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Infrared and visible image fusion aims to integrate complementary information
from the same scene images captured by different types of sensors into one image
to obtain a fusion image with richer information. Recently, deep learning-based
infrared and visible image fusion methods have been widely used. However, it is
still a difficult problem how to maintain the edge detail information in the source
imagesmore effectively. To address this problem, we propose a novel infrared and
visible image fusion method with edge detail implantation. The proposed method
no longer improves the performance of edge details in the fused image through
making the extracted features contain edge detail information like traditional
methods, but by processing source image information and edge detail information
separately, and supplementing edge details to the main framework. Technically,
we propose a two-branch feature representation framework. One branch is used
to directly extract features from the input source image, while the other is utilized
to extract features of edge map. The edge detail branch mainly provides edge
detail features for the source image input branch, ensuring that the output
features contain rich edge detail information. In the fusion of multi-source
features, we respectively fuse the source image features and the edge detail
features, and use the fusion results of edge details to guide and enhance the fusion
results of source image features so that they contain richer edge detail
information. A large number of experimental results demonstrate the
effectiveness of the proposed method.
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1 Introduction

Due to the different imaging mechanisms, two types of images for the same scene often
carry a large amount of complementary information. If these complementary information
can be integrated into one image, it will help improve the comprehensiveness and accuracy of
the image to describe the scene, which is conducive to the development of subsequent tasks.
To this end, infrared and visible image fusion technology has been proposed and widely
applied to computer vision fields with different tasks, such as object detection [1], face
recognition [2], video surveillance [3] and so on.

In recent years, with the rapid development of deep learning, the research of fusion
methods among diverse modal information has made significant progress [4-8]. As an
important branch in the field of image fusion, infrared and visible image fusion has
attracted the attention of researchers, and a series of effective methods have been
proposed. These methods can be roughly divided into methods based on multi-scale
transformations [9-11], sparse modeling [12-15], and deep learning [16, 17]. Multi-scale
transformation based methods include pyramid transform [9], DWT [18], Contourlet
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transform (CT) [19], non-subsampled contourlet transform
(NSCT) methods[20], etc. This kind of methods cannot
achieve sparse expression of image because they use artificially
constructed basis functions to represent images, limiting the
visual quality improvement of fused images. Methods based
on sparse modeling can solve the above problems by using an
over-complete dictionary to represent images. However, these
methods are difficult to mine the statistical information from
large-scale training samples in an effective way, which limits the
further improvement of their expression ability.

Among deep learning-based fusion methods, CNN-based
methods are most common. At present, there are CNN-based
infrared and visible image fusion as Cross-UNet-based [21],
ResNet-based [22], GAN-based [23], Encoder-Decoder-based
methods [24], etc. In view of the fact that CNNs cannot capture
features over long distances, transformer-based infrared and visible
image fusion method was proposed. However, since Transformer is
designed based on attention mechanism, it has certain limitations in
mining detailed information at the edges of the image. To solve the
above problems, this paper proposes an infrared and visible image
fusion method with edge detail implantation. In terms of feature
extraction, the proposed method consists of two feature extraction
branches: one is the feature extraction branch based on
Transformer, and the other is the edge detail feature extraction
branch based on CNN. The former takes infrared and visible source
images as input, and the latter takes edge details detected from the
source images as input. Information extracted by the latter is fed
back to the former to compensate for the limitations of the
transformer in extracting features.

In the feature implantation from CNN branch to the
Transformer branch, an effective feature implantation method
based on attention mechanism is designed, which not only
considers the role of common information between different
features in two branches, but also the complementary features
extracted by CNN branch, realizing effective transmission of
CNN features to Transformer branch. In terms of feature
fusion, the features extracted from CNN branch and
Transformer branch are fused respectively, and the fusion
features of the CNN branch are used to guide the fusion
features of the Transformer branch, so as to realize the fusion
feature transfer from the CNN branch to the Transformer
branch. It further compensates the shortcomings of the
Transformer in feature extraction. The above method not only
combine the advantages of CNN and Transformer in feature
extraction into the whole framework, but also effectively
enhances the representation ability of edge details, thereby
improving the visual quality of the fusion results. In summary,
the main contributions of this paper are as follows.

1) A method of infrared and visible image fusion with edge detail
information implantation is proposed. This method uses two
different branches based on Transformer and CNN to extract
features from the input source images and the edge maps of the
source images, and implants features extracted by CNN into the
Transformer branch to make up for the shortcomings of
Transformer in extracting edge details.

2) Based on attention mechanism, an information implantation
method is designed, which realizes the injection of CNN branch

information into Transformer, effectively making up for the
shortcomings of Transformer in extracting features. In
addition, the proposed method fuses the features obtained by
CNN and Transformer branches respectively, and uses the fusion
results of CNN branch to guide the fusion results of Transformer,
further maintaining the edge details in fusion results.

3) In order to ensure that the features used to reconstruct fusion
result are rich in edge details, we introduce an edge
reconstruction block, and use edge detail information of the
target image (fusion result) as a constraint to make the
reconstruction result consistent with the target image, so as to
ensure that feature to reconstruct the fusion result contains
relevant information about edge details.

2 Related works

2.1 Infrared-visible image fusion

Infrared and visible image fusion is an important branch of
fusion field. According to the previous introduction, current
infrared and visible image fusion methods can be divided into
fusion methods based on multi-scale transformation [25],
sparse representation [26-29], and deep learning [30-32].
Multi-scale transformation based methods usually perform
multi-scale decomposition of the input source image first, then
fuse the decomposed coefficients, and finally apply the
corresponding multi-scale inverse transformation to the fusion
result to reconstruct the fusion image. These methods are
simple to implement and has good stability. However, due to
the use of fixed bases to represent the image information, their
sparse expression ability is weak, which limits the
improvement of fusion performance. Methods based on sparse
representation were more popular 10 years ago. These methods
can represent source images in a sparser way, obtaining better
fusion performance than the former. However, these methods are
difficult to mine statistical characteristics of features from large-
scale training samples in an effective way, and thus still have
limitations in representing image information.

In recent years, deep learning has been widely used in various
image fusion tasks due to its powerful feature extraction and
representation capabilities [33-38] without manually designing
features and fusion strategies. In particular, Li et al. [31]
proposed the DenseFuse infrared-visible image fusion
framework, which combined the shallow and deep features of
network by using dense blocks in the encoding process to extract
richer source image features. In order to improve the fusion
performance, Ma et al. [39] proposed a dual-confrontation
DDcGAN fusion framework to further improve the
performance of FusionGAN [23] when fusing infrared and
visible images. Additionally, to more effectively maintain the
edge details of the source image, Zhao et al. [40] used different
encoders to extract high-frequency detail information and low-
frequency information from the source images separately. Li et al.
[22] proposed to use the detail preservation loss function and
feature enhancement loss function in the residual structure
network, combining with the two-stage training strategy to
ensure that the fusion results contain rich detail information
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and significant information. Although the above CNN-based
methods have achieved certain performance, they are still
insufficient in maintaining edge detail information. In
addition, CNNs cannot mine the relationship between features
over long distances, which limits the further improvement of
their performance.

2.2 Transformer based image fusion

Thanks to its excellent long-distance modeling capabilities,
Transformers [41] has attracted the attention of researchers in
image fusion. In particular, in order to establish the global
dependence of image features, Ma et al. [42] proposed a residual
fusion framework based on SwinTransformer for infrared and
visible image fusion. This framework abandons traditional
convolution operations and adopts an attention-based network
structure. At the same time, a fusion strategy based on L1 norm
is designed, which further improves the fusion quality. In order to
obtain high-quality pan-sharpened remote sensing images, Bandara
et al. [43] proposed a new hyperTransformer framework. This
method transfers the high-resolution texture information in PAN
images to LR-HSI image features by attention mechanism, avoiding
the image spatial and spectral distortion caused by traditional fusion
methods.

In order to combine the respective advantages of CNN and
Transformer, Vs. et al. [44] proposed a transformer-based

encoding and decoding structure, and used the dual-branch
structure of CNN and Transformer to fuse image features.
Although this method can obtain satisfactory fusion results, it
does not consider the problem of maintaining the edge details of
source images, resulting in the loss of source image detail
information. Li et al. [45] combined the local features of the
convolutional network with the global features of the transformer
by alternately using CNN and Transformer in the network,
overcoming the shortcomings of a single network and
improving the visual quality of the fused image. Based on the
multi-scale feature pyramid theory, Park et al. [46] proposed an
image fusion method for dual-modality transformers. This
method mines the complementary information between source
images by estimating the non-correlated mapping relationship
between features of the source images, so as to improve the
extracted feature quality of the source images. Although the
above methods have achieved a certain degree of performance
improvement, they does not fully consider the problem of
maintaining the edge detail of the source images, which still
remains large improvement space of visual effect. Different from
the above methods, this paper uses two parallel feature extraction
branches, Transformer and CNN, to extract the features of input
source images and edge details, respectively, and implant the
features extracted by CNN into the Transformer branch. This
method can not only effectively integrate the respective
advantages of CNN and Transformer, but also avoid the loss
of edge detail information.

FIGURE 1
Overall framework of the proposed method.
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3 Proposed method

3.1 Overview

The overall framework of the proposed method is shown in
Figure 1. It consists of three parts: two-branch feature extraction
(TBFE), edge detail feature implantation (EDFI), and edge detail
guided feature fusion (EDGFF). TBFE is mainly used to obtain the
features and edge details of the source images. In this process, we use
Transformer-based network to extract source image features, while
utilize CNN network to the extract edge detail features. EDFI is
mainly used to inject edge detail features extracted from the CNN
branch into the Transformer branch to make up for the
Transformer’s shortcomings in extracting edge details. EDGFF
uses the fused features of CNN branch to guide the fusion of
Transformer branch, further highlighting the edge details in the
fusion results.

3.2 Two-branch feature extraction

3.2.1 Transformer feature extraction branch
As shown in Figure 1, we use CNN and Transformer for

TBFE, respectively, and the TBFEs for infrared and visible images
have the same network structure. Since Transformer network has
better feature relationship modeling ability for long-distance and
can better describe the relationship between different features, we
use Transformer branch to extract source image features. This
branch takes the source image Xj (j = ir, vi) as the input, and first
uses initial feature extraction block (IFEB) to obtain a shallow
multi-channel feature map, which is convenient for subsequent
Transformer feature extraction. The extracted features can be
represented as:

F0
j � fifeb Xj( ) (1)

where fifeb denotes the feature extraction operation of IFEB. In this
paper, IFEB consists of three 3 × 3 convolutional layers and a ReLU
activation function. We utilize Transformer to extract the global
features of the obtained feature F0j . For the first transformer layer, its
input feature is F0j , and the output is expressed as:

F1
j � ft1 F0

j( ) (2)

where ft1 represents the first Transformer layer feature extraction
operation, mainly composed of layer normalization (LN), multi-
head self-attention layer (MSA) and multi-layer perceptron (MLP).
Correspondingly, for the ith (i ≥ 2) Transformer layer, its output
is Fij.

3.2.2 CNN feature extraction branch
Compared with Transformer, CNNs are better at describing

underlying visual features such as image structure and texture.
Therefore, this paper uses CNN branch to extract features of
edge details. In order to obtain the edge detail information from
the source images, we perform Gaussian smoothing filtering on the
source image Xj to obtain smooth image, and use the source image
information to differ from the smooth image to obtain the edge
detail information:

Hj � Xj − G Xj( ) (3)

where G is the Gaussian blur operation. Edge details obtained in this
way contain high-frequency information of the source image, which
can effectively depict the edge details. Compared with the gradient
map extracted by gradient operator, Hj contains richer edge detail
and texture information. Similar to the Transformer branch, we use
IFEB to extract the underlying features of the edge detail map in
CNN branch:

�F0
j � fifeb Hj( ) (4)

Besides, detailed features are further extracted by residual dense
block (RDB). For the first RDB, its input is features of the edge detail
map �F0j and the output is �F1j :

�F1
j � frdb1

�F0
j( ) (5)

where frdb1 represents the feature extraction operation of the first
RDB. In this work, RDB is a feature extraction block composed of
three convolutional layers, ReLU activation function and densely
connected between them. Correspondingly, for the ith (i ≥ 2) RDB,
its output is �Fij.

3.3 Edge detail feature implantation

In order to make the extracted features in Transformer branch
rich in edge detail, a two-stage feature compensation block (TFCB)
is proposed, as shown in Figure 2. This module solves the problem
that the Transformer branch is difficult to extract edge detail features
by implanting local texture details of the image extracted by RDB
into the Transformer branch. As for network structure, the module
consists of two stages of feature compensation. The feature
compensation in the first stage realizes the transmission of
information by finding the correlation between �Fij and Fij, and
dynamically aggregating features of �Fij according to the changes of
input features. Specifically, �Fij and F

i
j are first transformed into three

feature spaces Qi
j, �K

i
j, and �Vi

j by 1 × 1 convolution.

Qi
j � Conv1×1 Fi

j( )
�Ki
j � Conv1×1 �Fi

j( )
�Vi
j � Conv1×1 �Fi

j( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

where Conv1×1 denotes 1 × 1 convolution. The first stage feature
compensation process can be formulated as:

~F
i

j � Fi
j + softmax

Qi
j
�Ki
j( )T��

C
√⎛⎜⎝ ⎞⎟⎠�Vi

j (7)

Where C is the dimension of �Ki
j. The above method achieves

information transfer from �Fij to Fij by using �Fij to represent Fij.
However, due to differences between �Fij and Fij, the features re-
aggregated based on similarity may lose some details. In order to
avoid this problem, this paper introduces the second stage of feature
compensation. Specifically, we input the re-aggregated features

Ti
j � softmax

Qi
j
�Ki
j( )T��

C
√⎛⎜⎝ ⎞⎟⎠�Vi

j (8)

Frontiers in Physics frontiersin.org04

Liu et al. 10.3389/fphy.2023.1180100

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1180100


and �Vi
j to a small CNN network, and select the activated features of

the network through attention map, performing the second
information compensation, as shown in Figure 2. To obtain the
spatial attention map, we first concatenate Ti

j and �Vi
j, and apply 1 ×

1 convolution and Sigmoid:

Ai
j � σ Conv1×1 concat Ti

j, �V
i
j( )( )( ) (9)

where σ represents the Sigmoid activation function. Output features
of the ith information compensation module can be represented as:

F̂
i

j � ~F
i

j + Conv1×1 Ai
j ⊙ concat Ti

j, �V
i
j( )( ) (10)

The two-stage feature compensation strategy not only avoids the
shortcomings of Transformer in extracting edge detail features,
but also prevents the loss of edge detail features and improves the
quality of features, which helps to reconstruct high-quality fusion
results.

3.4 Edge details guided feature fusion

In order to effectively use the edge detail features of the
CNN branch to supplement the features in the Transformer
branch in fusion image reconstruction, this paper proposes a
method to synthesize the edge detail fusion results of the CNN
branch and the fusion results of the Transformer branch to
jointly construct the final fusion results. In order to effectively
fuse the multimodal features extracted by TBFE. We design a
multi-scale complementary mask fusion (MCMF) module to
ensure its effectiveness. As shown in Figure 3, MCMF
concatenate the features Fiir and Fivi from the output of the
Transformer branch to obtain Fiir+vi, which is feed into the
convolutional layer to learn the weight map Mi for fusion. In
this process, we apply three dilated convolutions with different
dilation rates to the concatenated features, mining the
importance information in different receptive fields in a

FIGURE 2
Detailed structure of TFCB.

FIGURE 3
Detailed structure of MCMF.
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more flexible way. After concatenating three groups of results,
the feature fusion is performed by 1 × 1 convolution, and the
fusion weight map that reflects the importance of each position
in the source image features is obtained through the Sigmoid
activation function.

Mi � Sigmoid Conv1×1 concat Conv3×3 Fi
ir+vi, r � 1( ),(((

Conv3×3 Fi
ir+vi, r � 2( ),Conv3×3 Fi

ir+vi, r � 3( ))))
(11)

where Conv3×3 denotes 3 × 3 convolution and r is dilation rate.
The fusion feature can be expressed as:

Fi � Fi
ir ⊙ Mi + Fi

vi ⊙ 1 −Mi( ) (12)
where ⊙ denotes hadamard product. Similar to the fusion of
Transformer features, the edge detail features �Fiir and �Fivi
extracted from the CNN branch are also fused in the above
way to obtain the fusion result �F3 of the last RDB output features.
The fused detailed features �F3 are concatenated with the fusion
features of Transformer branch at three scales F1, F2, F3 to obtain
Ff. In order to ensure that both Ff and �F3 contain rich edge detail
features, We reconstruct the edge detail feature maps by a
reconstruction block (RB) for Ff and �F3 respectively, and make
the reconstructed results consistent with the target feature maps.
The RB used for reconstruction in this work consists of two 3 × 3
and one 1 × 1 convolutional layers, and the parameters are not
shared between the different reconstruction block. Besides, this
work uses the gradient detection operator to directly extract the
gradient information of the source images, and fuse them to
obtain high-quality target feature map Vfus. The specific process
is as follows:

Vfus i, j( ) � ∇Xir i, j( ), if|∇Xir i, j( )|≥ ∇Xvi i, j( )∣∣∣∣ ∣∣∣∣
∇Xvi i, j( ), otherwise{ (13)

where Vfus is the edge detail of the target image, ∇ is the Laplace
operator, and (i, j) is the pixel coordinates.

4 Loss function

To ensure high visual quality fusion results, we use
the L1 loss shown in Eq. 14 to optimize the parameters in
the RDB:

ℓf � Ŷ
3 − Vfus

����� �����1 (14)

where Ŷ
3
is the image after �F3 is reconstructed by RB. In the

reconstruction process of the fusion results, the fusion image
and the target feature map are reconstructed respectively with
pixel loss, which is designed to limit the difference in intensity
between real-world data and the reconstructed model result. Yfus

is the final fused image, and the reconstruction loss used in this
work is as follows:

ℓr � ‖Yfus − Xir||1 + ‖Yfus − Xvi||1 + Ŷf − Vfus

���� ����1 (15)

where Ŷf is the reconstructed image of Ff by RB. The total loss of the
network is expressed as:

ℓtotal � ℓf + ℓr (16)

5 Experiments

5.1 Dataset

KAIST1 and FLIR2 are the two most commonly used datasets
in the field of infrared and visible image fusion based on deep
learning. Among them, there are 95,000 infrared and visible
image pairs in the KAIST dataset and 14,452 image pairs in
the FLIR dataset. In order to improve the generalization ability of
the training model, 3,000 image pairs are randomly selected from
the two datasets respectively, and a total of 6,000 image pairs
from the training set of the proposed algorithm in this work. To
verify the effectiveness of the method, 49 pairs of widely used
infrared and visible images are randomly selected from the three
datasets TNO3, VOT2020-RGBT4 and RoadScence5 to construct
the test set in this work. Among them, 39 pairs of images are from
TNO and VOT2020-RGBT datasets and 10 pairs of images are
from the RoadScence dataset. The test samples are shown in
Figure 4.

5.2 Training details

In the training phase, each infrared and visible image pair is
randomly cropped into 140 × 140 image blocks to achieve data
enhancement. In this work, Adam [47] is used as the optimizer of
the network, the training batchsize is set to 4, and a total of
30 epochs are iterated. The initial value of learning rate is set to
1 × 10−4, and decays at the 5-th, 10-th, and 20-th epochs,
respectively, with a decay rate of 0.5. The code of our method
is implemented by using the PyTorch framework with NVIDIA
GTX 3090, and the software environment is UBUNTU20.2,
Python3.8 and PyTorch1.9.

5.3 Evaluation metrics

In order to objectively evaluate the fusion performance, six
commonly used image fusion metrics are used in this work to
assess the quality of fusion results from four perspectives. They are
cross entropy (QCE) [48]; Entropy (QEN) [49]; gradient-based fusion
performance (QAB∕F) [50]; Chen -Blum metric (QCB) [51],; Chen-
Varshney metric (QCV) [52]and Structural similarity index measure
(QSSIM) [53]. Among them, QCE and QEN are metrics based on
information theory (QAB∕F) is a metrics based on image features, QCB

and QCV are metrics based on human perception, and QSSIM is a
metrics based on structural similarity of images. Among these six
metrics, lower values for QCE and QCV indicate better quality of

1 https://soonminhwang.github.io/rgbt-ped-detection/.

2 https://www.flir.ca/oem/adas/adas-dataset-form/.

3 https://figshare.com/articles/dataset/TNO-Image-Fusion-Dataset/
1008029.

4 https://www.votchallenge.net/vot2020/dataset.

5 https://github.com/hanna-xu/RoadScene.
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fusion results, while higher values for the other indicators indicate
better fusion performance.

5.4 Comparison with state-of-the-arts

In order to verify the effectiveness of the proposed
method, we compare our method with six advanced
infrared and visible image fusion methods, including ADF

[54], GTF [55], LatLRR [56], FusionGAN [23], SDNet [57],
and RFN [22].

Figure 5 shows the fusion results of different methods on six
groups of test images. In order to facilitate the fusion quality
evaluation from the perspective of visual effect, we zoom in local
area of the fusion results. It can be seen that the proposed method
can not only preserve the salient information in the infrared image,
but also maintain the edge detail information in the visible image. In
detail, the outline of the infrared salient information is blurred, and

FIGURE 4
Some test images from TNO, VOT2020-RGBT and RoadScence datasets.

TABLE 1 Quantitative evaluation of different fusion methods on 39 pairs of images from TNO and VOT2020-RGBT datasets. The red font indicates the optimal
results and the blue font indicates the sub-optimal results.

Methods QCE ↓ QEN ↑ QAB∕F ↑ QCB ↑ QCV ↓ QSSIM ↑

ADF 1.6913 6.4384 0.4021 0.4812 609.7199 1.4246

GTF 1.0113 6.7083 0.3346 0.4220 1,237.5143 1.4101

LatLRR 2.5355 6.7744 0.3596 0.4767 656.1416 1.1879

FusionGAN 2.2057 6.5336 0.2299 0.4045 1,025.8828 1.3489

SDNet 1.7178 6.6736 0.4527 0.4650 825.2304 1.4324

RFN 1.7270 6.8364 0.3602 0.4723 642.0348 1.4226

Ours 1.5498 6.9070 0.4815 0.5068 564.0687 1.4476
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the edge detail is not preserved enough in the fusion results obtained
by FusionGAN, RNF, and ADF. In contrast, other methods
effectively retain significant information, but the loss of spatial
detail is more pronounced, as shown in the zoomed-in area of
GTF fusion results. Similar phenomena can be observed in the
remaining other fusion results. On the whole, the proposed method
can more fully retain the significant edge detail information of the

source images, and show better fusion performance. As for objective
metrics, the proposed method has achieved excellent performance
on QEN, QAB∕F, QCB, QCV and QSSIM, as shown in Table 1, which
further verifies the effectiveness of our method.

To further verify the effectiveness of the proposed method, we
deploy the above comparison methods to the test data selected
from the Roadscene. Figure 6 shows the fusion results of different

FIGURE 5
Fusion results of different methods on six pairs of images from TNO and VOT2020-RGBT datasets.

TABLE 2 Quantitative evaluation of different fusion methods on 10 pairs of images from RoadScence datasets. The red font indicates the optimal results and the
blue font indicates the sub-optimal results.

Methods QCE ↓ QEN ↑ QAB∕F ↑ QCB ↑ QCV ↓ QSSIM ↑

ADF 1.5202 6.7251 0.4084 0.4398 954.7853 1.3249

GTF 0.5876 7.0637 0.3708 0.4211 1964.4652 1.3212

LatLRR 2.0122 5.8881 0.3943 0.4285 880.5359 1.2419

FusionGAN 1.6016 6.9790 0.2939 0.4204 1,546.3186 1.2255

SDNet 1.6867 7.0493 0.4497 0.4604 1,587.5962 1.3285

RFN 1.3567 6.8826 0.3585 0.4390 1,398.5784 1.3139

Ours 1.5661 7.1463 0.4634 0.4839 741.7628 1.3601
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fusion methods on five pairs of test images from Roadscene. Deep
learning-based fusion methods (FusionGAN, SDNet, and RFN)
have better visual performance than traditional fusion methods
(ADF, GTF, and LatLRR). Traditional fusion methods are limited
by hand-designed fusion rules, resulting in problems such as too
bright, too dark, or loss of detail information. FusionGAN adopts
the adversarial learning network structure and lacks constraints
on spatial consistency, causing blurred edge details in the
obtained fusion results, which affects the visual quality
improvement of the fusion images. SDNet, considers the
spatial gradient information in network design, so it has
certain advantages in detail retention, but its ability of

remaining texture information is weak. Similar problem exists
in RFN., in contrast, our fusion results have two advantages. First,
the significant information of the infrared image can be well
retained, so that the fusion results can further highlight the
target, which is conducive to subsequent tasks (such as target
detection, instance segmentation, etc.). Second, more texture
detail information can be retained, ensuring the quality of the
fusion results to a certain extent. In order to evaluate the quality
of the fused images more comprehensively, we use six commonly
used objective evaluation metrics to evaluate the quality of the
fused images. From Table 2, results of the proposed method reach
the optimal on five indicators of QEN, QAB∕F, QCB, QCV, and
QSSIM, which further proves the effectiveness and superiority of
the proposed method.

FIGURE 6
Fusion results of different methods on five pairs of images from RoadScence.

TABLE 3 Analysis of the effectiveness of different functional modules.

Methods QCE ↓ QEN ↑ QAB∕F ↑ QCB ↑ QCV ↓ QSSIM ↑

w/o Hj 1.5721 6.8866 0.4592 0.4857 600.7409 1.4166

w/o TFCB 1.5911 6.9014 0.4762 0.4780 569.5434 1.4244

w/o MCMF 1.5593 6.8715 0.4754 0.4812 588.4187 1.4406

w/o Vfus 1.5557 6.8911 0.4547 0.4828 689.1718 1.4122

Ours 1.5498 6.9070 0.4815 0.5068 564.0687 1.4476

TABLE 4 The effect of different nuber of TFCBs on fusion performance.

Methods QCE ↓ QEN ↑ QAB∕F ↑ QCB ↑ QCV ↓ QSSIM ↑

2 TFCBs 1.5687 6.8988 0.4805 0.4982 565.9757 1.4415

3 TFCBs 1.5498 6.9070 0.4815 0.5086 564.0687 1.4476

4 TFCBs 1.5425 6.8697 0.4805 0.4866 573.2399 1.4488

Frontiers in Physics frontiersin.org09

Liu et al. 10.3389/fphy.2023.1180100

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1180100


5.5 Ablation study

In order to verify the influence of different components on the
fusion performance of the proposed method, we apply ablation
experiments on each module.

In the validation of the input of edge detail information,
we use the source images instead of edge details as the input of
CNN branch to verify the influence of edge details on fusion
results (w/o Hj). In the implantation of edge detail feature, we use
two-stage feature compensation block (TFCB) to compensate
the information of the Transformer branch. In order to verify
the effectiveness of edge detail feature implantation, we add
the features of two branch to replace TFCB module (w/o
TFCB). In edge detail-guided feature fusion, the multi-scale
complementary mask fusion (MCMF) module is the key. To
verify its effectiveness, MCMF is replaced by
conventional feature channel concatenation and 1 × 1
convolution to achieve feature fusion (w/o MCMF). The target
edge detail map Vfus is used to enrich the features of the
reconstructed fusion result with edge detail information. To
demonstrate its validity, we directly removes it from the
model (w/o Vfus). The effectiveness of the above modules is
tested on 39 pairs of images from TNO and VOT2020-RGBT.
The effectiveness of the different components can be seen in
Table 3.

5.6 Hyper-parameter analysis

The number of TFCBs determines the depth of the network,
whose impact on the final performance can be seen in Table 4.When
the number of TFCBsmodules is three, the optimal result is obtained
among the six evaluation indexes overall, so we set the number of
TFCBs to three.

6 Conclusion

In order to effectively maintain the edge detail information of
the source images, we propose a infrared and visible image fusion
method with edge detail implantation, which adopts a two-branch
feature representation framework. One branch is based on
Transformer, which is mainly used to directly extract features
from input source images. The other is CNN feature extraction
branch, which is mainly used to extract image edge details features.
Features extracted by CNN branch are implanted into the
Transformer branch to alleviate the shortcomings of the

Transformer branch in extracting edge detail features. In
addition, so as to further ensure that the edge details of the
source image can be effectively retained in the fusion results, a
feature fusionmethod guided by edge details is proposed, which uses
the fused edge detail features of CNN branch to guide the feature
fusion of Transformer branch. A large number of experimental
results prove the effectiveness of our method.
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