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The fractional solitons have demonstrated many new phenomena, which cannot be
explained by the traditional solitary wave theory. This paper studies some famous
fractional wave equations including the fractional KdV–Burgers equation and the
fractional approximate long water wave equation by a modified tanh-function
method. The solving process is given in details, and new solitons can be
rigorously explained by the obtained exact solutions. This paper offers a new
window for studying fractional solitons.
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1 Introduction

A fractional solitary wave [1] has some special properties which cannot be explained by the
traditional soliton theory. The traditional soliton is a single wave with the same shape in
propagation, while the fractional soliton has some amazing memory and non-local properties,
which means the present wave morphology depends upon its history. This is caused by the
intrinsic property of the fractional derivative [2]. The fractal solitary waves, on the other hand, are
waves traveling along an unsmooth boundary [3, 4]. And the fractal solitary wave has the local
property, the unsmooth boundary affects its wave shape.Here, the two-scale fractal theory [5, 6] is
adopted to figure out the basic property of the unsmooth boundary.

This paper focuses on fractional solitons, which can describe physical phenomena more
accurately and reflect their intrinsic properties deeply. Therefore, fractional solitons have attracted
increasing attention from both physics and oceanography. For example, shallow water waves [7, 8]
can describe the effects of waves in the ocean better than other mathematical models. Shallow water
waves are fluctuations in the ocean with wavelengths much greater than the depth of the water
(usuallymore than 25 times), and the dispersion of water waves is one of the key properties inmany
shallow water wave models, which has obvious memory property. Fractional shallow water
equations can describe the propagation of waves in dispersed media and model the
hydrodynamics of lakes, estuaries, tidal stalls, and coastal waves, as well as deep-ocean tides.
These fractional differential equations have a significant impact on the study offluidmotion in ocean
waves and the soliton theory as well; however, a serious bottleneck was hit, that is, the fractional
model is extremely difficult to be solved analytically. Therefore, many scholars focused on using
differentmethods to find fractional solitons. For instance, the first integral method [9], the fractional
sub-equation method [10], the homotopy perturbation method [11-13] and its modifications,
Mohand transform–homotopy perturbation method [14, 15], two-scale transform–-homotopy
perturbation method [16], Laplace transform–homotopy perturbation method [17], Li–He’s
modified homotopy perturbation method [18-20], the tanh-function method [21, 22] and its
modification—tanh function expansion method [23]—and modified extended tanh-function
method [24,25]. It is worth mentioning that fractional complex transform was first proposed
by [26]; it can convert fractional differential equations directly into ordinary differential equations.
This method makes a significant contribution to finding exact solutions of fractional differential
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equations, and it was applied to gain insights into physical properties of
the time-fractional Schrodinger equation [27] and the time-fractional
Camassa–Holm equation [28].

In the current article, our concern is to find some exact solutions
of the following two non-linear FPDEs via the modified extended
tanh-function method with the fractional complex transform.

1) The time-fractional KdV–Burgers (KdVB) equation of the
form [29

zηu

ztη
+ wu

zu

zx
+ ρ

z2u

zx2
+ s

z3u

zx3
� 0, (1)

where w, ρ, and s are real constants and 0< η< 1. The KdVB equation
(η = 1) is a well-known mathematical model for describing waves on
shallow water surfaces; it plays an essential role in both applied
mathematics and physics. This equation can be used to describe and
analyze a few foremost physical contents related to liquids, dispersion,
viscosity, andwave dynamics. For example, it is used to study the spread
of waves in elastic tubes filled with viscous fluids [30] and to analyze the
propagation of wave-like pores in shallow water [31].

However, with the increasing irregularities and non-linearities
in wave motion observed by other scholars, the broader outlook
establishment for this model is necessary. Therefore, an increasing
number of scholars began to study the extended classical model into
a new model with time-fractional derivatives to deal with what the
traditional KdVB equation (η = 1) cannot do.

There have been some common methods to solve fractional KdVB
equations. For instance, [32] extended the homotopy perturbation
method to solve time-space fractional equations. [29] applied the
residual power series method (RPSM) for finding approximate
solutions of the time-fractional KdVB equation. [33] solved the time-
fractional KdVB equation numerically by the Petrov–Galerkin method.

2) The fractional approximate long water wave equation is given
as [34]

Dη
t u − uDη

xu −Dη
xv + aD2η

x u � 0,
Dη

t v −Dη
x uv( ) − aD2η

x v � 0,
(2)

where 0< η< 1 and a is a real parameter. As a famous equation to
describe the propagation of shallow water waves, it is also important for
its amazing fractional solitons, so its exact solutions are much needed to
gain insights deeply into the properties of the fractional solitary waves.
Up to now, some explicit solutions appeared in the literature, for
instance, [34] found three traveling wave solutions by the fractional sub-
equation method, [35] obtained an exact solution by using the (G’/G)-
method, and [36] also constructed an exact solution by the generalized
Kudryashovmethod. Althoughmuch achievement was obtained, its full
breathtaking panorama has not been offered yet.

The article is divided into the following sections: First, an
introduction is given to the basic knowledge in Section 2; second, in
Section 3, the general steps for the solution are given in detail; and
finally, the applications and the conclusions are organized in Section 4
and Section 5, respectively.

2 Preliminaries

Regarding the definition of fractional derivatives, many
mathematicians started from different perspectives and gave
different definitions. Here are some definitions.

1) Caputo fractional derivative [37, 38]:

Dη
x f x( )[ ] � 1

Γ n − η( )∫
x

0
x − t( )n−η−1d

nf t( )
dtn

dt. (3)

2) Jumarie’s modified Riemann–Liouville (R–L) fractional
derivative [39]:

Dη
t g t( ) �

1
Γ 1 − η( )∫

t

0
t − ξ( )−η−1 g ξ( ) − g 0( )( )dξ, η< 0,

1
Γ 1 − η( )

d
dt
∫t

0
t − ξ( )−η g ξ( ) − g 0( )( )dξ, 0< η< 1,

g n( ) t( )( ) η−n( ), n≤ η< n + 1, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where

Γ η( ) � ∫+∞

0
xη−1e−xdx, η> 0. (5)

(3) He’s fractional derivative [20, 40]:

Dη
t f � 1

Γ n − η( )
dn

dtn
∫t

to

s − t( )n−η−1 f0 s( ) − f s( )[ ]ds, (6)

FIGURE 1
Three-dimensional plots of u1(ζ) and u2(ζ) in case 1 for η=0.5,
w=1, ρ=1, s=1, l=1, L=1.
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where f0(x) is a known function.

4) Two-scale fractal derivative [41, 42]:

zw

ztη
tη( ) � Γ 1 + η( ) lim

t−t0�4t,△≠0

w tη( ) − w tη0( )
t − t0( )η , (7)

where △t is the period required for the motion through a gap of a
porous space.

In addition, there are other famous derivatives in the literature
such as the Atangana–Baleanu derivative with non-local and non-
singular kernel [43, 44]. In this paper, we adopt the Jumarie’s
modified R–L derivative definition. Some of its important
properties are as follows:

Dη
t t

m � Γ 1 +m( )
Γ 1 +m − η( )tm−η, (8)

Dη
t cg x( )( ) � cDη

t g x( ), c is a constant, (9)
Dη

t g ω( ) + f ω( ){ } � Dη
t g ω( ) +Dη

t f w( ). (10)

3 Basic idea of the modified tanh-
function expansion method

Considering the following equation

P u,Dη
t u, D

γ
xu, D

η
t D

η
t u, D

η
t D

γ
xu,D

γ
xD

γ
xu,/( ) � 0, 0< η, γ< 1( ),

(11)
whereDη

t u, D
γ
xu,D

η
t D

η
t u, D

η
t D

γ
xu/ are the modified R–L fractional

derivatives. P presents the polynomial function. To solve this
equation, by using the modified tanh-function expansion method,
we divide the solution processes into three steps.

Step 1: Using the fractional complex transformation [26, 45]

u x, t( ) � u ζ( ),
ζ � lxγ

Γ γ + 1( ) +
ktη

Γ η + 1( ), (12)

where l and k are constants and l, k ≠ 0. By the chain rule [45],

Dη
t u � σt

zu ζ( )
dζ

Dη
t ζ , Dη

xu � σx
zu ζ( )
dζ

Dη
xζ ,

D2η
t u � σt( )2z

2u ζ( )
dζ2

D2η
t ζ , D2η

x u � σx( )2z
2u ζ( )
dζ2

D2η
x ζ ,

(13)
where σt and σx are sigma indices. We take σt = σx = L, where L is a
constant. Then, substituting Eqs 12 and 13 into Eq. 11, we obtain a
non-linear ODE that contains only variable ζ:

D u, u′, u″/( ) � 0, (14)
where u′ � du

dζ , u″ � d2u
dζ2

/ and D presents the polynomial function.
Step 2: Supposing Eq. 14 has the solution as Eq. 15

u ζ( ) � ∑n
i�0

aiΦi ζ( ), (15)

where Φ is a function about ζ, and it satisfies the Riccati equation

Φ′ � τ +Φ2, (16)

τ is a constant, and ai(i = 0, 1, 2, . . . , n) are undetermined constant. n
is a balancing parameter which is determined by the homogeneous
balance method. Φ has the following three types of solutions
according to the different values of constant τ

Φ � − ���−τ√
tanh

���−τ√
ζ , τ < 0,

Φ � − ���−τ√
coth

���−τ√
ζ , τ < 0,

Φ � �
τ

√
tan

�
τ

√
ζ , τ > 0,

Φ � �
τ

√
cot

�
τ

√
ζ , τ > 0,

Φ � −1
ζ
, τ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Step 3: Substituting Eq. 15 and 16 into Eq. 14, we obtain an
iteration formulation to obtain the polynomial of Φ. Then, we get
the algebraic equations about ai(i = 0, 1, 2, . . . , n) and l, k, L, and τ by
letting the coefficients of each power and constant terms ofΦ to be 0.
By solving them, we calculate the values of ai(i = 0, 1, 2, . . . , n) and l,

FIGURE 2
Three-dimensional plots of u3(ζ) and u4(ζ) in case 2 with η=0.5,
w=1, ρ=1, s=1, l=1, L=1.
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k, L, and τ. Thus, the exact solution of Eq. 11 is obtained from Eqs.
15–17.

4 Applications

We choose two different and classical equations named the
time-fractional KdVB equation and the fractional approximate long
water wave equation for applications. By the calculations of software,
we obtain the exact solutions of these two equations and the 3D plots
of the obtained solutions perform well.

4.1 Solving process for the fractional
Kdv–Burgers model

Taking the fractional complex transform [26, 45]

u x, t( ) � u ζ( ),
ζ � lx + ktη

Γ η + 1( ). (18)

Then, the original equation Eq. (1) is converted into a non-
linear ODE:

kLu′ + lwuu′ + l2ρu″ + l3su‴ � 0. (19)
Integrating once and the integral constant is equal to zero, Eq. 19

turns into

2kLu + lwu2 + 2l2ρu′ + 2l3su″ � 0, (20)
where n is a balancing parameter. It is used to keep the balance
between the term “u″” and the non-linear term “u2”; we find n = 2.
Therefore, Eq. 15 changed to

u ζ( ) � a0 + a1Φ ζ( ) + a2Φ2 ζ( ). (21)
Substituting Eqs 16 and 21 into Eq. 20, merging the terms of the

same degree of Φ, and vanishing each coefficient of the resulted
polynomials to zero, we obtain the equations for the unknowns a0,
a1, a2, l, k, L, and τ:

2a0kL + 2τl2 a1ρ + 2a2τls( ) + a20lw � 0,
2a2τl

2ρ + a1 kL + 2τl3s + a0lw( ) � 0,
a1l 2lρ + a1w( ) + 2a2 kL + 8τl3s + a0lw( ) � 0,
2a2lρ + 2a1l

2s + a1a2w � 0,
12l2s + a2w � 0.

(22)

Solving the aforementioned set of algebraic equations in the
software application, the solutions of the original equation called
four generalized hyperbolic function solutions are obtained.

Case 1.

a0 � − 3ρ2

25sw
, a1 � −12lρ

5w
, a2 � −12l

2s

w
, k � 6lρ2

25Ls
, σ � − ρ2

100l2s2
,

which produces

u1 ζ( ) � − 3ρ2

25sw
+ 6ρ2

25sw
tanh

ρ

10ls
ζ − 3ρ2

25ws
tanh2

ρ

10ls
ζ , τ < 0, (23)

u2 ζ( ) � − 3ρ2

25sw
+ 6ρ2

25sw
coth

ρ

10ls
ζ − 3ρ2

25ws
coth2

ρ

10ls
ζ , τ < 0, (24)

where ζ � lx + ktη

Γ(η+1), l is an arbitrary constant, and l ≠ 0.
Figure 1 is the 3D plots of the obtained solutions of the KdVB

equation in case 1 for η = 0.5, w = 1, ρ = 1, s = 1, l = 1, and L = 1.

FIGURE 3
Three-dimensional plots of u1(ζ), v1(ζ)and u2(ζ), v2(ζ) of Eq. 2 for
η=0.5, a=1, l=1, k=1, L=1.
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Case 2.

a0 � 9ρ2

25sw
, a1 � −12lρ

5w
, a2 � −12l

2 s

w
, k � − 6lρ2

25Ls
, σ � − ρ2

100l2s2
,

which produces

u3 ζ( ) � 9ρ2

25sw
+ 6ρ2

25sw
tanh

ρ

10ls
ζ − 3ρ2

25ws
tanh2

ρ

10ls
ζ , τ < 0, (25)

u4 ζ( ) � 9ρ2

25sw
+ 6ρ2

25sw
coth

ρ

10ls
ζ − 3ρ2

25ws
coth2

ρ

10ls
ζ , τ < 0, (26)

where ζ � lx + ktη

Γ(α+1), l is an arbitrary constant, and l ≠ 0.
Figure 2 shows the 3D plots of the obtained solutions of the

KdVB equation in case 2 for η = 0.5, w = 1, ρ = 1, s = 1, l = 1,
and L = 1.

4.2 Solving process for the fractional
approximate long water wave equation

Equation 2 is transformed into the following ODEs by applying
the fractional complex transformation Li and He [26] and He
et al. [45]:

u x, t( ) � u ζ( ), v x, t( ) � v ζ( ),
ζ � lxη

Γ η + 1( ) +
ktη

Γ η + 1( ). (27)

Then, the following expressions are obtained:

kLu′ − luLu′ − lLv′ + al2L2u″ � 0,
kLv′ − lL uv( )′ − al2L2v″ � 0.

(28)

We perform the same process as mentioned previously and we
obtain

2ku − lu2 − 2lv + 2al2 Lu′ � 0,
kv − l uv( ) − al2Lv′ � 0.

(29)

Balancing “v” with “u2″ in the first equality in Eq. 29 and “v′”
with “UV” in the second equality in Eq. 29, we find n = 1 andm = 2.
Therefore, Eq. 15 can be written as

u ζ( ) � a0 + a1Φ ζ( ),
v ζ( ) � b0 + b1Φ ζ( ) + b2Φ2 ζ( ). (30)

Substituting Eq. 16 and 30 into Eq. 29, merging the terms of the
same degree of Φ, and making the coefficient of each item in the
result equal to zero, we obtain the equations for the unknowns a0, a1,
b0, b1, b2, a, k, l, L, and τ

2a0k − a0
2l + 2l −b0 + aa1lLτ( ) � 0,

a0a1l + b1l − a1k � 0,
a1

2 + 2b2 − 2aa1lL � 0,
−a0b0l + b0k − ab1l

2Lτ � 0,
b1k − a0b1l − a1b0l − 2ab2l

2 Lτ � 0,
b2k − a0b2l − a1b1l − ab1l

2L � 0,
a1 + 2alL � 0.

(31)

Solving the equations, we have

a0 � k

l
, a1 � −2alL, b0 � k2

l2
, b1 � 0, b2 � −4a2l2L2, τ � − k2

4a2l4L2
.

(32)

Finally, from Eqs 17, 27, 30 and 32, we obtain the following
generalized hyperbolic function solutions of Eq. 2:

u1 ζ( ) � k

l
+ k

l
tanh

k

2al2L
ζ , τ < 0, (33)

v1 ζ( ) � k2

l2
− k2

l2
tanh2 k

2al2 L
ζ , τ < 0, (34)

and

u2 ζ( ) � k

l
+ k

l
coth

k

2al2L
ζ , τ < 0, (35)

v2 ζ( ) � k2

l2
− k2

l2
coth2 k

2al2 L
ζ , τ < 0, (36)

where ζ � lxη

Γ(η+1) + ktη

Γ(η+1), l and k are arbitrary constants, and l, k ≠ 0.
Figure 3 shows the 3D plots of the obtained solutions of Eq. 2 for

η = 0.5, a = 1, l = 1, k = 1, and L = 1.

5 Conclusion

In this paper, some attractive properties of the fractional solitons
are elucidated through two examples, and this paper proposes a total
new concept on the fractional soliton theory and gives a rigorous
mathematical tool to gain deep insights into the physical properties
of the fractional solitary solutions, which are practically applicable in
many fields. Additionally, this paper also reveals the simplicity,
comprehensibility, and effectiveness of the modified extended tanh-
function method.

We anticipate that this paper offers a flood of opportunities for
finding new physical phenomena of the fractional solitons, and this
paper can be used as a good paradigm for future research.
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