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Let K be a 2-torsion free unital ring and D(K) be dihedron algebra over K. In the
present article, we prove that every Lie triple derivation of D(K) can be written as
the sum of the Lie triple derivation of K, Jordan triple derivation of K, and some
inner derivation of D. We also prove that a generalized Lie triple derivation
ϱ: D(K) → D(K) associated with the Lie triple derivation h: D(K) → D(K) exists
if ϱ can be represented in the form ϱ(τ) = h(τ) + λτ, where λ lies in the center of
D(K). We finally conclude that to obtain the complete algebra of the Lie triple
derivation and generalized Lie triple of D(K), we first need to find the Lie triple
derivation and Jordan triple derivation of K.
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1 Introduction

In physics, Lie groups are the symmetry groups of some physical systems, and their Lie
algebras, which are the space of tangent vectors near the identity of the Lie groups, may be
considered infinitesimal symmetry motions. Thus, Lie algebras and their representations are
used extensively in the solution of differential equations and various branches of theoretical
physics. The triple derivation of Lie algebra is apparently a generalization of derivation and is
an analogy of the triple derivation of associative algebra and Jordan algebra. It was
introduced independently in [1] by Muller, where it was called pre-derivation. Muller
proved that if G is a Lie group endowed with a bi-invariant semi-Riemannian metric and g is
its Lie algebra, then the Lie algebra of the group of isometries of G fixing the identity element
is a subalgebra of Lie triple derivations, TDer(g). Thus, the study of the algebra of triple
derivations is interesting not only from the viewpoint of the algebra itself but also for its
applications in the studies of Lie groups and Lie algebra.

Let D be a unital ring with a center denoted by Z(D). We denote the commutator (Lie
product) and Jordan product of τ1, τ2 by [τ1, τ2] = τ1τ2 − τ2τ1 and τ1 ○ τ2 = τ1τ2 + τ2τ1,
respectively, for all τ1, τ2 ∈ D. We say that the ringD is an F-algebra (F is a field) ifD is an F-
vector space equipped with a bilinear product. Fields of scalars can also be replaced by any
ring to give a more general notion of algebra over a ring. An F-linear map, h: D → D, is said
to be an F-derivation or simple derivation (F-Jordan derivation, respectively) if h(τ1τ2) =
h(τ1)τ2 + τ1h(τ2) (h(τ2) = h(τ)τ + τh(τ), respectively), for all τ ∈ D. The space of all F-
derivations is denoted by DerF(D). These maps appear in diverse areas of mathematics. For
example, in the algebra of real-valued differentiable function on Rn, the partial derivative
operator with respect to any variable is an R-derivation. Similarly, for any differentiable
manifoldM, the Lie derivative with respect to any vector field is an example of R derivation
on the algebra of differentiable functions over M. Derivations are also useful in the study of
the interaction of particles in physics [2].

Let us consider a Lie algebraD equipped with a bilinear product [,]. A linear map h: D → D
is called Lie triple derivation if h([τ1, [τ2, τ3]]) = [h(τ1), [τ2, τ3]] + [τ1, [h(τ2), τ3]] + [τ1, [τ2, h(τ3)]]
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for all τ1, τ2, τ3 ∈ D. A linear map h: D → D is a Jordan triple
derivation if h(τ1τ2τ1) = h(τ1)τ2τ1 + τ1h(τ2)τ1 + τ1τ2h(τ1) for all
τ1, τ2 ∈ D. For an element α ∈ D, the mapping Iα: D → D given
by Iα(τ) = τα − ατ for all τ ∈ D is called an inner derivation of D
induced by α. This is the well-known inner derivation called the adjoint
and is denoted usually by (adα). A linear map ϱ: D → D is known as a
generalized Lie triple derivation if there exists a Lie triple derivation
h: D → D such that ϱ([[τ1, τ2], τ3]) = [[ϱ(τ1), τ2], τ3] + [[τ1, h(τ2)], τ3] +
[[τ1, τ2], h(τ3)] for all τ1, τ2, τ3 ∈ D. In [11], the authors defined the Lie
triple system from the Lie algebra by the trilinear product [x, y, z] = [x,
[y, z]]. A Lie triple system for a Lie algebra (D(K), [., .]) is a pair
(D(K), [., ., .]), where [., ., .]: D × D × D → D is a trilinear map such
that for all τ1, τ2, τ3, τ4, τ5 ∈ D,

τ1, τ1, τ3[ ] � 0, τ1, τ2, τ3[ ] + τ2, τ3, τ1[ ] + τ3, τ1, τ2[ ]
� 0, τ1, τ2, τ3, τ4, τ5[ ][ ]
� τ1, τ2, τ3[ ], τ4, τ5[ ] + τ3, τ1, τ2, τ4[ ], τ5[ ]

+ τ3, τ4, τ1, τ2, τ5[ ][ ].

A linear map h defined on a Lie triple system D is said to be a
derivation ofD if it satisfies the condition h[τ1, τ2, τ3] = [h(τ1), τ2, τ3] +
[τ1, h(τ2), τ3] + [τ1, τ2, h(τ3)] for all τ1, τ2, τ3 ∈ D. Quite similar
notions for the Jordan triple system and Jordan triple derivation are
discussed in [13]. Lie triple systems generically arise fromLie algebras. If
we have a particular Lie algebra (g, [, ]), then the triple product on g can
be given as [a, b, c] = [[a, b], c]. Lie triple derivations have been used in
the study of symmetric spaces [10]. It also has some connection with the
study of the Yang–Baxter equation [12]. The Lie triple derivation and
Lie triple system are related to each other [11]. Hom–Lie triple systems
endowed with a symmetric invariant nondegenerate bilinear form are
called quadratic Hom–Lie triple systems. In [13], the authors
introduced the notion of double extension of Hom–Lie triple
systems to give an inductive description of quadratic Hom–Lie triple
systems. Baklouti et al. studied semi-simple Jordan triple systems and
proved that a Jordan triple system is semi-simple if and only if its
Casimir operator is nondegenerate [14]. Amappingg: D → D is called
a commuting map on D if [g(τ), τ] = 0 holds for all τ ∈ D. A
commuting map g of an associative algebra is said to be proper if it
can be written as g(τ) = λτ + ](τ), where λ lies in the center of algebra
and ] is a linear map with an image in the center of algebra. It is evident
that every derivation happens to be a Lie derivation and every Lie
derivation is a Lie triple derivation. However, generally, the converse
does not hold. For example, letD be a derivation on an algebra A and g
be an additive central mapping with g([A, A]) = 0, then D + g presents
an example of Lie derivation, which is not necessarily a derivation. Let
ST3(R) be a set of three by three strictly upper triangular matrices over

R. Then, the map
o a b
0 0 c
0 0 0

⎛⎜⎝ ⎞⎟⎠ →
o b a
0 0 c
0 0 0

⎛⎜⎝ ⎞⎟⎠ is an example of a Lie

triple derivation which is not a Lie derivation. If we take, for

example, X �
o a b
0 0 c
0 0 0

⎛⎜⎝ ⎞⎟⎠ andY �
o b a
0 0 c
0 0 0

⎛⎜⎝ ⎞⎟⎠, then D([X,Y]) �

o ab − bc 0
0 0 c
0 0 0

⎛⎜⎝ ⎞⎟⎠, whereas [DX, Y] = O and [X, DY] = O [3]. The

study of rings with derivations is a kind of subject that undergoes
monumental revolutions and has become the center of discussion

nowadays. A ring K is called a semi-prime ring if κKκ � (0)
implies that κ = 0. A natural question arises in the context of the
algebra of derivations and for its subalgebras—whether a Lie derivation
defined on some Lie algebra is induced by an ordinary derivation. This
question is briefly examined in different manners for different rings in
[15, 28]. The several generic extensions of derivations, which are Lie
derivations, Jordan derivations, Lie triple derivations, Jordan triple
derivations, and generalized Lie triple derivations, have gained
significant interest from researchers. It is exhibited in [25] that the
Lie triple derivation of perfect, free Lie algebras and the Lie algebras of
upper triangular block matrices is a derivation. In [26], it has been
shown that every Jordan triple derivation with the condition of
nonlinearity on triangular algebras is a derivation. In [24], it is
established that in the case of a 2-torsion free semi-prime ring, any
Jordan derivation on a Lie ideal L is a derivation. It is proved in [16] that
any Jordan triple derivation of a 2-torsion free semi-prime ring is a
derivation. It has been proven that near-rings with derivations satisfying
certain relations are commutative rings [17]. Shang also proved that a
prime near-ring admitting generalized derivations with some
conditions is commutative. It is further established that a prime
near-ring which admits a nonzero derivation satisfying certain
differential identities is a commutative ring [18]. For further results
relating to derivations on near-prime rings, please refer to [5–9].

The concept of derivations was first extended to Lie triple
derivations by Muller in [1]. The meaningful results on Lie triple
derivations of some important well-known algebras, such as unital
algebras, algebras of strictly upper triangular matrices over some
commutative ring, and parabolic subalgebras of simple Lie algebra,
are given in [29, 30], respectively. The article [27] contains the
decomposition of generalized Lie triple derivations on Borel
subalgebra in terms of a block diagonal matrix and a Lie triple
derivation. The authors in [4] characterized the Lie triple derivations
of the algebra of the tensor product of some algebra T and
quaternion algebra. Ghahramani et al, in [21], gave some
characterizations of the generalized derivation and generalized
Jordan derivation of a ring of quaternion and, in [22], discussed
the characterization of the Lie derivation and its natural generic
extension of the quaternion ring. [17, 18] discussed the derivations
of prime near-rings and the commutativity of prime near-rings.
Benkoic in [23] generalized the concept of Lie derivation to Lie
n-derivations for triangular algebras.

Section 2 contains some minor details about the algebra under
consideration (the dihedron algebra). Quaternion and dihedron share
many algebraic aspects, but dihedron algebra has not been studied in
great detail. The dihedron algebra has great significance in the
networking of real-world entities and their relationships. Entities can
be objects, situations, concepts, or events, and they are described with
formal explanations that allow both computers and people’s minds to
process them. Despite the significance of dihedron algebra, it is less
studied among researchers, unlike quaternion algebra. As we know,
derivations and their variants are sources to produce new classes and
subclasses of Lie algebras. Since the algebra of Lie derivations and Lie
triple derivations of quaternion algebra is recently well understood [21,
22], it is natural to ask about the algebra of Lie derivations and Lie triple
derivations of dihedron algebra. This paper is devoted to the Lie triple
derivation and generalized Lie triple derivation of the dihedron algebra.
Section 3, which is the main part of this article, contains the results on
the characterization of the Lie triple derivation and its natural extension,
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which we call the generalized Lie triple derivation of the dihedron ring
D(K), over the unital 2-torsion free ring K.

2 Dihedron algebra (D(K))
In this part, we discuss themain aspects of Dihedron algebra denoted

as D(K). Let K be a 2-torsion free unital ring. Set D(K) � {κ1~e0 +
κ2~e1 + κ3~e2 + κ4 ~e3|κi ∈ K} � K~e0 ⊕ K~e1 ⊕ K~e2 ⊕ K~e3, where ~e0,
~e1, ~e2, ~e3 are the matrices given as

~e0 � 1 0
0 1

( ), ~e1 � 0 1
−1 0

( ), ~e2 � 0 1
1 0

( ), ~e3 � 1 0
0 −1( ),

with the following relations,

~e21 � −~e0, ~e22 � ~e23 � ~e0, ~e1.~e2 � ~e3, ~e3.~e2 � ~e1, (2.1)
~e3.~e1 � ~e2, ~e2.~e1 � −~e3, ~e2.~e3 � −~e1, ~e1.~e3 � −~e2. (2.2)

Like a ring of quaternions, we can see that commutativity does
not hold in the case of basis elements, that is, ~e1.~e2 � ~e3 and
~e2.~e1 � −~e3 ≠ ~e1.~e2. So, it is clear that D(K) is a noncommutative
unital ring. A typical dihedron can be represented in the form

d � κ1~e0 + κ2~e1 + κ3~e2 + κ4~e3 � κ1 + κ4 κ2 + κ3
−κ2 + κ3 κ1 − κ4

( ). Then, “by

using” the usual addition and multiplication of matrices and
“taking” the commutator as a Lie bracket, we can see that D(K)
forms a unital noncommutative ring overK and a Lie algebra. From
the discussion in the previous section, we can gather that
(D(K), [, ,]) forms a Lie triple system. As we know the term
center is used to denote the set of all those elements that
commute with all other elements, the element ~e0 clearly acts as
the identity, that is, ~e0.~ei � ~ei.~e0 � ~ei, for i = 1, 2, 3. So, the center ofD
is Z(D) � K.~e0 � K.

We call it the dihedron algebra because of the great
similarity between the quaternion group of order eight and
the dihedral group. It is well known that up to isomorphism,
there are only two noncommutative groups of order eight:
one is the dihedral group, and the other is the quaternion
group. As far as the Lie algebra of quaternion over any ring is
concerned, it is well-established and well-studied.
However, dihedron algebra is relatively less studied.
Although there are similarities between these algebras, they
are non-isomorphic, so it is natural to discuss the algebras of
Lie triple derivations of dihedrons in a detailed way. In recent
years, it was confirmed by several authors that various physical
covariance groups, namely SO(3), the Lorentz group, the group
of the theory of general relativity, the Clifford algebra(bi-
quaternions) SU(2), and the conformal group, can all be
related to the quaternion group and dihedrons in modern
algebra [19, 20].

Let d � κ1~e0 + κ2~e1 + κ3~e2 + κ4~e3 � κ1~e0 + v and d* � κ1*~e0 +
κ2*~e1 + κ3*~e2 + κ4*~e3 � κ1*~e0 + v* be two elements of D, where v
and v* are the vector parts of d and d*, respectively. The
dihedron product between d and d* is defined as follows:

dd* � κ1~e0 + v( ) κ1*~e0 + v*( ) � κ1κ1* − v.v* + κ1v* + κ1*v + v × v*,

where the dot and cross products are defined as

v.v* � κ2κ2* − κ3κ3* − κ4κ4*,

v × v* � κ2, κ3, κ4( ) × κ2*, κ3*, κ4*( ) �
−κ3.κ4* + κ4.κ3*
κ4.κ2* − κ2.κ4*
κ2.κ3* + κ3κ2*

⎛⎜⎝ ⎞⎟⎠.

3 Lie triple and generalized Lie triple
derivations of dihedron algebra D(K)

This section contains the characterization of the Lie triple
derivations of dihedron algebra over K. In [21], theorem
3.1 characterizes that if S is a 2-torsion free ring, R = H(S) is a
quaternion ring, then the derivation of R can be decomposed in
terms of derivation of S and an inner derivation of R. Here, for
D(K), we have the following result.

Theorem 1. Let h be the Lie triple derivation of D(K), where K is a
2-torsion free unital ring. For any d � κ1~e0 + κ2~e1 + κ3~e2 + κ4~e3 ∈ D,
h can be written as h(d) � p0(κ1)~e0 + μ(κ2)~e1 + μ(κ3)~e2+
μ(κ4)~e3 + IM(d), where p0 and μ are the Lie triple derivation and
Jordan triple derivation of K, and IM is an inner derivation of D.

Proof. Assume that h(~e1) � κ1~e0 + κ2~e1 + κ3~e2 + κ4~e3,
h(~e2) � κ1′~e0 + κ2′~e1 + κ3′~e2 + κ4′~e3, and h(~e3) � κ1″~e0 + κ2″~e1 +
κ3″~e2 + κ4″~e3 for some arbitrary suitable coefficients in K.
Recalling that h([τ1, [τ2, τ3]]) = [h(τ1), [τ2, τ3]] + [τ1, [h(τ2),
τ3]] + [τ1, [τ2, h(τ3)]] for all τ1, τ2, τ3 ∈ D, we have

h ~e1( ) � −1
4

h ~e3, ~e1, ~e3[ ][ ]( ) � − 1
4

κ1″~e0 + κ2″~e1 + κ3″~e2 + κ4″~e3,−2~e2[ ](
+ ~e3, κ1~e0 + κ2~e1 + κ3~e2 + κ4~e3, ~e3[ ][ ]
+ ~e3, ~e1, κ1″~e0 + κ2″~e1 + κ3″~e2 + κ4″~e3[ ][ ])

� κ2 + 2κ4″( )~e1 + κ3~e2 + κ2″~e3.

Similarly, by applying h on [~e1, [~e2, ~e1]] and [~e2, [~e3, ~e2]],
we get h(~e2) � κ3~e1 + (κ3′ + 2κ2)~e2 + κ4′~e3 and
h(~e3) � κ2″~e1 − κ4′~e2 + (2κ3′ + κ4″)~e3. By comparing the
coefficients, we find h(~e1) � κ3~e2 + κ4~e3, h(~e2) � κ3~e1 + κ4′~e3,
and h(~e3) � κ4~e1 − κ4′~e2. By renaming the coefficients, we get

h ~e1( ) � a~e2 + b~e3, h ~e2( ) � a~e1 + c~e3, h ~e3( ) � b~e1 − c~e2.

(3.1)
Next, we are going to compute h(l~e0), h(l~e1), h(l~e2) and h(l~e3)

for some l ∈ K. Let

h l~e0( ) � p0~e0 + q0~e1 + r0~e2 + s0~e3,
h l~e1( ) � p~e0 + q~e1 + r~e2 + s~e2,
h l~e2( ) � p′~e0 + q′~e1 + r′~e2 + s′~e3,
h l~e3( ) � p″~e0 + q″~e1 + r″~e2 + s″~e3.

(3.2)

Since [l~e0, [~e1, ~e2]] � 0, applying h on [l~e0, [~e1, ~e2]] � 0 gives

h l~e0, ~e1, ~e2[ ][ ] � h l~e0( ), ~e1, ~e2[ ][ ] + l~e0, h ~e1( ), ~e2[ ][ ]
+ l~e0, ~e1, h ~e2( )[ ][ ] � 0.

Using the values of h(l~e0) from (3.2) and h(~e1) and h(~e2) from
(3.1), we get [p0~e0 + q0~e1 + r0~e2 + s0 ~e3, 2~e3] + [l~e0, [a~e2 + b~e3, ~e2]]+
[l~e0, [~e1, a~e1 + c~e3]] = 0, solving the expression by using (2.1) and
simplifying yields q0 � −1

2Ic(l) and r0 � 1
2Ib(l). Similarly, we can

prove s0 � −1
2Ia(l) by applying h on [l~e0, [~e1, ~e3]]. Thus,
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h l~e0( ) � p0~e0 − 1
2
Ic l( )~e1 + 1

2
Ib l( )~e2 − 1

2
Ia l( )~e3.

Note that [l~e1, [~e2, ~e3]] � −2[l~e1, ~e1] � 0. By applying h, we get

s � 1
2

l ○ b( ), r � 1
2

l ○ a( ).

Similarly, we can get

q′ � 1
2

l ○ a( ), s′ � 1
2

l ○ c( ), q″ � 1
2

l ○ b( ), r″ � −1
2

l ○ c( ).

As h(l~e1) � −1
4 h([l~e2, [~e1, ~e2]]) � −1

4 ([p′~e0 + q′~e1 + r′~e2 + s′~e3,
2~e3] + [l~e2, [a~e2 + b~e3, ~e2]] + [l~e2, [~e1, a~e1 + c~e3]]),we get h(l~e1) �
1
2Ic(l)~e0 + r′~e1 + 1

2 (l ○ a)~e2 + 1
2 (l ○ b)~e3 with q = r′. By using the

identities l~e2 � −1
4 [l~e3, [~e2, ~e3]] and l~e3 � −1

4 [l~e1, [~e1, ~e3]], we get
h(l~e2) � 1

2Ib(l)~e0 + 1
2 (l ○ a)~e1 + s″~e2 + 1

2 (l ○ c)~e3 and h(l~e3) �
−1
2Ia(l)~e0 + 1

2 (l ○ b)~e1 − 1
2 (l ○ c)~e2 + q~e3 with s″ = r′, respectively.

Now, substitute r′ = μ(l) and all the values calculated previously
in (3.2):

h l~e0( ) � p0 l( )~e0 − 1
2
Ic l( )~e1 + 1

2
Ib l( )~e2 − 1

2
Ia l( )~e3,

h l~e1( ) � 1
2
Ic l( )~e0 + μ l( )~e1 + 1

2
l ○ a( )~e2 + 1

2
l ○ b( )~e3,

h l~e2( ) � 1
2
Ib l( )~e0 + 1

2
l ○ a( )~e1 + μ l( )~e2 + 1

2
l ○ c( )~e3,

h l~e3( ) � −1
2
Ia l( )~e0 + 1

2
l ○ b( )~e1 − 1

2
l ○ c( )~e2 + μ l( )~e3,

(3.3)

where μ: K → K is an additive map, which is uniquely determined
by h. Replacing l with [l1, [l2, l3]] in the aforementioned equations,
where l1, l2, l3 ∈ K, we see that p0 is a Lie triple derivation on K, i.e.,

h l1, l2, l3[ ][ ]( ) � p0 l1, l2, l3[ ][ ]( )~e0 − 1
2
Ic l1, l2, l3[ ][ ]( )~e1

+ 1
2
Ib l1, l2, l3[ ][ ]( )~e2 − 1

2
Ia l1, l2, l3[ ][ ]( )~e3.

Now, let d � κ1~e0 + κ2~e1 + κ3~e2 + κ4~e3 ∈ D be an arbitrary
element. From (3.3), we find that

h d( ) � p0 κ1( )~e0 + μ κ2( )~e1 + μ κ3( )~e2 + μ κ4( )~e3 + g d( ),

where g(d)� 1
2 (Ic(κ2)+Ib(κ3)− Ia(κ4))~e0 + 1

2 (−Ic(κ1) + (κ3 ○ a) +
(κ4 ○ b)) ~e1 + 1

2 (Ib(κ1) + (κ2 ○ a) − (κ4 ○ c))~e2 + 1
2 (−Ia (κ1) +

(κ2 ○ b) + (κ3 ○ c)) ~e3. It can be easily seen that g(d) = IM(d), where

M � 1
2

−c~e1 + b~e2 − a~e3( ) � 1
4

h ~e1( )~e1 − h ~e2( )~e2 − h ~e3( )~e3( ).

Consequently, h(d) � p0(κ1)~e0 + μ(κ2)~e1 + μ(κ3)~e2 + μ(κ4)~e3+
IM(d). Next, we need to show that μ is a Jordan triple derivation.

Applying h on the identity [l1~e1, [l2~e2, l1~e1]] �
(l1 ○ (l1 ○ l2))~e2 by using the expression 3.3 and comparing the
coefficients, we get

μ l1 ○ l1 ○ l2( )( ) � μ l1( ) ○ l1 ○ l2( ) + l1 ○ μ l1( ) ○ l2( )
+ l1 ○ l1 ○ μ l2( )( ).

This completes the proof.

Example 3.1. Let p0: K → K be a Lie triple derivation defined as
p0(κ1) = κ1x. Let μ: K → K be a Jordan triple derivation defined as
μ(κ2) = κ3a + κ4b, μ(κ3) = κ2a − κ3c, and μ(κ4) = κ2b + κ3c and define
an inner map I: D → D, such as IM(d) = 0 for all d ∈ D. Let
h(e0) � x~e0 + y~e1 + z~e2 + t~e3. Applying h on [~e0, [~e1, ~e2]] and
[~e0, [~e2, ~e3]] yields y = z = t = 0, which gives h(~e0) � xe0. Now,

p0 κ1( )~e0 + μ κ2( )~e1 + μ κ3( )~e2 + μ κ4( )~e3 + IM d( )
� κ1x~e0 + κ3a + κ4b( )~e1 + κ2a − κ3c( )~e2 + κ2b + κ3c( )~e3 + 0

� κ1h ~e0( ) + κ2 a~e2 + b~e3( ) + κ3 a~e1 + c~e3( ) + κ4 b~e1 − c~e2( )
� κ1h ~e0( ) + κ2h ~e1( ) + κ3h ~e2( ) + κ4h ~e3( ) � h d( ).

As an outcome of theorem 1, we have the following result.

Corollary 3.1. Let K be a 2-torsion free semi-prime ring
such that 1

2 ∈ K. If h: D → D is a Lie triple derivation, then h
can be represented in the terms of a center-valued map and a
derivation.

Proof. Since K is a 2-torsion free semi-prime ring, the Jordan
triple derivation μ is a derivation on K. Let d � κ1~e0 + κ2~e1+
κ3~e2 + κ4~e3 ∈ D, where κi′s are the elements of K. Since μ is a
derivation on K, so μκi′s will also be elements of K, and μ(κ1)~e0 +
μ(κ2)~e1 + μ(κ3)~e2 + μ(κ4)~e3 will be an element of D. Define
γ: D → D by γ(d) � μ(κ1)~e0 + μ(κ2)~e1+ μ(κ3)~e2 + μ(κ4)~e3. It is
easily verified that γ is a derivation. By theorem 1, we have
h(d) � γ(d) + p0(κ1)~e0 − μ(κ1)~e0 + IM(d). It remains to show
that p0(κ1)~e0 − μ(κ1)~e0 is a center-valued map. Let us consider
this as the mapping σ: D → D given by σ(d) � p0(κ1)~e0 − μ(κ1)~e0.
Obviously, σ is a well-defined additive mapping such that
σ(D(K)) ⊆ K. It is clear that Z(D(K)) � K. Therefore, we have
σ(D(K)) ⊆ Z(D(K)). This completes the proof.

The following result states that on dihedron algebra, every
generalized Lie triple derivation ϱ: D → D associated with a Lie
triple derivation h has the form

ϱ τ( ) � h τ( ) + λτ, (3.4)

where λ lies in the center of D. Clearly, every Lie triple derivation is
an example of the generalized Lie triple derivation. On the other
hand, any multiplier is τ↦λτ, where λ ∈ Z(D) is an example of
generalized Lie triple derivation by setting ϱ(τ) = λτ for all τ ∈ D and
h = 0 in Eq. 3.4. To prove this result, we will use the following
remark:

Remark 3.1. Let D be a dihedron ring. We know that
Z(D) � {τ ∈ D | [τ,D] � 0} � e0. Set Z′(D) � {τ ∈ D | [[τ,D],
D] � 0}. It can be clearly seen that Z′(D) � Z(D).

Theorem 2. The generalized Lie triple derivation ϱ: D → D
associated with the Lie triple derivation h: D → D exists if ϱ can
be represented in the form

ϱ τ( ) � h τ( ) + λτ,

where λ lies in the center of D.
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Proof. First, let ϱ(τ) = λτ + h(τ) for all τ ∈ D, and h is a Lie triple
derivation of D. Substituting [[τ1, τ2], τ3] in the aforementioned
expression, we get

ϱ τ1, τ2[ ], τ3[ ]( )
� λ τ1, τ2[ ], τ3[ ] + h τ1, τ2[ ], τ3[ ]( ) � λτ1, τ2[ ], τ3[ ] + h τ1( ), τ2[ ], τ3[ ]
+ τ1, h τ2( )[ ], τ3[ ] + τ1, τ2[ ], h τ3( )[ ] � λτ1 + h τ1( ), τ2[ ], τ3[ ] + τ1, h τ2( )[ ], τ3[ ]
+ τ1, τ2[ ], h τ3( )[ ] � ϱ τ1( ), τ2[ ], τ3[ ] + τ1, h τ2( )[ ], τ3[ ] + τ1, τ2[ ], h τ3( )[ ].

This implies that ϱ is a generalized Lie triple derivation
associated with h.

To prove conversely, let us recall the definition of the generalized
Lie triple derivation.

ϱ τ1, τ2[ ], τ3[ ]( ) � ϱ τ1( ), τ2[ ], τ3[ ] + τ1, h τ2( )[ ], τ3[ ]
+ τ1, τ2[ ], h τ3( )[ ]. (3.5)

Let us substitute τ1 = τ2 in Eq. 3.5. Then, we have

ϱ τ1, τ1[ ], τ3[ ]( ) � ϱ τ1( ), τ1[ ], τ3[ ] + τ1, h τ1( )[ ], τ3[ ] + τ1, τ1[ ], h τ3( )[ ]
0 � ϱ τ1( ) − h τ1( ), τ1[ ], τ2[ ].

Substitute g = ϱ − h. Then, it holds

g τ1( ), τ1[ ], τ2[ ] � 0.

Remark 3.1 implies that g is a commuting map. By using the
expression g(τ) = ](τ) + λτ, it follows that ϱ has the form

ϱ τ1, τ2[ ], τ3[ ]( ) � h + g( ) τ1, τ2[ ], τ3[ ]
� h τ1( ) + λτ1 + ] τ1( ), τ2[ ], τ3[ ]

+ τ1, h τ2( ) + λτ2 + ] τ2( )[ ], τ3[ ]
+ τ1, τ2[ ], h τ3( ) + λτ3 + ] τ3( )[ ]. (3.6)

Since λ ∈ Z(D), we have
λτ1, τ2[ ], τ3[ ] � λ τ1, τ2[ ], τ3[ ].

In addition, by taking into account that ](D) ⊆ Z(D), we can
rewrite Eq. 3.6 as

ϱ τ1, τ2[ ], τ3[ ] � h τ1, τ2[ ], τ3[ ] + λ τ1, τ2[ ], τ3[ ].
This completes the proof. It is quite evident that setting λ = 0, we

obtain that the generalized Lie derivation becomes a derivation.

Example 3.2. A generalized Lie triple derivation ϱ: D → D associated
with the Lie triple derivation h: D → D can be represented in the form

ϱ τ( ) � h τ( ) + λτ.

We can write it as

ϱ τ1, τ2[ ], τ3[ ] � h τ1, τ2[ ], τ3[ ] + λ τ1, τ2[ ], τ3[ ].
Substitute τ1 = e1 = τ3 and τ2 = e2 to obtain

ϱ e1, e2[ ], e1[ ] � h e1, e2[ ], e1[ ] + λ e1, e2[ ], e1[ ]
4ϱ e2( ) � 4λ e2( ) + 4h e2( )
ϱ e2( ) � λ e2( ) + h e2( ).

4 Conclusion

The present article focuses on the general classes of Lie triple
derivations and generalized Lie triple derivations for dihedron algebra.
Unlike quaternion, dihedron algebra has not been deeply studied, at

least from the viewpoint of derivations and their variants. We have
computed the decomposition of Lie triple derivations and generalized
Lie triple derivations of D(K) in terms of Lie triple derivation and
Jordan triple derivation ofK and some inner derivation ofD. We have
also proven that a generalized Lie triple derivation ϱ: D(K) → D(K)
associated with the Lie triple derivation h: D(K) → D(K) exists if ϱ
can be represented in the form ϱ(τ) = h(τ) + λτ, where λ lies in the center
ofD(K). These results are new and exhibit complete decomposition of
algebras of Lie triple derivations and generalized Lie triple derivations of
dihedron algebras. As dihedron algebras are used in the geometric
aspects of four-dimensional Lie groups, our results can be helpful in
understanding the geometry of these manifolds. This article contains
the representation of the Lie triple derivation of the dihedron ring D
over a 2-torsion free unital ringK in terms of Lie triple and Jordan triple
derivations of K and inner derivations of D.
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