (f0(x0), f1(x1):
{0,1}n → {0,1}n are invertible non-linear transformation) when x is
divided into x0 and x1, i.e., x≔x0‖x1, |x〉 → |f(x)〉 is implemented as
followed

|x0〉|x1〉|0n〉 














→Uf0 |0n〉|x1〉
|f 0 x0( )〉 



















→SWAP·Uf1 |f 0 x0( )〉|f 1 x1( )〉|0n〉 (6)

|x0〉 is removed to gain storage space to place f1 (x1) only when it
is useless in subsequent operations. In our circuit for |p〉 → |p−1〉,
x≔p = p0‖p1 and f(x)≔p−1 = f0 (x0)‖f1 (x1) (note
f0(x0) ≔ (p17)−1(p0 + p1), f1(x1) ≔ (p17)−1p1), Uf0 and Uf1 are
implemented with the circuit in eq. (5) ((p17)−1 is computed in
ancilla qubits which is regarded as constant in f0 (x0) and f1 (x1)).

5 Quantum circuit implementations
of AES

AES is a family of iterative block ciphers, which encrypts
16 bytes (i.e., 128 bits) of plaintexts and consists of a round
function and key expansion. The subroutines of the round
function include SubBytes, ShiftRows, MixColumns, and
AddRoundKey (note the last round does not perform the
MixColumns). The subroutines of key expansion include
SubWord, RotWord, and Rcon. AES’s three instances AES-128
(10 iterations), AES-192 (12 iterations), and AES-256
(14 iterations) correspond to the key lengths of 128, 192, and

FIGURE 7
Quantum circuit for |p〉|08〉 → |p−1〉|08〉.

FIGURE 8
Quantum circuit for C4: |a〉|08〉→|S(a)〉|08〉.
Uin(Ma)−1 : |a〉→|(Ma)−1〉 is implemented by the quantum circuit in
Figure 7 because Ma is contained in F(24)2 .

TABLE 6 Comparison of our S-box circuit for C4 with previous works.

Schemes #Qubits #Toffoli #CNOT #NOT Toffoli depth

This work 16 96 244 4 78

Li et al. [25] 22 96 410 4 71

Huang and Sun [26] 22 104 694 12 82
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256 bits respectively. The full specification of AES can be found in
Ref. [22].

In the present study, we implement the SubBytes (applying 16 S-
box substitutions) and SubWord (applying 4 S-box substitutions) by
the S-box circuits in Section 4. For other linear operations, the
ShiftRows and Rotword can be implemented by appropriate
rewiring. The MixColumns can be implemented with 368 CNOT
gates [43]. The AddRoundKey is implemented with 128 CNOT
gates. The Rcon is implemented by applying NOT gates.

In the following, we introduce the methods of round function
iteration and key expansion iteration, then synthesize the quantum
circuit of AES.

5.1 Method of round function iteration

As shown in Table 1, quite a few round function iteration
methods were introduced. Grassl et al. [28] proposed the zig-zag
method, which requires 512 + 24 = 536 qubits (24 is the number of
ancilla qubits required by their S-box circuit for C1), to implement
the round function iteration of AES-128. Almazrooie et al. [29] and
Langenberg et al., [30] employed the zig-zag method to complete the
iteration. Zou et al., [31] proposed an improved zig-zag method that
requires at least 256 qubits. Wang et al., [32] realized the iteration by
the improved zig-zag method. Recently, Li et al., [25] presented a
straight-line method, which requires 128 + 14 = 142 qubits (14 is the
number of ancilla qubits required by their S-box circuit for C4). To
make a tradeoff between the number of qubits and Toffoli depth,
Huang et al. [26] completed the iteration by the straight-line method
with 128 + 8 × 14 = 240 qubits (i.e., running S-box circuit for C4
eight-time simultaneously in constructing the SubBytes of ith
iteration Ri).

We also apply Li et al.’s straight-line method to realize the
round function iteration of AES-128. From Figure 8, we can see
that our S-box circuit for C4 reduces the number of ancilla qubits
from 14 in the previous studies [25, 26] to 8. As a result, the
number of qubits required to implement the round function
iteration of AES-128 becomes 128 + 8 = 136. Similarly, the round
function iteration of AES-192/-256 can also be implemented with
136/136 qubits.

Remark 3. We can also make a trade-off between the number of
qubits and Toffoli depth by adding the number of S-box circuits for
C4 in parallel. That is, if we implement k S-box circuits for C4 in
parallel (k divided by 16) each time in constructing the SubBytes of
Ri, the number of qubits required for the round function iteration of
AES-128/-192/-256 becomes 128 + 8k.

5.2 Method of key expansion iteration

Some key expansion iteration methods were proposed. Grassl
et al. [28] proposed the pipeline method, which requires at least 448
+ 24 = 472 qubits (24 is the number of ancilla qubits required by
their S-box circuit for C1), to implement the key expansion iteration
of AES-128. Then Almazrooie et al. [29] presented an improved
pipeline method that requires at least 416 + 48 = 464 qubits.
Langenberg et al., [30] found that the zig-zag method can be

used to complete the key expansion iteration, which requires 352
+ 16 = 368 qubits. Zou et al., [31] proposed an improved zig-zag
method to realize the iteration, which requires 256 + 7 = 263 (7 is the
number of ancilla qubits required by Zou et al.’s S-box circuit for C2).
Wang et al. [32] presented a straight-line method to implement the
key expansion iteration, which requires 128 + 16 qubits. To make a
tradeoff between the number of qubits and Toffoli depth, Jaques
et al. [24] completed the iteration by the straight-line method with
128 + 4 × 121 = 612 qubits (i.e., running S-box circuit for C2 four-
time simultaneously in constructing the SubWord of keyKi in the ith
iteration). Li et al. [25] and Huang et al. [26] adopted the straight-
line method to complete the iteration.

Here, we apply the straight-line method to implement the key
expansion iteration of AES-128. Because our S-box circuit for C2
requires 4 ancilla qubits (see Figure 6), the key expansion iteration of
AES-128 can be realized with 128 + 4 = 132 qubits. Similarly, we
perform the key expansion iteration of AES-192/-256 with 196/
260 qubits. Of course, as a trade-off between the number of qubits
and Toffoli depth, the number of qubits can also be 128 + 4h/192 +
4h/256 + 4h for the key expansion iteration of AES-128/-192/-256 (h
is the number of running S-box circuit for C2 in parallel when the
SubWord is constructed).

Remark 4. In synthesizing the quantum circuit of the AES, if the
SubBytes in Ri and SubWord in the key expansion are not
constructed simultaneously, we can reuse idle qubits, which is
applied to implement the round function iteration, to
construct the SubWord. Thus, as the previous studies Grassl
et al. [28]; Almazrooie et al. [29]; Langenberg et al. [30]; Wang
et al. [32]; Li et al. [25]; Zou et al. [31], they implement the key
expansion without adding additional ancilla (see Table 1).
Otherwise, as a trade-off between the number of qubits and
Toffoli depth, it is necessary to add new qubits as the previous
studies [24,26].

5.3 Quantum circuits for implementing AES

Based on the straight-line method above, we synthesize the
quantum circuit of AES-128 with 264 qubits, where 136 qubits and
128 qubits are used to complete the round function iteration and key
expansion iteration. Note that 8 ancilla qubits in round function
iteration are reused to implement the key expansion iteration.

First, as mentioned in the previous studies [25, 26, 28, 31],
to save qubits, R0 which adds the key K0 on plaintext m
(whitening step) is implemented by apply NOT gates on some
specific qubits of |K0〉 (at most 128 NOT gates). Then when |R0〉 is
used to compute the SubBytes in R1 later, |R0〉 is reinstated |K0〉 by
applying NOT gates (at most 128 NOT gates). Particularly, the
SubBytes in R1 are constructed by running our S-box circuit for C1
sixteen times. The depth of C1 is 3. The SubWord in K1 is
constructed by running the S-box circuit for C2 four times. The
depth of C2 is 2. After realizing the SubWord, we perform the
Rotword and Rcon to obtain K1 while ShiftRows and MixColumns
are implemented. At last, the AddRoundKey is implemented by
performing 128 CNOT in parallel. Therefore, realizing R0 and R1

require Toffoli depth 3 × 32 + 2 × 42 = 180. Besides, these two
rounds require 16 × 44 + 4 × 54 = 920 Toffoli gates, 197 × 16 + 238 ×
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4 + 96 + 368 + 128 = 4696 CNOT gates, and 256 + 4 × 20 + 1 = 337
NOT gates.

Then, we implement Ri (i > 1). Because C4 requires 8 ancilla
qubits (see Figure 8), we run the S-box circuit for C4 sixteen times in order
to construct the SubBytes. The depth of C4 is 16, i.e., the Toffoli-depth is
78 × 16 = 1,248. Similarly, because C2 requires 4 ancilla qubits (see
Figure 6), two S-box transformations in SubWord of Ki can be
implemented in parallel. Thus, the depth of C2 required for
constructing the SubWord is 2, i.e., the Toffoli-depth is 42 × 2 = 84.
After realizing the SubWord,we perform theRotword andRcon to obtain
Ki while ShiftRows and MixColumns are implemented. The
AddRoundKey is implemented last, by performing 128 CNOT in
parallel. As a result, Ri can be constructed with Toffoli depth 1,248 +
84 = 1,332 since the SubBytes and SubWord cannot be implemented in
parallel. Besides, Ri requires 16 × 96 + 4 × 54 = 1752 Toffoli gates, 244 ×
16 + 238 × 4 + 96 + 368 + 128 = 5448 CNOT gates (R10 does not perform
the MixColumns and requires 244 × 16 + 238 × 4 + 96 + 128 = 5080
CNOTgates) and 4 × 20 + 1 = 81NOTgates (R9 andR10 require 4 × 20 +
4 = 84 NOT gates).

At last, by combining these quantum circuits above, we can obtain
the quantum circuit for implementing AES-128. Similarly, the quantum
circuit of AES-192/-256 can be implemented with 334/398 qubits,
respectively. Table 7 gives the quantum resources required for
implementing AES. Obviously, our improved quantum circuits of
S-box result in a reduction of the number of qubits.

Remark 5.We can make a trade-off between the number of qubits
and Toffoli-depth. From Figures 6, 8, it can be seen that the
number of ancilla qubits required for two S-box circuits for C2 is
the same as the number of ancilla qubits required for one S-box
circuit for C4. We regard two parallel circuits for C2 as a whole
circuit and call such circuit and C4 double-width S-box circuits.
In this case, 18 double-width S-box circuits in total are required
in constructing the SubBytes and SubWord of Ri (i > 1). If p
double-width S-box circuits is implemented in parallel (p
divided by 18, i.e., p = 1, 2, 3, 6, 9, 18), the number of qubits
required for AES-128 will be 256 + 8p.

• When p = 1, circuit costs for implementing AES-128 is given
in Table 7;

• When p > 1, the Toffoli-depth of constructing the SubBytes
and SubWord in Ri (i > 1) becomes 78 × 18/p = 1,404/p.

• When p = 2, the depth of S-box circuit for C1 in
constructing the SubBytes of R1 is 3, i.e., the Toffoli-
depth is 32 × 3 = 96. And the depth of the S-box circuit
for C2 in constructing the SubWord of round key K1

becomes 1, i.e., the Toffoli-depth is 42. Thus, R1 is
implemented with a Toffoli-depth of 138;

• When p = 3 or 6, the Toffoli-depth of SubBytes in constructing
R1 is 32 × 2 = 64, and the Toffoli-depth of SubWord in
constructing the round key K1 becomes 36. Thus, R1 is
implemented with a Toffoli depth of 100. Here, the
SubWord is constructed with the S-box circuit for C2 in
Ref.[25] because it requires lower Toffoli-depth and the
ancilla qubits are also sufficient at this time;

• When p = 9 or 18, the Toffoli-depth of SubBytes in
constructing R1 is 32, and the Toffoli-depth of SubWord in
constructing the round key K1 becomes 36. Thus, R1 is
implemented with a Toffoli depth of 68. Table 7 also gives
the quantum resources required for implementing AES-128
when p = 9.

6 Conclusion

In this study, we set a new record of the number of qubits
required to synthesize the quantum circuit of AES. First, we find a
method to realize the quantum circuit of the AES S-box with the
help of the automation tool LIGHTER-R. Specifically, the main
part of the S-box, i.e., the multiplicative inversion in F28 , is
computed through the multiplicative inversion (and
multiplication) in F24 , then the quantum circuit
implementation of the latter is obtained by the tool
LIGHTER-R. Based on this, the quantum circuits of S-box for
C1: |a〉|0〉→|a〉|S(a)〉 and C2: |a〉|b〉→|a〉|b ⊕ S(a)〉 are
constructed with 20 qubits instead of 22 in the previous
studies respectively. Second, by introducing new techniques,
we reduce the number of qubits required by the S-box circuit
for C4: |a〉→|S(a)〉 from 22 in the previous studies to 16. At last,
by applying these S-box circuits for C1, C2 and C4, we synthesize
the quantum circuits of AES-128/-192/-256 with 264/328/
392 qubits instead of 270/334/398 in the previous studies.

Some inspirations can be drawn from our results. On the one
hand, automated tools, for example, the LIGHTER-R, should

TABLE 7 Quantum resources for implementing AES.

Algorithm Scheme #Qubits #Toffoli #CNOT #NOT Toffoli depth

AES-128

This work 264 16,688 53,360 1,072 12,168

Li et al. [25] 270 16,508 81,652 1,072 11,008

This work 328 16,664 53,496 1,072 1,472

Huang and Sun [26] 374 17,888 126,016 2,528 1,558

AES-192
This work 328 19,328 60,736 1,160 14,496

Li et al. [25] 334 19,196 94,180 1,160 13,144

AES-256
This work 392 23,480 74,472 1,367 17,412

Li et al. [25] 398 23,228 114,476 1,367 15,756
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be fully utilized. On the other hand, similar to our circuit for |a〉
→ |S(a)〉, we should design the goal circuit directly as far as
possible instead of using the previous trivial method,
i.e., connecting two circuits. Particularly, since other
symmetric ciphers (such as SM4 and Camellia) also use a
similar S-box, their quantum circuits might be optimized by
our methods.
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