
Editorial: Using high energy
density plasmas for nuclear
experiments relevant to nuclear
astrophysics

Maria Gatu Johnson1*, Gerald Hale2, Mark Paris2,
Michael Wiescher3 and Alex Zylstra4

1Massachusetts Institute of Technology, Cambridge, MA, United States, 2Los Alamos National Laboratory
(DOE), Los Alamos, NM, United States, 3Department of Physics and Astronomy, University of Notre Dame,
Notre Dame, IN, United States, 4Lawrence Livermore National Laboratory (DOE), Livermore, CA,
United States

KEYWORDS

nuclear astrophysics, nucleosynthesis, plasma screening, high energy density physics
(HEDP), national ignition facility (NIF), omega laser facility, short-pulse laser experiments,
charged-particle-induced reactions

Editorial on the Research Topic
Using high energy density plasmas for nuclear experiments relevant to
nuclear astrophysics

Thermonuclear reaction rates and nuclear processes have traditionally been explored by
means of accelerator experiments, which are difficult to execute at conditions relevant to
nucleosynthesis. High energy density (HED) plasmas generated using lasers, such as the
inertial confinement fusion (ICF) platform, more closely mimic astrophysical environments
in several ways, including with thermal distributions of reacting ions as opposed to mono-
energetic ions impinging on a cold target; stellar-relevant plasma temperatures and densities;
and neutron flux densities not found anywhere else on earth [1]. The most extreme
conditions can currently be achieved at the National Ignition Facility (NIF) laser in the
US, where densities of 103 g/cm3 and neutron fluxes up to 5·1027 neutrons/cm/s [2, 3] have
been demonstrated over a time period of a few tens of picoseconds. The HED platform is
emerging as an interesting complement to accelerator experiments.

This Research Topic explores the potential of this new platform for helping address
questions including nuclear rates in plasmas, plasma effects on nuclear reactions, electron
screening, and neutron reactions on excited states, with emphasis placed on how accelerator
and HED experiments can complement each other to generate answers. For example, Aliotta
and Langanke summarize the current understanding of screening effects in stellar
environments. They identify an open question in that accelerator measurements suggest
a higher screening potential than expected in the adiabatic limit, and discuss how laser
facilities hold promise for solving this problem. In particular, accelerator measurements of
charged particle-induced reactions are handicapped by the rapidly declining cross section
and the uncertainties in the screening. Thomson describes how the high neutron flux
environment in ICF plasmas opens up possibilities for second neutron scattering or reactions
on excited states at much higher energies than previously possible. To study these unique
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reaction paths, the lifetimes of the newly accessible excited states
must be understood; he uses statistical Hauser-Feshbach decay
models to calculate relevant lifetimes.

At large laser facilities such as the NIF and OMEGA [4], stellar-
like conditions are achieved by symmetrically illuminating a target
using a large number of high-energy laser beams. This leads to
compression of the target materials, which subsequently generates
a high-density, high-temperature plasma environment. Using
deuterium and tritium as fuel in the target, this process can also
produce high neutron yields (up to 1·1018 at the NIF) over a short
(~100 ps) time window through fusion reactions. The platform has
been successfully used for studying rates of low-Z reactions, using the
reactants as fuel in the target, as reported in [5–7] and in Mohamed
et al. Future directions for this path of research are explored by Casey
et al., who lay the foundations for using this platform to study plasma
screening including discussion of practical constraints, and Wiescher
et al., who examine feasibility of studying three charged-particle-
induced reactions involving mid-Z reactants using this platform.
Despotopulos et al. review available techniques for adding small
amounts of seed nuclei of interest for stellar nucleosynthesis into
or in close proximity to the target for exposure to stellar-like
conditions or nucleosynthesis-relevant neutron fluxes.

High neutron fluxes in short time periods can also be achieved
using high-power, short-pulse lasers based on chirped pulse
amplification [8]. This path to stellar-relevant experiments is the
subject of two of the papers in this Research Topic, Jiao et al. and
Burggraf and Zylstra.

The HED platform comes with its own challenges. Rapid
gradients in space and time must be considered. In some cases,
thermalization rates may be lower than plasma confinement
times, which means standard hydrodynamic and Maxwellian
assumptions must be examined. Crilly et al. address these
challenges by theoretically investigating impact of
hydrodynamic and kinetic effects on S-factors inferred from
ICF-type experiments.

The new platform cannot be exploited without state-of-the-art
diagnostics [1, 9, 10]. Despotopulos et al. review the radiochemistry

diagnostic suite available at the NIF. Mohamed et al. review gamma
detection capabilities available at OMEGA and the NIF, and identify
a gamma spectrometer as an additional tool that would enable many
more experiments. Additional nuclear diagnostics are also available
at the various facilities, and should be exploited as research
continues (see, e.g., Refs. [11, 12]).

Broad interdisciplinary nuclear, plasma and astrophysical
expertise will be required to tap the potential of this new line
of research. The intent with this Research Topic is to advertise the
platform’s capabilities to attract the necessary expertise to this
emerging field, and to gather momentum behind the efforts to
utilize these new capabilities to answer questions previously
impossible to address in terrestrial experiments.
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