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The oscillations of an initially unperturbed spherical droplet immersed in a
homogeneous and isotropic turbulent background flow are investigated
through spherical harmonic decomposition. As suggested in the literature, the
shape oscillations under turbulent conditions are related to the frequency of
droplets oscillating in a fluid without background flow. A series of direct numerical
simulations (DNS) of droplets with single deformation modes in a fluid at rest are
first performed. The frequency and damping rate are compared with weakly
viscous linear theory. Then, a database of 220 droplets deformed under
turbulent conditions for a single Weber and Reynolds number is generated
with an identical numerical set-up. Each spherical harmonic coefficient shows
an oscillatory motion with comparable frequency to the single deformation mode
simulations. The power spectrum of the coefficients provides the amount of
surface of each mode. After a transient regime, the surface area reaches a
stationary saturation level. The saturation level of each mode is linked to the
turbulence and the energy stored at the interface. Droplets after a high
deformation are studied with and without background flow. As expected, the
physics of relaxation is driven by capillary forces.
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1 Introduction

Droplet and bubble oscillations have been a subject of research for over a century due to
their relevance in transport processes across the interface. As the droplet departs from its
spherical equilibrium state, its surface increases, inducing gradients of velocity, temperature,
and species mass concentration, influencing the transport of momentum, heat, and mass [1].
Droplet deformation and breakup are important phenomena in the atomization process due
to their impact in the final droplet size distribution. Many authors attribute the breakup of
droplets due to turbulence to their free oscillations, in particular for low turbulence levels as a
result of a resonant mechanism [2–4]. First studies of droplet oscillations are recorded from
Lord Rayleigh [5], where he investigated the vibrations of a liquid mass about a spherical
shape finding the well-known solutions of the fundamental modes of motion and calculated
the corresponding frequencies. This work was later generalized by Lamb [6], adding the
influence of the viscosity of the liquid sphere. Non-linear oscillations of inviscid drops and
bubbles have been numerically studied for modes m = 2, 3, 4 [7,8], showing that finite
viscosity has a strong effect on mode-coupling phenomena and demonstrating that a drop
undergoing mode 2 oscillations spends a longer part of each period in a prolate form rather
than in an oblate form. This conclusion was later reinforced through a weak stability analysis
and numerical simulations of both the inviscid and viscous cases [9,10], along with
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quantifying the effects of viscosity in the damping and its role in
enhancing the coupling of different oscillation modes. A common
idea in various models in the literature is the existence of a critical
Weber number (the ratio between turbulent and surface tension
forces) for breakup. The problem with this criterion is that it is not
universal as it is not suitable for cases where the residence time of the
drop is large compared to the period of its shape oscillations [11].
Direct numerical simulation (DNS) has been extensively used to
study interface–droplet/bubble turbulence interactions from the
seminal works of Qian et al. [12] or Perlekar et al. [13] to the
most recent works of Perrard et al. [14] or Vela-Martín and Avila
[15]. Different numerical approaches have been used such as
volume-of-fluid (VOF) [14,16], level set [17,18], coupled level-set
method and volume-of-fluid (CLSVOF) [19], and
Lattice–Boltzmann [13,20] approaches. A review of these
methods can be found in Tryggvason et al. [21].

The current work is motivated by the previous literature, in
which a spherical harmonic decomposition has been used as a mean
to describe the deformed surface. The study of a liquid globe
oscillating in a resting fluid [22,23] introduced the study of mode
oscillations. Later on, the damping isolating the spherical harmonic
coefficient for mode 2 was investigated [24], and the study of the
signature of the modes of deformation in order to infer bubble
dynamics in a turbulent flow was presented [3]. The development of
a similar framework to describe bubble deformation [14] has also
motivated this work.We wish to generalize the classical Lamb theory
in order to account for more complex geometries that better
represent realistic droplets with the introduction of spherical
harmonics, being able to trace the oscillations not only in the
azimuthal but also in the polar direction, as most of the
literature assumes an axisymmetric behavior of the oscillations of
droplets, which, in our case of study, is simply not realistic.

The utility of the present framework comes from its ability to
observe the effect of the different length scales on the liquid bulk by
isolating each mode and allowing us to describe the droplet’s
oscillation frequency as an ensemble of the different mode
frequencies present since we are able to monitor the oscillations
in all directions.

This framework is used in a series of independent droplets
immersed in a turbulent background flow generated by the DNS
of the Navier–Stokes equations. The in-house code Archer is chosen
for its capabilities to reproduce Lamb theory oscillations [25,26] and
the level-set implicit description that allows an accurate computation
of the spherical harmonic coefficients [27]. In the following work, we
consider carrier and disperse phases with similar density and viscosity
as a particular case between droplets and bubbles.We consider neither
mass exchange nor mixing between both fluids. In addition, DNS of
the individual mode of deformations in a fluid initially at rest,
initialized with amplitudes comparable to turbulent mode
oscillations, has been performed in order to compare their
corresponding frequencies with those obtained from the study
under turbulence effects. A good agreement between the obtained
results and both experimental and numerical literature is observed,
particularly exhibiting a mode 2 deformation dominance throughout
the droplet lifetime and a strong coupling between the even modes
(i.e., 2, 4, and 6). Through a study of the decay following high-
amplitude deformations in both turbulent and quiescent flows, it is
confirmed that the oscillator is driven by capillary forces.

This paper is organized as follows: first, in section 1.1, a brief
review of the existing theory of droplet oscillations is presented.
Section 2 focuses on the different aspects of the methodology: the
numerical solver, the generation of the turbulent flow, and the
spherical harmonic framework. In section 3, we focus on the
analysis of the numerical results. First, we present different
reference cases where initial droplets are deformed with a specific
shape in a fluid at rest. Second, we analyze the evolution of the
deformation of a droplet immersed in a turbulent background flow,
showing the dominance of mode 2 in the deformation dynamics in
agreement with the experimental and numerical literature. Then,
attention is set on the initial exponential growth of the droplet
deformation and this deformation saturation level. A specific
subsection is carried out on the relaxation time after high
deformation. Finally, in section 4, we close our analysis with
discussions and conclusions.

1.1 Droplet oscillations in a resting fluid

The classical droplet oscillation theory considers the shape
oscillations of an incompressible liquid drop of radius R0,
viscosity μl, and density ρl. The drop is considered to be close to
the spherical stable condition due to the surface tension σ. The
surrounding fluid is considered to be initially at rest, with density ρg
and viscosity μg. Both fluids are considered isothermal.

Any shape that is star-shaped (radially convex set) can be
described in a spherical coordinate reference (see Figure 1). Since
the considered droplet is close to a sphere, this framework is used.
Any function based on the spherical coordinates (θ, φ), where 0 < θ <
π is the polar angle (colatitude) and 0 < φ < 2π is the azimuthal angle
(longitude), can be expressed as an expansion of spherical harmonic
functions. The distance from the center of the reference frame to the
droplet interface can, thus, be described by the following equation:

R θ,φ, t( ) � R0 ∑∞
m�0

∑m
l�−m

am,l t( )Yl
m θ,φ( ), (1)

where am,l(t) corresponds to the amplitude of the deformation
expressed as a spherical harmonic coefficient and Yl

m is the
spherical harmonic function. Finally, m and l correspond to the
spherical harmonic degree and order, respectively, with m ≥ 0 and
−m ≤ l ≤ m. Degrees (which are referred to in the literature as
modes) describe the number of lobes in the polar coordinate. Order
refers to the orientation of these lobes in the reference frame system.
The spherical harmonic function is defined as follows:

Hl
m θ,φ( ) � ���������������

2m + 1( ) m − l( )!
m + l( )!

√
Pl
m cos θ( )eilφ, (2)

with Pl
m(cos θ) corresponding to the Legendre polynomials, m ∈ N

and l ∈ [−m, m]. Then, the real form of the spherical harmonics is
given by the following equation:

Yl
m θ,φ( ) �

i�
2

√ Hl
m − −1( )mH−l

m( ) if m< 0

H0
m if m � 0

i�
2

√ H−l
m + −1( )mHl

m( ) if m> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(3)
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The equation of motion of the free surface can be obtained from
the linearization of the Navier–Stokes equations [28]. For the
particular case, in which the surrounding fluid is of negligible
dynamical effects, the evolution in time of the coefficients am,l

are solutions of the independent second-order differential
equation [24]:

€am,l + 2βm0 _am,l + ω2
m0am,l � 0, (4)

where · corresponds to the time derivative, βm0 is the damping
coefficient of mode m, and ωm0 is the angular frequency associated
with mode m. It was shown that for this particular case, the angular
frequency and damping rate are given by the following equations:

ωm0 �
����������������������
m m + 1( ) m − 1( ) m + 2( )σ

R3
0 mρg + m + 1( )ρl( )

√
, (5)

βm0 � 2m + 1( ) m − 1( ) μl
ρlR

2
0

. (6)

For the studied case of liquid–liquid droplets, the solution given
by Prosperetti [24] is considered. In the limit of weak viscous effects,
this equation can then be simplified by estimations obtained from an
asymptotic development [29], which draws the following solution
for the angular frequency:

ωm � ωm0 1 − 2m + 1( )2 ��
ρ̂μ̂

√
2

������
2ωm0

ρl
μl

√
R0 mρ̂ + m + 1( )[ ] 1 + ��

ρ̂μ̂
√( )︸�����������������︷︷�����������������︸

A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Then, the expression for the damping rate is defined as follows:

βm� ωm0 A−2A2( )
+ 2+m( ) 2 m2−1( )+ m+2( )μ̂− m−1( )ρ̂μ̂+2m m+2( )ρ̂μ̂2[ ]

2 mρ̂+m+1( ) 1+ ��
ρ̂μ̂

√[ ]2 μl
R2
0ρl

,

(8)
where ρ̂ � ρg/ρl is the density ratio and μ̂ � μg/μl. It should be
noted that the subscripts m are used to describe the solution of
these equations for the associated modem. In the present paper, we
consider the case where the density ratio between two phases
is one.

The zeroth coefficient a0,0 evolves in time in order to ensure mass
conservation [30]. According to these authors, the first mode should
not report any oscillation. Since Eq. 4 is independent, the present
theory does not consider any coupling between the coefficients.

A general review of the different theories can be found in [23].
More recent developments can be found in [10,31].

For the sake of clarity, in the current paper, we use the
frequency f2 = 2πω2 computed from Eq. 7 to non-
dimensionalize the time, considering that mode 2 is expected to
dominate the deformation.

2 Methodology

2.1 Archer solver

The in-house high-performance computing code Archer is used
to perform all DNS presented in this work. Archer was one of the
first codes undertaking the simulation of liquid-jet atomization
under a realistic diesel injection configuration [32]. It solves on a
staggered Cartesian mesh the one-fluid formulation of the
incompressible Navier–Stokes equation.

∇ · �u � 0, (9)
zt ρ �u + �∇ · ρ �u ⊗ �u( ) � − �∇p + �∇ · 2μD( ) + �f + σκδs �n, (10)

where ρ s the density, p is the pressure field, μ is the dynamic
viscosity, D is the strain rate tensor, �f is a source term, σ is the
surface tension, �n is the unit normal vector to the interface, κ is its
mean curvature, and δs is the Dirac function characterizing the
location of the interface. For solving Eq. 10, the convective term is
written in the conservative form and solved using the improved
Rudman’s technique [33] presented in [34]. The latter allows mass
and momentum to be transported consistently, thereby enabling
flows with large liquid/gas density ratios to be simulated accurately.
The viscosity term is computed following the method presented by
[35]. To ensure the incompressibility of the velocity field, a Poisson
equation is solved. The latter accounts for the surface tension force
and is solved using a multi-grid preconditioned conjugate gradient
algorithm (MGCG) [36] coupled with the ghost fluid method [37].

FIGURE 1
Drop deformation: sketch and definitions.
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For transporting the interface, a CLSVOF method is used, in
which the level-set function accurately describes the geometric
features of the interface (its normal and curvature) and the VOF
function ensures mass conservation. The density is calculated from
the VOF, ψ, as ρ = ρlψ + ρg(1 − ψ), and the dynamic viscosity (μl or
μg) depends on the sign of the level-set function. In cells containing
both a liquid and gas phase, a specific treatment is performed to
evaluate the dynamic viscosity, following the procedure of [35]. The
code has been validated and tested in a variety of atomization
conditions, such as high-density ratios and varying Weber and
Reynolds numbers [32,34]. The case of an oscillating droplet has
been previously validated for the Archer code [25,26], finding good
agreement with the linear theory.

2.2 Turbulent flow generation

To produce a turbulent flow in a physical space-based code,
linear forcing has been applied. This forcing was first developed for a
single-phase flow by [38] and has been adapted to two-phase flows
with particles [39] and interfacial flows [40,41]. This subsequent
implementation is used in the present research. The linear forcing
consists in introducing a volume force in the Navier–Stokes
equation proportional to the velocity fluctuations, �f � A �u′. Here,
�u′ � �u − 〈 �u〉 is computed at the end of the prediction step, and the
parameter A is updated each time step in order to obtain a target
total energy. Limited by the number of nodes, the present
simulations are performed at a fixed turbulent Reynolds number,
Reλ � ρlu′λ

μl
≃ 45, where λ is the Taylor length scale.

The impact of the forcing scheme is currently under study [42]
and will be presented in a future communication.

2.3 Droplets in the turbulent flow database

A database of independent droplets immersed in a
homogeneous and isotropic turbulent background flow was
generated as a part of a previous study ([43,44]—forthcoming).

We consider the liquid–liquid interaction to experience no mixing
or mass exchange. The Weber number, defined as We � ρlu

′22R0

σ ,
remained constant over all cases (We = 0.9). This Weber number
was set to ensure the droplet would oscillate without experiencing an
immediate breakup. The viscosity ratio (μl/μg) and density ratio (ρl/
ρg) are set to 1. In order to focus on the interactions between the
interface and the turbulence, it was decided to work with the same
density and the same dynamic viscosity for both fluids [13].
Turbulence forcing can introduce additional problems, in
particular when the density ratio is large [18]; therefore, by
setting this parameter to unity, the influence of the density
difference on the carrier turbulent flow is avoided. The numerical
simulation was performed over a 643 grid. A ratio between the
droplet radius and domain size of R0

L � 0.233 and an Ohnesorge
number (Oh � μl����

σρlR0

√ ) of 0.00465 were considered. Each droplet is
generated in the following way: first, a single-phase isotropic and
homogeneous turbulent flow is generated in the domain and run
until it converges. After this, a spherical solid body is located inside
the domain with the surrounding fluid to capture the non-slip
condition. The background flow is then left to evolve around the
sphere, and once convergence has been reached respecting the no-
slip condition, the spherical solid body is changed for a liquid bulk.
The numerical simulation was set to continue until the droplet
experienced breakup. For the results presented in this article, over
220 droplets were analyzed. The database generation is fully
presented in Deberne et al. (2023—forthcoming).

2.4 Spherical harmonic decomposition

To study the shape evolution of a drop immersed in a turbulent
flow, we introduce the spherical harmonic functions Yl

m(θ,φ) (Eq.
2). The representation of the spherical harmonic function as a
double series is a generalized Fourier series. Therefore, if
normalized, it represents a complete orthonormal system of
functions for all degrees m and orders l. Due to this property, we
can then compute the spherical harmonic coefficients of a function
with the integral:

FIGURE 2
Illustration of the interface mapping of a droplet deformed by a turbulent background flow for a spherical harmonic decomposition withM =6. (A)
Points are distributed around a revolution axis given by the reference frame. (B)Normalized distances between the center and the interface are stored in a
grid. The colorbar corresponds in both figures to the values of the function R(θ, φ) normalized by the reference radius R0.
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am,l � ∫
Ω
R θ,φ( )Yl

m θ,φ( ) dΩ, (11)

where dΩ corresponds to the differential surface area on the unit
sphere sin θdθ dϕ.

The values of R(θ, φ) are obtained through a loop that computes
the values of the radius across the interface (Figure 2A), following
the spherical coordinates reference frame over an array of angles,
whose size is given by the maximum number of modes, M, we wish
to evaluate. More specifically, the array (as shown in Figure 2B) will
be of shape 2(M + 1) × 2(M + 1). The coefficients are then computed
from this array with the help of pyshtools [45]. The numerical error
for computing the radius R(θ, φ) is less than 0.1%. Similarly, the
numerical error for computing the coefficients am,l is less than 0.1%
for m ≤ 6. A detailed overview of the spherical harmonic expansion
framework applied here has been determined as part of this
research [27].

For the studied case, we consider the computation of the
spherical harmonic modes for m ≤ 6 as we observe a rapid
decrease of the amplitude of the coefficient am,l with m. Since we
aim to use this framework to characterize the deformation on the
droplet surface, we are interested in reducing as much as possible the
effect of mode 1 (a1,l ≈ 0) since it describes the translatory motion of
the droplet. The center of mass was opted as the center of space after
considering different approaches [27]. For the results shown here,
90% of the computed mode 1 coefficients are below 0.05. An
exception to this rule occurs when the droplet is subject to high-
amplitude deformation.

Our goal is to relate the spherical harmonic expansion with the
surface deformation. We recall that the total energy stored at the
interface is proportional to the total surface area η2Ω. Parseval’s
theorem, also known as Rayleigh’s energy theorem, relates the
integral of the square of a function to the sum of the square of
its transform. Due to the orthogonality properties of the spherical
harmonic functions, this can be written as follows:

1
4π

∫
Ω
R2 θ, ϕ( ) dΩ � η2Ω, (12)

where

η2Ω � ∑∞
m�0

∑m
l�−m

a2m,l. (13)

The power spectrum a2m is computed by the following equation:

a2m � ∑m
l�−m

a2m,l. (14)

Since the coefficients am,l of the same degree m are associated
with the same oscillatory frequency, the power spectrum provides
the energy contained in each mode and relates it to the total
deformation. This parameter will always be positive by definition
and independent of the orientation of the reference frame.

The spherical harmonic coefficients are dependent on the
reference frame of the system. This means that the results from
the expansion are directly affected by the center of the coordinate
system and the reference frame in which we define the angles θ and
φ. Due to the nature of the surrounding fluid in this study, the
droplet will not remain static, but it will experience translation and
rotation. In the present, an origin at the center of mass of the body is

considered, with a reference frame aligned to the Cartesian mesh,
except for the analysis conducted, as shown in section 3.4.

3 Results

3.1 Single-mode deformation droplets

In order to have a reference for the case studied in this article,
a series of simulations without turbulence are performed with
similar conditions and numerical resolution as for the turbulent
case. The selected configuration is to investigate the oscillations
of each isolated mode in a fluid initially at rest. Both the drop and
the surrounding fluid are of equivalent characteristic values as
those used for the generation of the database. Each simulation
corresponds to the small-amplitude perturbation of degrees m =
2–6. The spherical harmonic coefficients am,0 were chosen in
accordance to the highest amplitude of the coefficients found in
turbulent flow deformation (presented later in section 3.2). The
reference frame was selected so that we would follow the
axisymmetric oscillations of the liquid drop (i.e., θ is the
angle respecting to the axisymmetric axis.). The temporal
evolution of the coefficients and their initial shape are given
in Figure 3.

In the simulation, common results are observed. First, the
oscillatory behavior is clearly seen. The amplitude reduces in
time as expected by the theory. Second, it is noticeable that the
droplet tends to spend more time in the prolate state for mode 2 as a
known non-linear effect [46]. This can be seen comparing the time
spent on positive (i.e., prolate) and negative (i.e., oblate) am,0 when
considering even modes (i.e. 2, 4, 6). For mode 2 oscillations, it is
computed that the droplet spends 56.75% of the total time in the
prolate state. This phenomenon has been analyzed in detail in the
works of Foote [47]; Basaran [8]; Meradji et al. [48]; Zrnić et al. [10].
For modes 4 and 6, the oscillations appear to be more periodic, not
having such a difference when comparing prolate to the oblate state.
Finally, even if only a pure mode is initially perturbed, coupling
between modes is observed. This is particularly seen for even modes
(see Figures 3A, C, E), as suggested by Foote [47] and Alonso [49].
The coupling between orders seems negligible in all the cases, except
order l = 4 that appears for modes m = 4–6. Indeed, this order is
aligned with the Cartesian grid, and thus, numerical approximations
affect this order.

The frequency and damping of each simulation are given in
Table 1. The values of ωm and βm were computed using a
Levenberg–Marquardt fitting algorithm. The covariance of the
fitted results was below 0.5% for all cases. As predicted by the
theory [6,28], these values increase with the degree. In other words,
the deformations with smaller amplitude have larger frequency and
are dissipated faster. The computed values differ from the theoretical
predictions. This is due to different considerations. First, the selected
mesh resolution has been chosen as small as possible in order to
realize an extensive database. Second, the droplet is not in an infinite
domain since the domain is considered as tri-periodic as in the
database. Finally, the theory is applied for small perturbations
(i.e., am,l ≪ R0), assumption that is not verified in the current
simulations. Nonetheless, these values will serve as a reference for
the rest of the article.
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FIGURE 3
Oscillations of a droplet initialized with a spherical harmonic mode coefficient m = 2–6. (A) a2,0=0.36R0, (B) a3,0=0.035R0, (C) a4,0=0.1R0, (D)
a5,0=0.04R0, and (E) a6,0=0.016R0. The coefficients am,0 were selected in accordance to the highest amplitude of the coefficients found in turbulent flow
deformation (presented in section 3.2) (Supplementary Videos S1–S5 and Supplementary Data S1).
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3.2 Oscillations of droplets immersed in a
turbulent flow

We investigate the oscillations by computing the coefficients am,l

for each droplet of the database in order to correlate their oscillations
with deformation. Since the frequency of each coefficient am,l for the
same m is homologous, we make use of the power spectrum
coefficient a2m (Eq. 14), which corresponds to the surface energy
contained in each modem Perrard et al. [14]. The evolution of am ����
a2m

√
as a function of the dimensionless time tf2 for a single droplet is

shown in Figure 4. The choice of plotting am instead of a2m is carried
out to highlight the coupling between modes. The amplitude of the
coefficient a1 is close to zero for most of the duration of the droplet’s
run due to the choice of the center of the reference frame, except
when we observe high-amplitude deformations. In these extreme
cases, the droplet becomes highly elongated with a complex
geometry. We can observe a dominance of mode m = 2 in the
surface energy deformation, in agreement with the previous
literature in bubble dynamics [3,14,50], which have reported this

phenomenon. To a lesser extent, the modem = 4 also contributes to
the global deformation and seems to be coupled with themodem = 2
deformations. Considering the first peak at tf2 = 5, the total amount
of energy stored at mode m = 2 is equivalent to 10% of the surface
energy of a perfect sphere, while the same quantity for mode m = 4
does not reach 0.5%. The coefficients a2,l are also shown in Figure 4.
The coefficients am,l are directly dependent on the reference frame. If
a different initial reference frame had been chosen, different values
for the coefficients am,l would have been observed. However, a clear
oscillation pattern is observed for each mode, and it is worth noting
that the amplitudes of all the exposed coefficients are akin. The same
behavior can be observed in the other modes, but with smaller
amplitudes (not shown in the figure since larger degrees have too
many orders to be plotted).

Due to the difficulty to extract a pure frequency from the
amplitude coefficients am,l, the angular frequency of each couple
(m, l) was obtained by computing the average oscillation period
defined as the peak-to-peak interval time. The statistics were
computed for tf2 > 6, where the statistically converged regime is

TABLE 1 Summary of frequencies ω and the damping ratio β normalized by ω20.

Mode 2 3 4 5 6

ω β ω β ω β ω β ω β

Eqs 5, 6 1.00 0.0106 1.890 0.0297 2.89 0.057 3.99 0.0933 5.19 0.138

Eqs 7, 8 0.959 0.0441 1.81 0.0849 2.76 0.135 3.81 0.195 4.95 0.264

Individual modes (section 3.1) 0.738 0.0841 1.861 0.214 2.544 0.288 3.70 0.374 4.79 0.440

Turbulent flow (section 3.2) 1.11 - 1.96 - 2.29 - 2.88 - 3.34 -

Quiescent flow (section 3.4, Figure 7) 0.853 0.107 - - 1.76 0.336 - - - -

FIGURE 4
Top image shows the power spectrum of the spherical harmonic decomposition for modesm=1 tom =6 as a function of the dimensionless time tf2
of one droplet from the database. In the bottom, coefficients a2,l as a function of the dimensionless time tf2 of one droplet from the database for l =−2 to
l =2 are shown (Supplementary Video S6 and Supplementary Data S2).
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reached (see section 3.3). The angular frequencies obtained are given
in Table 1. The frequency observed for each mode is of the same
order of magnitude as one for pure-deformed oscillations. This
result broadens the conclusions of Risso and Fabre [3], which show
for bubble in turbulence experiments that the power spectrum of the
projected area is dominated by the natural frequencies of modes
2 and 4. These two frequencies appear here for the coefficient
corresponding to modes 2 and 4, respectively. This proves that,
as expected, the oscillatory frequency is related to the shape
deformation given by the same mode. In addition, our results
show that all the modes are concerned by these natural
oscillations, not only even modes.

The shift between the computed frequency and the natural one is
not clear: for mode 2, we observe an increase in the frequency, while
for mode 6, we observe a decrease. The origin of these differences is
difficult to identify here, but it could be due to the coupling of the
interface with the turbulence and the coupling between modes. The
seminal work of [51] for bubbles can provide the first answer of this
problem. Nevertheless, the extension of this theoretical work to the
liquid–liquid case is out of the scope of this paper. Another way to
understand the differences consists in considering that mode 2 has a
characteristic length scale close to the radius, and in our case, close to
the inertial length scale, while the mode 6 characteristic length scale
is smaller and close to the Kolmogorov length scale. Thus, the
turbulence level seen by each mode is not the same. The turbulence
impact on the frequency at each scale should be explored in the

future by studying different turbulent Reynolds numbers and
different droplet sizes.

3.3 Initial growth and saturation regime

We compute the ensemble average deformation by analyzing the
entirety of the droplet database. For each droplet, we perform the
spherical harmonic decomposition analysis described previously to
obtain the spectrum values. In Figure 5, we show the temporal
evolution of the spectrum of some realizations as a function of the
dimensionless time tf2. The ensemble averages defined by αm(t) �������
〈a2m〉N

√
are described by the black dashed lines. The definition here

differs from the definition of Perrard et al. [14] who computes the
ensemble average as 〈am〉N . Our choice is motivated by the fact that
the saturation level should be linked to the total surface. It has been
observed that both expressions provide a similar behavior except for
mode 6, where the strong short deformations increase the averaged
value with our definition. The computed values of 〈am〉N are not
presented in this article.

If we take a closer look at the earlier time after the drop is left to
evolve in the background flow, we observe an exponential growth for
each mode. This growth differs from what is observed by Perrard
et al. [14] where they noted a linear growth during the initial time of
the evolution of the bubble in a similar experiment. The difference
can be attributed to a different initialization routine. In their case,

FIGURE 5
(A) Evolution of the deformation for each individual spherical harmonic mode coefficient am as a function of the dimensionless time tf2 (individual
realizations from the database in solid lines) with its respective ensemble average αm (dashed line) forWe =0.9. (B) Close up of the initial growth regime
(Supplementary Videos S7–S12 and Supplementary Data S3).
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the bubble is initialized with a turbulent flow, even at the interface,
while in our experiment, the droplet velocity is zero and a no-slip
condition is ensured ([44]—forthcoming).

Then, a saturation level is reached after a given time. The time to
reach this saturation time reduces with the mode. For all the modes,
we observe a first peak of the ensemble average that seems to be well
repeatable and certainly related to the initial condition. The time to
reach this peak is smaller for larger modes. After this peak, all the
modes converge toward a saturation level.

The saturation level has been studied for modes 2–4 by Perrard
et al. [14]. In the present paper, we compute this value for modes
2–6. The saturation level here is the ensemble and time average over
the 220 droplets and after tf2 > 6. The obtained average, defined by
αm,sat �

����������
〈a2m〉N ,tf2 > 6

√
, is {0.213, 0.0531, 0.0581, 0.0260, 0.0208}R0

for m = 2–6. As expected and observed by Perrard et al. [14], the
saturation level decreases as the mode increases. That is due to two
main phenomena. First, the natural damp rate increases with the
mode, and thus, the deformations related to large modes reduce
faster. Second, as the mode increases, the characteristic length
decreases, and thus, the turbulent energy decreases. The
relationship between these two phenomena is not clear, and the

scaling of this saturation level has yet to be established. In particular,
the difference between odd and even modes should be established.
Future work, with differentWeber and turbulent Reynolds numbers,
will be really helpful in this direction.

After the analysis of regular oscillations, we now consider the
study of large deformations.

3.4 Large deformations and damping factor

Wehave seen that droplet oscillations in a turbulent flow result in a
series of non-axisymmetric oscillations, which are difficult to
characterize with the linear stability theory. Large deformation
events can be relaxed or can lead to breakup, as suggested by the
model of [4,11] which provides a maximum deformation threshold. In
the following, we analyze the oscillations following a high-amplitude
deformation. In order to bring out axisymmetry as much as possible,
we rotate the reference frame, in which the spherical harmonics were
computed to the one thatmaximizes the amplitude of coefficient a2,0. A
minimization Broyden–Fletcher–Goldfarb–Shanno algorithm is used
to find the two Euler angles that maximize a2,0. The corresponding

FIGURE 6
Evolution of the spherical harmonic coefficients am,0 following a high-amplitude deformation a2>0.3 (individual realizations from the database in
solid lines) with its respective ensemble average 〈am,0〉N (dashed line) (Supplementary Video S13 and Supplementary Data S4).
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reference frame is often close to the inertial tensor of the droplet (see
[52]) that is here used as the initial condition for the minimization
algorithm.

As seen in Figure 4, the studied droplets reach high-amplitude
deformation several times during their lifetime. A total of 694 of these
instances were chosen under the criteria that they have a coefficient
a2(tpeak) > 0.3R0 and do not experience breakup in the 4tf2 after this
deformation. The threshold criteria were chosen to be 1.5 α2,sat and is
close to the breakup limit proposed by Lalanne et al. [4] and confirmed
in the current database ([44]—forthcoming). In other words, these
large deformations are often followed by breakup. In Figure 6, the
evolution in time of the deformation coefficient am,0 following a high-
amplitude deformation for individual realizations is plotted, along with
the ensemble average of the chosen droplets.

First, the evolution of coefficient a2,0 provides an idea of the total
deformation evolution. A rapid increase of the am,0 coefficients form =
[2, 4] is followed by a contraction back to the previous mean level. In
the particular case of mode 2 oscillations, when aligned to the
maximum deformation, the fluctuation between growth and decay
shows a timescale related to f2. Similarly to the observations of [50], this
decay can be related directly to the natural damp rate of the droplet.

The coupling between even modes can be also established. First,
it is clearly seen that these high-deformation droplets also have an
a4,0 component. In other words, the orientation of modes 2 and
4 deformations is aligned. The increase of coefficient a6,0 is also to
notice and seems to recover the energy relaxed by modes 2 and 4. For
modes 3 and 5, there is no clear evolution.

In order to confirm that the physics after a high-amplitude
deformation is related to the capillary forces and not to the
background flow, we study a given realization and set the
velocity to zero, similarly to the work carried out by Håkansson

et al. [53] in the research for a breakup criterion. The selected droplet
is present in Figure 6 (blue line), and its shape at t − tpeak is shown in
Figure 7A. The reference frame is set as before using the
maximization of a2,0. In Figure 7B, the power spectrum evolution
in time is given comparing the turbulent realization and the initial
quiescent flow case. The initial decaying is clearly similar in both
cases, then, for larger times, the turbulent case deviates from the
perfect oscillator.

In Figures 7C, D, the decomposition of modes 2 and 4 is given,
respectively. The other modes are not given since their amplitude is
negligible here. The same conclusion can be drawn: the damping and
first oscillations after the large deformation are driven by the
capillary.

The present droplet has a complex deformation and is not
composed of a pure deformation, as shown in section 3.1. Thus,
the coupling between the modes can explain the differences
observed between Figures 7C, D and Figures 3A–C. The droplet,
which is shown to undergo a high-amplitude mode 2 deformation,
spends a slightly larger part of each period in the prolate state
(59.15% of the total time). This phenomenon is in accordance with
the linear stability analysis theory [10,47]. The frequency and damp
factor are given in 1 for mode a2,0 and a4,0. Similarly to the individual
mode case (3.1), ωm and βm were computed by using a
Levenberg–Marquardt fitting algorithm. Due to the length of the
first oscillation observed for mode 4 (Figure 7D), the curve fit was
computed from the a4,0 amplitude after its first period. The main
difference when comparing the pure mode deformation with the
complex shape here is on the mode 4 damping rate. This difference
can be understood by looking at Figure 7D. It is clearly seen that, in
contrast to mode 2, mode 4 deformation is not perfectly aligned with
the reference frame (a4,2 and a4,−1 are not negligible). Thus, the

FIGURE 7
(A) Snapshot of the droplet in its maximum deformation time. (B) t − tpeak spectrum coefficient am as a function of the dimensionless time tf2 of a
realization transferred into a quiescent flow. (C) Evolution of the spherical harmonic coefficients a2,l after rotating the reference frame to maximize the
coefficient a2,0. (D) Evolution of the spherical harmonic coefficient a4,l in the same reference frame (Supplementary Video S14 and Supplementary
Data S5).
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coupling between orders l plays an important role, and the damping
cannot be evaluated only from the time evolution of coefficient a4,0.

4 Conclusion

A droplet database generated by DNS was used to characterize
the oscillations of droplets. A framework for droplet deformation
using a spherical harmonic decomposition of the droplet surface has
been presented.

As a reference case, droplets with single deformation modes are
first considered. The oscillatory motion is consistent with the
theoretical framework. The angular frequency and damping rate
of the oscillator show a slight discrepancy compared to the linear
theory. As expected, the droplets spend more time in the prolate
state than in the oblate state, and the coupling between even modes
seems to be important.

Droplets immersed in a turbulent background flow are studied.
The present work is based on a database that is still being extended
for different purposes, in particular to investigate the droplet
breakup and the turbulent/interface interactions. This database
considers many realizations with similar dimensionless numbers.

It is shown that mode 2 is dominant in the deformation of a
droplet undergoing turbulence-driven deformation. Oscillations of
each spherical harmonic coefficient are observed, and its frequency
is close to the theoretical frequency obtained from the linear theory.
These observations extend the existing literature which focuses only
on the turbulence coupling with mode 2.

The total deformation is analyzed using the power spectrum.
The ensemble average of the power spectrum, which can be seen as
the energy stored at the interface for each mode, reaches a
statistically converged level. This saturation level is related to the
droplets natural damping rate and the turbulent cascade. The scaling
of this saturation level has not yet been established.

Finally, a study of high-amplitude deformations is performed. The
spherical harmonic reference frame is aligned with a large deformation
axis, maximizing the a2,0 coefficient. For these deformations, the
coupling between even modes is observed. The droplet relaxation is
related to capillary forces, as shown by the simulation of the same
droplet but without any initial velocity field. The damping rate is
similar to the one obtained in the single-mode simulations.

Three main perspectives can be drawn and are being explored
by different groups. First, it has been seen that the weakly viscous
linear theory provides accurate information on how the droplets
evolve. Two main questions can be answered by extending the
existing theories: i. how modes are coupled in the case of complex
shape droplets; and ii. how singular eddies excite each mode
modifying the angular frequency oscillations. Second, new
simulations with different Weber and Reynolds numbers
should be performed in order to provide a more detailed
picture of how the turbulence and interface interact at each
length scale. From the authors’ point of view, it is the straight
way to understand how the saturation level for each mode power
spectrum scales with the turbulence. Finally, the extension of the
present work to droplets in a gaseous environment and bubbles in
a liquid, numerically and experimentally, will improve the
understanding of turbulence–interface interactions.
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