
Original and modified
non-perturbative renormalization
group equations of the BMW
scheme at the arbitrary order of
truncation

J. Kaupužs1,2,3* and R. V. N. Melnik3,4

1Laboratory of Semiconductor Physics, Institute of Technical Physics, Faculty of Materials Science and
Applied Chemistry, Riga Technical University, Riga, Latvia, 2Institute of Science and Innovative
Technologies, University of Liepaja, Liepaja, Latvia, 3The MS2 Discovery Interdisciplinary Research
Institute, Wilfrid Laurier University, Waterloo, ON, Canada, 4BCAM - Basque Center for Applied
Mathematics, Bilbao, Spain

We consider the non-perturbative renormalization group (RG) equations,
obtained as approximations of the exact Wetterich RG flow equation within the
Blaizot–Mendez–Wschebor (BMW) truncation scheme. For the first time, we
derive explicit RG flow equations for the scalar model at the arbitrary order of
truncation. Moreover, we consider original, as well as modified, approximations,
used to obtain a set of closed equations. We compare these equations at the s = 2
order of truncation with those recently derived in J. Phys. A: Math. Theor. 53,
415002 (2020) within a new truncation scheme and find a striking similarity.
Namely, the first-order equations of the latter scheme, those of the original BMW
scheme, and those of the modified BMW scheme (at s = 2) differ only in one term.
We solved these equations by a recently proposed and tested method of semi-
analytic approximations. Thus, the critical exponents η, ], and ω were evaluated,
recovering also the known results of the original BMW scheme. In addition, we
estimated the subleading correction-to-scaling exponent ω2 for the three
equations considered. To the best of our knowledge, this exponent has not yet
been extracted from theWetterich equation beyond the local potential (the zeroth
order) approximation. Our current estimate for the 3D Ising model is ω2 = 2.02
(40), where the error bars include the expected truncation error in the BMW
scheme.
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1 Introduction

The renormalization group (RG) method is one of the most widely used approaches in
the analysis of critical phenomena [1–5]. Here, we consider the non-perturbative RG
approach [6–9], focusing on the Wetterich equation and its approximation schemes,
developing further the research initiated in [10].

The functional renormalization group approach, which is at the heart of models such
as the Wetterich and the Polchinski equations, provides an appropriate framework for

OPEN ACCESS

EDITED BY

Manuel Asorey,
University of Zaragoza, Spain

REVIEWED BY

Frank Simon Saueressig,
Radboud University, Netherlands
Gerd Roepke,
University of Rostock, Germany

*CORRESPONDENCE

J. Kaupužs,
kaupuzs@latnet.lv

RECEIVED 08 March 2023
ACCEPTED 01 December 2023
PUBLISHED 15 January 2024

CITATION

Kaupužs J and Melnik RVN (2024),
Original and modified non-perturbative
renormalization group equations of the
BMW scheme at the arbitrary order
of truncation.
Front. Phys. 11:1182056.
doi: 10.3389/fphy.2023.1182056

COPYRIGHT

© 2024 Kaupužs and Melnik. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 15 January 2024
DOI 10.3389/fphy.2023.1182056

https://www.frontiersin.org/articles/10.3389/fphy.2023.1182056/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1182056/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1182056/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1182056/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1182056/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1182056&domain=pdf&date_stamp=2024-01-15
mailto:kaupuzs@latnet.lv
mailto:kaupuzs@latnet.lv
https://doi.org/10.3389/fphy.2023.1182056
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1182056


the analysis of a range of central problems in many areas,
including quantum systems, Yang–Mills theories, and
statistical physics, see, e.g., [11], for a review. The Wetterich
and Polchinski equations of the functional renormalization
group belong to the so called non-perturbative RG equations.
They have been successfully applied to many particular systems,
including the Ginzburg–Landau model [10–18], quantummodels
and quantum gravity [19–30], and the tensorial group field
theory [31]. It has been applied to equilibrium, as well as out-
of-equilibrium systems and critical dynamics [32–34]. A recent
review of all these applications is given in [35].

While the Wetterich equation itself is exact, it cannot be
solved exactly. Approximate closed equations are obtained from
it, applying certain truncation schemes for the effective action.
The local potential approximation (LPA) is a widely known
lowest-order approximation, which is traditionally improved
step by step by the derivative expansion (DE) [9,14]. As
alternative truncation schemes, the vertex expansion [14], the
BMW scheme [17], and the recent scheme proposed in [10] can
be mentioned. In distinction to the derivative expansion, which
relies on the small momentum (wave vector magnitude)
approximation, the latter two schemes preserve the full
momentum dependence.

In this paper, we report the results of a significant further
development of the BMW scheme for the scalar model, deriving
explicit equations for calculations at the arbitrary order of
truncation within this scheme, as well as proposing useful
modifications of the original BMW scheme. Moreover, we
established an intrinsic link between the equations of the BMW
scheme and those of the recent scheme proposed in [10] at the first
order of truncation. A recently developed method of semi-analytic
approximations [36] was used to solve these equations.

The usefulness of our new developments is demonstrated in
example calculations for the scalar model in three dimensions,
where we evaluate the critical exponents, including the
subleading correction-to-scaling exponent ω2, for which quite
limited results are available in the literature. Apparently, such
results for ω2 are obtained here for the first time from the
Wetterich equation beyond the LPA, and we found only a
relatively old estimate ω2 = 1.67(11) from the Polchinski
equation at the O(∂2) order of DE [37]. The RG estimations of
the correction-to-scaling exponents have a fundamental significance
as a crucial test of consistency with the conformal field theory (CFT)
[38,39]. The RG estimate of ω2 mentioned here does not reveal such
a consistency, since ω2 = 3.8956(43) is expected from the CFT
[39,40]. We will return to this issue in the summary of our current
results at the end of this paper.

Our paper is organized as follows. The Wetterich equation is
reviewed in Sec. 2, and the BMW scheme of its truncation is
reviewed in Sec. 3. Our new developments of the BMW scheme,
including the equations at the arbitrary order of truncation, are
presented in Sec. 4 with details of the derivation being given in
Supplementary Material SA1. The comparison of equations of the
BMW scheme with those derived in [10] is made in Sec. 5,
providing the dimensionless form of these equations in Sec. 6.
The results of numerical calculations are collected in Sec. 7. The
summary of results and outlook, pointing to potential further
applications and developments, are provided in Sec. 8.

2 Wetterich equation

In statistical physics, equilibrium systems of interacting particles
are routinely described by the action S = H/(kBT), where H is the
Hamiltonian and kB is the Boltzmann constant. A basic example is
the Ising model with S [σ] = −β∑〈ij〉σiσj − h∑iσi, where σi = ±1 is the
spin variable at the ith lattice site, 〈ij〉 denotes the pairs of nearest
neighbors, β is the coupling constant, and h is the normalized
(divided by kBT) interaction energy between a spin with σi = ±1
and the external field. Another simple example is the φ4 model with
S[φ] � ∫ ddx αφ2 + β(φ2)2 + γ(∇φ)2{ }, where α, β and γ are the
expansion coefficients for the density of S with a continuous order
parameter φ(x), which depends on the coordinate x in the d-
dimensional space. In the simplest case, it is scalar, but can also
be an n-component vector. The scalar φ4 model is known to belong
to the Ising universality class, which means that the behavior of φ4

and the Ising models near the phase transition point is described by
the same critical exponents.

It is convenient to use the wave vector representation of the
action S[φ] via the Fourier transformation φ(x) = Ω−1/2 ∑qφ(q)e

iqx,
where Ω is the volume of the system. The critical behavior is related
to the long-wavelength (infrared) or small-|q| fluctuations [3], but
one should also control the ultraviolet fluctuations. A point here is
that S[φ] might be ill-defined without an appropriate upper or
ultraviolet cut-off in the wave vector (momentum) space. In the φ4

model, one needs to introduce such a cut-off, e.g., by setting φ(q) ≡
0 at q > Λ (where q = |q|) to avoid ultraviolet divergences in various
calculations, e.g., in the calculation of 〈φ2〉. The cut-off parameter Λ
refers to the shortest or “microscopic” length scale ~ π/Λ of the
model, like the lattice constant in the Ising model.

The general idea of the RG method is to look at a system on
different length scales. In the Wetterich functional RG approach
[6,9], this idea is realized by introducing an infrared running cut-off
scale k, in such a way that fluctuations with q ≲ k are suppressed,
those with q ≫ k being practically unaffected. For this purpose, the
action is modified as S[φ] → S[φ] + ΔSk[φ] [9], where

ΔSk φ[ ] � 1
2
∫ ddq

2π( )d ∑
N

i�1
φi −q( )Rk q( )φi q( ). (1)

Here, φ is an N-component vector with components φi, whereas
Rk(q) is the infrared cut-off function with properties Rk(q) → 0 at
k → 0 and Rk(q) → ∞ at k → ∞ for fixed q. A simple choice,
proposed in [6,9], is

Rk q( ) ~ q2

eq2/k2 − 1
. (2)

For q2 ≪ k2, this cut-off behaves as Rk(q) ~ k2. It means that the
Fourier modes φi(q) with small momenta q < k acquire a weight
factor or effective mass ~ k included in the term (1). This additional
mass acts as an effective infrared cut-off for these low-momentum
modes. More precisely, this effect is essential in vicinity of the critical
point, where Rk(q) smoothly cuts off the critical infrared fluctuations
at a finite k. The cut-off function (2) tends (exponentially fast) to
zero at large q/k values; therefore, the high-momentum modes with
q/k → ∞ are not disturbed by ΔSk[φ].

Further on, an averaged order parameter ϕ(x) = 〈φ(x)〉 is
introduced, where the averaging is performed over φ(x) in the
presence of external sources J(x). The averaged field ϕ(x)
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depends on J(x), and this dependence is affected by k, i.e., ϕ =
ϕk(J). There exists also the inverse relation in the sense of the
Legendre transformation J = Jk(ϕ). The effective average action
Γk[ϕ] is considered as a functional of ϕ according to the
definition

Γk ϕ[ ] � −lnZk J[ ] + ∫ ddx∑
i

Jiϕi − ΔSk ϕ[ ] , (3)

where Ji are the components of the vector J(x) andZk is the partition
function

Zk J[ ] � ∫Dφ exp −S φ[ ] − ΔSk φ[ ] + ∫ ddx∑
i

Jiφi
⎛⎝ ⎞⎠. (4)

In (3), J(x) is the Legendre transform of ϕ(x), i.e., J = Jk(ϕ).
An exact RG flow equation, describing the variation of Γk[ϕ]

with the infrared cut-off scale k, has been obtained in [6]. A
detailed non-perturbative derivation has been later reported in
[9]. This equation, called the Wetterich equation, reads

∂

∂k
Γk ϕ[ ] � 1

2
Tr Γ 2( )

k ϕ[ ] + Rk[ ]−1 ∂
∂k
Rk{ }. (5)

In this equation, k decreases toward k = 0, starting from some
initial value k0. Thus, it generally allows describing the physics of
various models with various choices of the order-parameter field by
smoothly interpolating between different length scales.

Starting with k0 =Λ (as in our calculations), only the fluctuations
at the microscopic length scale q ~Λ are properly taken into account
in the initial stage of the integration of RG flow Eq. 5. Fluctuations of
the original model (where ΔSk = 0) with longer and longer
wavelengths are gradually restored as k → 0. At k = 0, all
fluctuation modes are included so that Γk=0 [ϕ] is the effective
action of the original model, defined by (3) without the term ΔSk [ϕ].
Another possibility, discussed in [35], is to choose k0 ≫Λ. In this
case, all fluctuations are frozen at the beginning (since the original
model contains only the modes with q < Λ, and these are suppressed
at k ≫Λ) and Γk0[ϕ] � S[ϕ] holds as in Landau’s mean-field theory
of phase transitions.

For the O(N) model, ϕ(x) is a vector with components ϕj(x),
where j = 1, . . . , N. It is convenient to consider (5) in the space of
wave vectors q, where

ϕj x( ) � Ω−1/2∑
q

ϕj q( )eiqx , (6)

ϕj q( ) � Ω−1/2 ∫ ϕj x( )e−iqxdx, (7)

Ω being the volume of the system, for which periodic boundary
conditions are assumed. The wave vectors are restricted by the upper
cut-off, i.e., q < Λ. In this representation, the quantity Γ(2)k [ϕ] is a
matrix with elements

Γ 2( )
k( )

ij
q, q′( ) � δ2Γk ϕ[ ]

δϕi −q( ) δϕj q′( ). (8)

For the discrete wave vectors in (6), the cut-off function Rk is
represented as [10]

Rk,ij q, q′( ) � Rk q( ) δij δq,q′. (9)

The choice of Rk(q) is not unique, and several possibilities have
been considered in [11,18]. For simplicity, here we have limited our
choice to

Rk q( ) � αZkq2

eq2/k2 − 1
, (10)

traditionally used in many investigations [9,14,17], where Zk is a
renormalization constant and α is an optimization parameter. This
cut-off function coincides with (2) and, thus, has the required
properties discussed before. It allowed us to compare the results
with those of [17], where the same cut-off function was used.

3 The BMW scheme of truncation

Here, we review the BMW truncation scheme for the scalar
model, considered in detail in [17], noting that the N-component
case has also been considered there in the Appendix. In the BMW
truncation scheme, one considers the s-point functions
Γ(s)k (q1, q2, . . . , qs; ϕ) as the Fourier transforms of δsΓk [ϕ]/
(δϕ(x1)δϕ(x2)/δϕ(xs)). We found it convenient to use an
equivalent definition in the wave vector space, i.e.,

Γ s( )
k q1, q2, . . . , qs; ϕ( ) � Ωs

2−1 δs Γk ϕ[ ]
δϕ q1( )δϕ q2( )/δϕ qs( ), s≥ 2.

(11)
The basic idea of this truncation scheme is to consider first a

hierarchy of exact equations for these s-point functions, obtained by
applying the functional derivatives to (5). Approximate closed
equations are then obtained, using certain approximations of the
higher order functions (at orders s + 2 and s + 1) by the lower-order
functions (up to the order s).

For constant ϕ, one has

Γk ϕ[ ] � ΩVk ϕ( ), (12)
where Vk(ϕ) is the potential. The exact RG flow equation for it is
obtained by evaluating the Wetterich equation at ϕ = const. Using
the notations t = ln k, ρ � 1

2ϕ
2, and

∫
q
≡ ∫ ddq

2π( )d, (13)

where the integration is performed over the region q < Λ, this
equation reads

∂tVk ρ( ) � 1
2
∫

q
∂tRk q( )Gk q,ϕ( ), (14)

where

G−1
k q, ϕ( ) � Γ 2( )

k q, ϕ( ) + Rk q( ) (15)
is the two-point correlation function with
Γ(2)k (q, ϕ) ≡ Γ(2)k (q,−q; ϕ), evaluated at ϕ = const.

In the zeroth-order approximation (s = 0) or LPA, one sets [17]

Γ 2( )
k q, ϕ( )→ q2 + Γ 2( )

k 0,ϕ( ) � q2 + ∂2ϕVk ϕ( ), (16)

where the coefficient 1 at q2 corresponds to the usually assumed
coefficient 1/2 at the gradient term (∇ϕ)2 in the coordinate
representation of Γk [ϕ], i.e.,
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ΓLPAk ϕ[ ] � ∫ ddx
1
2
∇ϕ( )2 + Vk ϕ( ){ }. (17)

Using (16), Eq. 14 becomes a closed approximate RG flow
equation for the potential Vk(ϕ).

In order to obtain the equations at the s = 2 order, one considers
the RG flow for Γ(2)k . An exact flow equation is obtained, taking two
functional derivatives with respect to the field [based on (11)] in
Wetterich Eq. 5 and evaluating the resulting expression at ϕ = const.
It yields [17]

∂tΓ 2( )
k p, ϕ( ) � ∫

q
∂tRk q( )G2

k q,ϕ( )
× {Γ 3( )

k p, q,−p − q; ϕ( )Gk q + p, ϕ( )Γ 3( )
k −p, p + q,−q;ϕ( )

−1
2
Γ 4( )
k p,−p, q,−q; ϕ( )}. (18)

According to the original idea of the BMW truncation scheme, a
closed approximate equation is obtained from this by setting the
internal momenta equal to zero, i.e., q = 0, in the arguments of Γ(3)k

and Γ(4)k . Generally, this is done for Γ(s+1)k and Γ(s+2)k at order s. Thus,
the momentum dependence of the highest-order functions is
represented in a simplified approximate form, considering q as a
small quantity. Using the exact formula

Γ s+1( )
k pi{ }, 0; ϕ( ) � ∂ϕΓ s( )

k pi{ }; ϕ( ) for ϕ � const, (19)
these simplified expressions for Γ(s+1)k and Γ(s+2)k are further reduced
to the derivatives of Γ(s)k , thus obtaining closed equations. Equation
19 is a consequence of (11), noting that ϕ(q) = Ω1/2ϕ δq,0 holds for
homogeneous field ϕ(x) = ϕ = const according to (7).

At s = 2, the equation for Γ(2)k (p,ϕ) reads [17]

∂tΓ 2( )
k � J3 p,ϕ( ) ∂ϕΓ 2( )

k( )2 − 1
2
I2 ϕ( ) ∂2ϕΓ 2( )

k , (20)
where

Jn p,ϕ( ) � ∫
q
∂tRk q( )Gk p + q, ϕ( )Gn−1

k q, ϕ( ), (21)

In ϕ( ) � Jn 0,ϕ( ). (22)
It is important to note that Γ(2)k is represented exactly as

Γ 2( )
k p, ϕ( ) � Γ 2( )

k p, ϕ( ) − Γ 2( )
k 0, ϕ( ) + ∂2ϕVk ϕ( ), (23)

keeping the term ∂2ϕVk(ϕ), inherited from the zeroth-order
approximation, untouched and solving the RG flow equation for
the difference Γ(2)k (p, ϕ) − Γ(2)k (0,ϕ). Moreover, it has also been
suggested in [17] to separate the zeroth-order contribution q2 from
this difference.

4 Equations of the BMW scheme at the
arbitrary order of truncation

4.1 Exact RG flow equations for the n-point
functions

Here, we derive exact RG flow equations for the n-point function
at any n, from which approximate closed equations at arbitrary
truncation order s are then obtained, as described in Sec. 4.3. In the
following, we summarize these equations, the details of the

derivation being provided in Supplementary Material SA1. For
brevity, we omitted ϕ in the list of arguments of the n-point
functions Γ(n)k , noting also that this argument is subsequently
replaced by ρ = ϕ2/2 in our treatment. Thus, according to
Supplementary Material SA1, for ϕ = const, we have

∂tΓ n( )
k p1, p2, . . . , pn( ) � 1

2
∑n
M�1

−1( )M ∑
m1 ,m2 ,...,mM

m1+/+mM�n

∑
jℓ i( ){ }nm1 ,...,mM

∫
q
∂tRk q( )

× Gk q( )∏M
i�1

Γ 2+mi( )
k pj1 i( ), pj2 i( ), . . . , pjmi i( ), �Qi ,Qi( )Ĝk Qi( ),

(24)

where ∑n
l�1pl � 0 holds, 1 ≤ mi ≤ n are integers, and jℓ(i){ }nm1 ,...,mM

are the distributions of n integer numbers 1, 2, . . . , n over M boxes
withm1 numbers in the first box,m2 numbers in the second box, and
so on (totally n!/(m1!m2!/mM!) possibilities). Here, jℓ(i) with ℓ = 1,
2, . . . ,mi are the numbers in the ith box. We ordered them by index
ℓ in such a way that j1(i)< j2(i)< . . . < jmi(i). In addition, Ĝk(Q) is
the correlation function, which is modified by the upper cut-off as

Ĝk Q( ) � Gk Q( ) θ Λ − Q( ). (25)
This cut-off is included here to follow a formal rigor in treating

such cases, where the original action S[φ] is ill-defined without it, see
Sec. 2. It influences the RG flow in the Wetterich equation only at
k ~Λ for k ≤ Λ. Therefore, it can be further omitted, considering the
vicinity of the fixed point at k → 0, as it is usually performed in the
literature.

For any given m1, m2, . . . mM at the considered n, the wave
vectors Qi are defined by

�Qi � −q −∑M
l�i

Pl, 1≤ i≤M, (26)

Qi � q + ∑M
l�i+1

Pl, 1≤ i≤M, (27)

where the latter sum is defined as zero for i =M (so thatQM = q) and

Pi �∑mi

ℓ�1
pjℓ i( ), 1≤ i≤M. (28)

At i = 1, Eqs 26, 27 reduce to

�Q1 � −q, Q1 � q − P1, (29)
noting that

∑M
i�1

Pi �∑n
l�1

pl � 0. (30)

The known Eq. 18 can be easily recovered from (24). Following
notations introduced after Eq. 15 and noting that p1 + p2 = 0 holds in
(24) at n = 2, we have ∂tΓ(2)k (p1) on the left-hand side of this
equation at n = 2. In this case, the sum over M contains only two
terms,M = 1 andM = 2. AtM = 1, the next sum reduces tom1 = n = 2,
and the last sum reduces to j1(1) = 1 and j2(1) = 2. It corresponds to
two numbers, 1 and 2, put in a single box (i = 1, ℓ = 1, 2). These
numbers are identified with j1(1) and j2(1). One has j1(1) = 1, j2(1) = 2
due to the ordering j1(1) < j2(1). Furthermore, we find Q1 = q from
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(27), P1 = p1 + p2 = 0 from (28), and �Q1 � −q from (26). Hence,M = 1
gives the contribution

∂tΓ 2( )
k p1( )( )

1
� −1

2
∫

q
∂tRk G

2
k q( ) Γ 4( )

k p1,−p1,−q, q( ) (31)

to (24), noting that Ĝk(q) � Gk(q) holds, since 0 < q < Λ.
At M = 2, the second sum reduces to m1 = m2 = 1 for n = 2,

whereas the following sum comprises two cases: 1) j1(1) = 1, j1(2) = 2
and 2) j1(1) = 2, j1(2) = 1 (we have i = 1, 2 and ℓ = 1). In the first case,
we obtain (using Eqs 26–28, where p1 + p2 = 0) P1 = p1, P2 = p2,
�Q1 � −q, Q1 = q + p2, �Q2 � −q − p2, and Q2 = q. The second
symmetric case is obtained from the first one via p1 ↔p2. Hence,
M = 2 gives the contribution

∂tΓ 2( )
k p1( )( )

2
� 1
2
∫

q
∂tRk q( )G2

k q( )
× Γ 3( )

k p1,−q, q + p2( )Ĝk q + p2( )Γ 3( )
k p2,−q − p2, q( )[

+Γ 3( )
k p2,−q, q + p1( )Ĝk q + p1( )Γ 3( )

k p1,−q − p1, q( )],
(32)

where Ĝk(q) � Gk(q) is used as in (31). This expression is modified by
setting p2 = −p1. Furthermore, the replacement q→ −q is performed in
the first line of (32) (owing to the symmetric integration region |q| <Λ)
followed by the change of the sign for the arguments ofGk and Ĝk (since
Gk(Q) = Gk (−Q)). In the second line of (32), the last two arguments of
Γ(3)k are exchanged, using the symmetry of the n-point functions.
After these replacements, it becomes evident that two terms in
the square brackets give equal contributions, and (32) reduces to

∂tΓ 2( )
k p1( )( )

2
� ∫

q
∂tRk q( )G2

k q( )Γ 3( )
k p1, q,−q − p1( )Ĝk q + p1( )

Γ 3( )
k −p1, q + p1,−q( ). (33)

Equation 18 is obtained by summing up both contributions
(31) and (33), exchanging the last two arguments of Γ(4)k (using
the symmetry), omitting the upper cut-off for Ĝk(q + p1),
redenoting p1 → p, and reintroducing the argument ϕ, which
is skipped for brevity.

If Γ(n)k is an analytic function of ϕ2 for even n, then it is
representable as ϕ multiplied by an analytic function of ϕ2 for
odd n, as it follows from (19). Therefore, we introduce the new
n-point functions

Γ̂ n( )
k �Def Γ n( )

k , for even n,
ϕ−1Γ n( )

k , for odd n,
{ (34)

which are all analytic functions of ρ = ϕ2/2. Substituting these new
functions in RG flow Eq. 24, we easily obtain

∂tΓ̂
n( )

k p1, p2, . . . , pn( ) � 1
2
∑n
M�1

−1( )M ∑
m1 ,m2 ,...,mM

m1+/+mM�n

∑
jℓ i( ){ }nm1 ,...,mM

∫
q
∂tRk q( )

× 2ρ( )μn m1 ,...,mM( ) Gk q( )∏M
i�1

Γ̂ 2+mi( )
k

pj1 i( ), pj2 i( ), . . . , pjmi i( ), �Qi ,Qi( )Ĝk Qi( ),
(35)

where

μn m1, . . . , mM( ) � N m1, . . . , mM( )/2 for even n,
N m1, . . . , mM( ) − 1( )/2 for odd n,

{
(36)

whereN (m1, . . . , mM) is the number of oddmi in the sequencem1,
m2, . . . , mM. Due to the condition m1 + m2 + / + mM = n, N is
even for even n and odd for odd n. Consequently, μn is always a non-
negative integer number.

4.2 Some useful relations

In this section, we introduce some exact relations, which are
useful for building up the approximation schemes in Sec. 4.3.

First, we consider the structure of arguments of the highest-
order term Γ(n+2)k in Eq. 24 for Γ(n)k . This term appears only atM = 1,
m1 = n, and there is only one jℓ(i){ } distribution possible in this case,
i.e., i = 1, jℓ(1) = ℓ with 1 ≤ ℓ ≤ n. Since i = 1, we have Q1 = q and
Q
̀

1 � −q according to (29), noting that P1 = p1 +/ + pn = 0 holds
for this jℓ(i){ }. Thus, Eq. 24 contains Γ(n+2)k in the form of
Γ(n+2)k (p1, p2, . . . , pn,−q, q).

Similarly, we consider the arguments of the Γ(n+1)k function,
contained in the equation for Γ(n)k . The (n + 1)-point function
appears at M = 2 in two subcases: 1) m1 = 1, m2 = n − 1 and 2)
m1 = n − 1,m2 = 1. Using relations (26)–(29), we easily establish that
Γ(n+1)k is contained in the forms of Γ(n+1)k (pj1, pj2, . . . , pjn−1,−q −∑n−1

ℓ�1pjℓ , q) and Γ(n+1)k (pj1, pj2, . . . , pjn−1,−q, q −∑n−1
ℓ�1pjℓ), where all

possible sequences of indices jℓ{ } appear, which are obtained by
skipping one of the numbers in the sequence 1, 2, . . . , n.

As the next step, we consider the exact relations

Γ n+2( )
k p1, p2, . . . , pn,−q, q( ) � ∂2ϕΓ

n( )
k p1, p2, . . . , pn( )

+Δ n+2( )
2,k p1, p2, . . . , pn,−q, q( ), (37)

Γ n+1( )
k pj1

, pj2
, . . . , pjn−1,−q −∑ pjℓ

, q( )
� ∂ϕΓ n( )

k pj1
, pj2

, . . . , pjn−1,−∑ pjℓ( ) (38)
+Δ n+1( )

1,k pj1
, pj2

, . . . , pjn−1,−q −∑ pjℓ
, q( ),

following from (19), where ∑ pjℓ ≡ ∑n−1
ℓ�1pjℓ and

Δ n+2( )
2,k p1, p2, . . . , pn,−q, q( ) �Def Γ n+2( )

k p1, p2, . . . , pn,−q, q( )
−Γ n+2( )

k p1, p2, . . . , pn, 0, 0( ),
(39)

Δ n+1( )
1,k pj1

, pj2
, . . . , pjn−1,−q −∑ pjℓ

, q( )
�Def Γ n+1( )

k pj1
, pj2

, . . . , pjn−1,−q −∑ pjℓ
, q( )
(40)

−Γ n+1( )
k pj1

, pj2
, . . . , pjn−1,−∑ pjℓ

, 0( ).
Using these relations, Γ(n+1)k and Γ(n+2)k can be expressed by

∂ϕΓ(n)k , ∂2ϕΓ(n)k , Δ(n+1)
1,k , and Δ(n+2)

2,k in the equation for Γ(n)k , noting that
(38) holds for arbitrary wave vectors, and the arguments can be
exchanged. In particular, one can exchange the last two arguments
and replace q → −q to obtain the necessary relation for
Γ(n+1)k (pj1, pj2, . . . , pjn−1,−q, q − ∑n−1

ℓ�1pjℓ).
In the following, we derive such relations for the n-point

functions Γ̂(n+2)k and Γ̂(n+1)k , expressed by the derivatives with
respect to ρ. Using the definitions (34) and ρ = ϕ2/2, we obtain
from (37) to (38) the desired equations:

Γ̂ n+2( )
k p1, p2, . . . , pn,−q, q( ) � H n( )

2 Γ̂ n( )
k p1, p2, . . . , pn( )

+ Δ̂ n+2( )
2,k p1, p2, . . . , pn,−q, q( ), (41)
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Γ̂ n+1( )
k pj1

, pj2
, . . . , pjn−1,−q −∑ pjℓ

, q( )
� H n( )

1 Γ̂ n( )
k pj1

, pj2
, . . . , pjn−1,−∑ pjℓ( ) (42)

+ Δ̂ n+1( )
1,k pj1

, pj2
, . . . , pjn−1,−q −∑ pjℓ

, q( ),
where H(n)

1 and H(n)
2 are the differential operators

H n( )
1 � ∂ρ for even n

1 + 2ρ ∂ρ for odd n
{ , (43)

H n( )
2 � ∂ρ + 2ρ ∂2ρ for even n

3∂ρ + 2ρ ∂2ρ for odd n
{ (44)

and the quantities Δ̂(n+i)
j,k are defined as

Δ̂ n+2( )
2,k p1, p2, . . . , pn,−q, q( ) �Def Γ̂ n+2( )

k p1, p2, . . . , pn,−q, q( )
−Γ̂ n+2( )

k p1, p2, . . . , pn, 0, 0( ),
(45)

Δ̂ n+1( )
1,k pj1

, pj2
, . . . , pjn−1,−q −∑ pjℓ

, q( )
�Def Γ̂ n+1( )

k pj1
, pj2

, . . . , pjn−1,−q −∑ pjℓ
, q( )
(46)

−Γ̂ n+1( )
k pj1

, pj2
, . . . , pjn−1,−∑ pjℓ

, 0( ).

4.3 Closing approximations

Based on the relations of Sec. 4.2, we modify Eq. 35 for 2 ≤ n ≤ s
to the form appropriate for making certain closing approximations.
In addition, we consider two variants of such modifications.

1. The Γ̂(n+2)k and Γ̂(n+1)k functions in the equation for n = s, as well as
the Γ̂(n+2)k function in the equation for n = s − 1 (at s > 2), are
substituted by the corresponding expressions on the right-hand
side of Eqs (41), (42) and of the symmetric to (42)
with −q −∑ pjℓ , q → − q, q −∑ pjℓ

2. The substitutions of Γ̂(n+2)k and Γ̂(n+1)k , using Eqs (41), (42) and the
symmetric to (42), are performed in each of the equations with
2 ≤ n ≤ s

In addition, the change of variable from Γ̂(2)k (q,−q) ≡ Γ(2)k (q) to

Δk q( ) � Γ̂ 2( )
k q,−q( ) − Γ̂ 2( )

k 0, 0( ) (47)
is performed, which means that Γ̂(2)k (q,−q) is replaced by

Δk q( ) + ∂2ϕVk � Δk q( ) +H 2( )
2 Vk (48)

in accordance with (23). In this case, the RG flow equation for Δk

reads

∂tΔk p( ) � ∂tΓ̂
2( )
k p,−p( ) − ∂tΓ̂

2( )
k 0, 0( ), (49)

with terms on the right-hand side being given in (35). Such a change
of variable is meaningful, as it preserves the term ∂2ϕVk ≡ H(2)

2 Vk of
the zeroth-order (LPA) approximation. One has to note that Δk has
been defined in [17] by Γ(2)k (q) � q2 + Δk(q) + ∂2ϕVk to keep
explicitly also the LPA term q2. However, this choice is optional,

since the RG flow equation for Δk is just the same, and it does not
finally lead to a different approximation.

With the above replacements made in (35), we obtain a modified
set of exact equations up to arbitrary order s. However, this set of
equations is not closed because it contains the functions Δ̂(s+1)

1,k ,
Δ̂(s+2)
2,k for s ≥ 2, and also Δ̂(s+1)

2,k for s > 2, which are defined in terms of
Γ̂(s+1)k and Γ̂(s+2)k . Therefore, we consider certain closing
approximations for them, proposing again two different options
(a) and (b).

(a) We set Δ̂(s+1)
1,k � Δ̂(s+2)

2,k � 0 for s = 2 or Δ̂(s+1)
1,k � Δ̂(s+2)

2,k � Δ̂(s+1)
2,k �

0 for s > 2.
(b) These quantities are approximated by their values at zero

external momenta pjℓ . Namely, we start with the
approximations

Δ n+2( )
2,k p1, . . . , pn,−q, q( ) ≈ Δ n+2( )

2,k 0{ }n,−q, q( ), (50)
Δ n+1( )
1,k pj1

, . . . , pjn−1,−Q −∑ pjℓ
,Q( ) ≈ Δ n+1( )

1,k 0{ }n−1,−Q,Q( ), (51)

where {0}n is the string 0, . . . , 0 of n zeroes, from which we obtain

Δ̂ n+2( )
2,k p1, . . . , pn,−q, q( ) ≈ H n( )

2 ΔΓ̂ n( )
k q( ), (52)

Δ̂ n+1( )
1,k pj1

, . . . , pjn−1,−Q −∑ pjℓ
,Q( ) ≈ H n( )

1 ΔΓ̂ n( )
k Q( ) (53)

with the help of (19), (34), and the definitions of Δ(n+i)
j,k and Δ̂(n+i)

j,k .
Here, Q = q is set in one case and Q = −q with exchanging the last
two arguments in the symmetric case, whereas ΔΓ̂k(q) is defined by

ΔΓ̂ n( )
k q( ) �Def Γ̂ n( )

k 0{ }n−2,−q, q( ) − Γ̂ n( )
k 0{ }n( ). (54)

The closing approximations are represented by (52)–(53) at n =
s, as well as by (52) at n = s − 1 if s > 2.

In summary, the final closed system of equations at the arbitrary
order of truncation s is represented by Eq. 14 (where we omit ϕ for
brevity) with

Gk q( ) � 1/ H 2( )
2 Vk + Δk q( ) + Rk q( )[ ], (55)

completed by explicit Eq. 35 for 2 ≤ n ≤ s, in which certain precisely
defined replacements are performed. In particular, (49) is used for
n = 2. In this sense, we derived an explicit closed system of equations
for arbitrary s. There exist approximations with s = 0, 2, 3, 4, 5, etc.,
and only the order s = 1 does not exist.

We proposed four different versions of the replacements in (35),
which can be numbered as 1a, 1b, 2a, and 2b, corresponding to
options 1 and 2 for the exact modification of (35) and options (a)
and (b) for the closing approximations used. Thus, we have four
different modifications within the BMW scheme.

In fact, the original BMW scheme corresponds to 1a, since the q-
dependence of Γ(s+2)k and Γ(s+1)k is neglected in this case, evaluating
them at q = 0 (option (a)), and the n-point functions with n > 2 are
not modified in any other way (option 1).

Option 2, including modifications for all n-point functions with
2 < n ≤ s, is indeed quite meaningful. Namely, in analogy with
keeping the zeroth-order term H(2)

2 Vk untouched, it preserves at
higher orders all those terms, which appear as H(n)

i Γ̂(n)k at lower
orders. Hence, 2 might be a better option than 1. These options 1 and
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2 represent exact modifications and, therefore, are equally good at
the stage of their implementation. However, the final
approximations are influenced by the specific choice. In
particular, relations (41)–(42) with Δ(n+i)

j,k defined in (45)–(46)
will not be satisfied exactly by approximate solutions, in general.
A difference will appear because these relations for n + i ≤ s are
implemented in the RG flow equations in option 2, but not in
option 1. These two options are indistinguishable at s = 2. In this
case, we have to choose between (a) and (b) only.

In fact, choice (a) relies on the smallness of the internal
momentum q when approximating Γ̂(s+i)k with i > 0, whereas (b)
relies on the smallness of the external momenta pjℓ when
approximating the differences Δ̂(s+i)

j,k with i > 0. Intuitively, (b)
might be a better choice than (a) since the latter one reduces
simply to the setting Δ̂(s+i)

j,k � 0. Thus, physically, a common basic
feature of the original BMW scheme (a) and the modified BMW
scheme (b) is that both of them rely on the smallness of some of
the momenta in the closing approximation. However, a
difference is that this is the internal momentum in the
original scheme and the external momenta in the modified
one. From this aspect, option (b) is similar in spirit to the
truncation approximation used in the scheme of [10], where
the internal momentum (the integration variable) in no sense is
considered as being small.

From some other aspects, the versions of the BMW scheme
are essentially different from the scheme of [10]. A truncation is
applied directly to Γk[ϕ] in the latter scheme. Hence, one has to
think how good or how well justified is the proposed specific
truncation performed over an infinite set of terms or vertices
contained in the exact Γk[ϕ]. It refers to any scheme, which deals
with a direct truncation of Γk[ϕ]. The BMW scheme, including
its current modifications, is quite different. Namely, the
hierarchy of exact Eq. 24 appears in an unambiguous and
natural way, and one only needs to think about an
appropriate closing approximation of the highest-order n-
point functions by lower order ones. The fact that this
hierarchy is now explicitly written down for arbitrary n (via
Eq. 24 or Eq. 35) can also be seen as an essential advantage of this
scheme. According to the actual results at s = 2, discussed in the
following sections, the closing approximations considered here
are reasonably good, at least, as regards the critical exponents η,
], and ω. Following the intuitive argument proposed above, we
expect that the modified approximation (b) is generally better
than the original one (a) since it should be better to approximate
Δ̂(s+i)
j,k than simply omit this term.
A quite different closing approximation for the equations at

s = 2 has been proposed in Appendix B of [17]. However, our first
result obtained by this approximation was unsatisfactory, i.e., η =
0 at the simplest choice p0 = ρ0 = 0 of the free parameters p0 and ρ0
introduced in [17]. Therefore, we have further skipped this
version.

5 Comparison of equations at s = 2

Here, we consider in detail the truncation order s = 2. We
revealed a striking similarity between the RG flow equations in
the original (option (a)) and the modified (option (b)) BMW

schemes at s = 2 on one side and the scheme of [10] at the first
order of truncation on the other side. According to Sec. 4 in this
paper and Eq. 43 (together with the related equations) in [10], we
have

∂tΔk p( ) � ∫
q
∂tRk q( )G2

k q( )
{2ρ vk ρ( ) + ak p, q( )[ ]2 Gk q + p( ) θ Λ − |q + p|( )
−2ρ vk ρ( ) + ak 0, q( )[ ]2 Gk q( ) − 1

2
Δk′ p( ) + 2ρΔ′′

k p( )( )},
(56)

where

vk ρ( ) � 3V′′
k ρ( ) + 2ρV′′′

k ρ( ) (57)
and

ak p, q( ) �
Δk′ p( ) in the original BMWscheme

Δk′ p( ) + Δk′ q( ) in themodified BMWscheme

1
2

Δk′ p( ) + Δk′ q( ) + Δk′ p + q( )( ) in the scheme of [10]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
,

(58)

noting only that Δk and Vk correspond to 2Ψk and Uk in [10], and
the primes denote the derivatives with respect to ρ. Equation 56
with the first choice in (58) coincides with Eq. 23 in [17]. Thus,
the RG flow equations differ only in one term ak (p, q) in the
three cases considered. This is a really striking similarity,
especially if we note that the equations of [10] have been
derived in a completely different way than those of the BMW
scheme.

It is interesting to mention that the expression for ak (p, q) in the
modified BMW scheme agrees with that in the original BMW
scheme at q = 0 (since Δk (0) ≡ 0), whereas it agrees with that in
the scheme of [10] at p = 0.

6 Dimensionless equations at s = 2

For the application of critical phenomena, we write the RG
flow equations in a scaled (dimensionless) form, using the
transformations

Vk ρ( ) � kduk ~ρ( ), where ~ρ � Zkk
2−dρ, (59)

Rk q( ) � Zkq
2r y( ), where y � q2/k2, (60)

Δk q( ) � Zkq
2fk ~ρ;y( ), (61)

where Zk � limq→0(Δk(q)/q2)|ρ�0, and

r y( ) � α

ey − 1
(62)

corresponds to (10). In addition, the dimensionless equations
contain the running exponent η(k) = −d ln Zk/dt. As in [10], the
above transformations led to the following RG flow equations:

∂tuk ~ρ( ) � −d uk ~ρ( ) + d − 2 + η k( )( )~ρ uk′ ~ρ( )
− Kd

4
∫

Λ2/k2

0

y
d
2−1ζk y( )dy
Pk ~ρ, y( ) , (63)
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∂tfk ~ρ;y( ) � η k( )fk ~ρ;y( ) + ~ρ d − 2 + η k( )( )fk′ ~ρ;y( )
+ 2y

∂fk ~ρ;y( )
∂y

+ Kd

4
fk′ ~ρ;y( ) + 2~ρf′′

k ~ρ;y( )( )
× ∫

Λ2/k2

0

y
d
2−1
1 ζk y1( )dy1

P2
k ~ρ, y1( ) − y−1 Ĉk ~ρ, y( ) − Ĉk ~ρ, 0( )[ ],

(64)
where

ζk y( ) � 2y2r′ y( ) + η k( )yr y( ), (65)
wk ~ρ( ) � uk′ ~ρ( ) + 2~ρ u′′k ~ρ( ), (66)

Pk ~ρ, y( ) � wk ~ρ( ) + y fk ~ρ;y( ) + r y( )[ ] (67)
and

Ĉk ~ρ, y( ) � ~ρ ~Kd ∫
Λ2/k2

0

∫π
0

ζk y1( )Θ Λ2

k2
− Y( )yd

2−1
1 sin θ( )d−2

×
wk′ ~ρ( ) + âk ~ρ;y, y1( )( )2
Pk ~ρ, Y( ) P2

k ~ρ, y1( ) dy1dθ,

(68)

where

âk ~ρ;y, y1( )
�

yfk′ ~ρ;y( ) in the original BMWscheme

yfk′ ~ρ;y( ) + y1fk′ ~ρ;y1( ) in themodified BMWscheme

1
2

yfk′ ~ρ;y( ) + y1fk′ ~ρ;y1( ) + Yfk′ ~ρ;Y( )[ ] in the scheme of [10]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
.

(69)

Here, Y � y + y1 + 2
%%%%
yy1

√
cos θ, primes denote derivatives

with respect to ~ρ, except for r′(y) = dr/dy, and Θ is the Heaviside
theta function. In addition, Kd = S(d)/(2π)d and
~Kd � S(d − 1)/(2π)d, where S(d) is the surface of unit sphere
in d dimensions. For convenience, we replaced the sharp upper
cut-off in (68) by a smooth one, as in [36].

It should be noted that fk (0; 0) ≡ 1 holds according to the
definition of Zk; therefore, η(k) is found from the condition ∂tfk
(0; 0) ≡ 0. Hence, the equation for η(k) reads

η k( ) � −Kd

4
fk′ 0; 0( ) ∫

Λ2/k2

0

y
d
2−1ζk y( )dy
P2

k 0, y( ) . (70)

The dimensionless equations of [17] are recovered with the
first choice in (69), whereas those of [10] are recovered with the
third choice. However, fk(~ρ;y) corresponds to 1 + ~Yk(~p, ~ρ) in
[17], where ~p � %%

y
√

, and transformations (59)–(61) are defined
with different coefficients in [17], using also a different
definition of Kd. Here, we used the same form of the
dimensionless equations as in [10,36], as it allowed us to
adapt very easily the computational algorithms developed in
[36] for the solution of the actual equations.

7 Calculation results

7.1 The method of solution

We solved the dimensionless equations of Sec. 6 in three
dimensions (d = 3) as an example of the application of our
general truncated equations within the BMW scheme,
considering here the order s = 2. Moreover, we compared the
results with those of the surprisingly similar equations in [10].

We used the method of semi-analytic approximations or
functional truncations developed in [36]. According to this
method, the dimensionless potential ~uk(~ρ) and the function
fk(~ρ;y) are represented as

uk ~ρ( ) − uk 0( ) � 1 − z( )−μ ûk z( ), (71)
fk ~ρ;y( ) � �fk z;y( ), (72)

where z � ~ρ/(~ρ0 + ~ρ) and μ = d/(d − 2 + η) (η being the fixed-point
value of η(k)) with the following truncated expansions:

ûk z( ) � ∑n
m�1

um,k z
m, (73)

�fk z;y( ) � ∑n′
m�0

fm,k y( ) zm. (74)

Here, ~ρ0 is an optimization parameter and μ is the exponent,
which describes the power-law large-~ρ asymptotic of uk(~ρ) at the
fixed point. We used ~ρ0 � 0.4, as in most calculations in [36].

The coefficients um,k and fm,k(y) are calculated adapting the
algorithm described in [36]. Namely, 1

2 [y�fk′(s;y) + y1
�fk′(s;y1) +

Y�fk′(s;Y)] in Eq. 19 of [36], where now s → z, is replaced by
y�fk′(z;y) in the original BMW scheme and by y�fk′(z;y) +
y1

�fk′(z;y1) in the modified BMW scheme. Correspondingly, Eq.
62 of [36] becomes

Wi,k y, y1, Y( ) � i + 1( ) wi+1,k + yfi+1,k y( )[ ] in the original BMWscheme,
i + 1( ) wi+1,k + yfi+1,k y( )[

+y1fi+1,k y1( )] in themodified BMWscheme

⎧⎪⎨⎪⎩ .

(75)

The integration of the RG flow equations (from t = 0 to t = −17)
was performed by the fourth-order Runge–Kutta method,
calculating fm,k(y) on a non-uniform grid of y values yn, where
y0 = 0 and yn+1 = yn + (1 + ε)(yn − yn−1) for n ≥ 1 and yn ≤ ymax with
large enough ymax to include the region q > Λ in the original
variables. Typically, we used y1 = 0.02 and ε = 0.4, which
corresponds to the “rough” grid considered in [36]. A similar
“rough” grid with y1 = 0.002 and with restricted maximal step
size 0.8 was used for the calculation of the integrals by the Simpson
method, cutting the integration region at ymax = 30 and integrating
over the angle θ with the step size π/5 (i.e., π/10 step size for
subintervals).

Further details about the numerical procedures are provided in
[36], noting that the “standard” grid has been mainly used there with
twice smaller step sizes for y and θ. Here, we mainly use the “rough”
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grid, verifying in a subset of cases that the discrepancy with the
results of the “standard” grid is practically negligible, as already
pointed out in [36].

7.2 Estimation of the critical exponents
η, ], and ω

We extracted the critical exponents η, ], and ω from the RG flow
by a direct integration of the RG flow equations. In this case, the
fixed point is reached by adjusting the initial condition iteratively,
and the critical exponents are determined from the RG flow at and
near the critical surface [36]. The critical exponent η describes the∝
k−2+η divergence of the critical two-point correlation function, as well
as the ∝ k−η divergence of the renormalization constant Zk on the
critical surface at k → 0. It is determined as the fixed-point value of
the running exponent η(k). The critical exponent ] describes the
∝|τ|−] divergence of the correlation length at τ → 0, where τ is the
deviation from the critical temperature. It describes also an
infinitesimal deviation of the RG flow from the fixed point. It is
extracted from a small∝ k−1/] deviation of this flow at small k values.
The critical exponent ω describes corrections to scaling, as well as
the∝ kω distance of the RG flow from the fixed point on the critical
surface at k → 0.

Practically, we determined the exponents yT = 1/] and ω from
the RG flow of the coupling coefficient u1,k in (73). We determined
yT from the ∝ k−yT scaling of ~u1,k − u1,k, where ~u1,k is calculated
slightly shifting (by 10–12) the initial value of u1,k at k = Λ from its

critical value. The running exponent yT(k) was determined by using
the ansatz ~u1,k − u1,k � const · k−yT for k = k1 and k = k2,
corresponding to t ±Δt with t = ln (k/Λ) and Δt ≈ 0.7. Thus, we
used yT(k) � ln[(~u1,k2 − u1,k2)/(~u1,k1 − u1,k1)]/[2Δt]. The running
exponent ω(t) was extracted from the ansatz u1,k � u1* + const ·
kω for three values of k, corresponding to t and t ±Δt with Δt ≈
0.7. Hence,ω(k) � ln[(u1,k1 − u1,k)/(u1,k − u1,k2)]/Δt and k1,2 = k exp
(±Δt). The critical exponents ] and ω were determined as the
asymptotic values of 1/yT(k) and ω(k) at k → 0, performing a
tiny linear extrapolation of yT(k) and ω(k) over kω, based on the
observation that these running exponents are almost linear in this
scale.

For simpler RG flow equations, the critical exponents can be
easily extracted from the linearized RG analysis in the vicinity of
the fixed point. It is a standard method in the cases, where the RG
flow is described by a finite number N of discrete parameters. It is
true, e.g., for the LPA and the derivative expansion [11,14,15,18].
In this case, all the critical exponents, including the subleading
correction-to-scaling exponents, are obtained as eigenvalues of
the sensitivity matrix with dimensions N × N. Such a method
cannot be easily applied to the equations with full momentum
dependence in [10,17,36] and here, as one deals also with RG flow
equations for continuous functions, in particular, for the
functions fm,k(y) in (74). In [17], the critical exponents have
been evaluated by a direct integration of the RG flow equations,
like in our current study. A linearization around the fixed point,
found by a fast iterative method without such integration, has
been applied to equations with full momentum dependence in

FIGURE 1
Critical exponents η (A), ω (B), and ] (C) vs. ln α provided by the approximate RG flow equations (Sec. 6) of the original BMW scheme (squares), the
modified BMW scheme (solid circles), and the scheme of [10] (empty circles), calculated at n = 13, n′ = 10 in (73)–(74). The values obtained using the
principle of minimal sensitivity correspond to the extremum points, indicated by the vertical dashed lines.
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our earlier work [10]. However, it was only a toy example for a
very simple approximation.

The critical exponents, evaluated here from the approximate RG
flow equations with the dimensionless cut-off function (62), depend
on the parameter α in (62). The exactly solved Wetterich equation
would ensure the α-independence of these exponents; therefore,
often such a value of α is assumed as optimal, at which the specific
critical exponent shows a minimal variation with α. It is known as
the principle of minimal sensitivity (PMS) [14]. In practice, the PMS
values of η, ], and ω appear to be the extremum points of the
corresponding exponent vs. α plots. We found it meaningful to
consider such plots depending on ln α rather than α. In this case, the
plots appear to be more symmetric, and they are better
approximated by spline curves. Moreover, the modulus of the
local slope of such a plot is proportional to the magnitude of the
variation when α→ α(1 + ε) at a small ε and, therefore, it serves as a
good measure of the sensitivity.

The plots of the critical exponents η, ], andω vs. lnα, calculated at the
truncation orders n = 13 and n′ = 10 in (73)–(74), are shown in Figure 1.
In this figure, the results of the (Secs. 5–6) approximate RG equations of
the original BMW scheme, the modified BMW scheme, and the scheme
of [10] considered here are shown. The PMS values correspond to the
extremum points, indicated by the vertical dashed lines.

These PMS values are collected in Table 1. The values in the third
row are taken from [36], where the indicated error bars have been
estimated based on a detailed analysis of the convergence in (73)–(74).
We set the error bars in the first two rows in Table 1 based on a
comparative analysis. We performed calculations at n = 10, n′ = 7 and
found that the deviations in the critical exponents relative to those for
n= 13, n′ = 10 strongly correlate in all three schemes considered and are
comparable in magnitude with the corresponding error bars in row 3.
For η and ], these deviations in the BMW schemes are slightly (by 18%
for ] and even less for η) larger than those in the scheme of [10]. For ω,
they are at least by 38% smaller. In absence of a more detailed
convergence test, we rounded up the expected error bars in rows 1–2.

The critical exponents obtained here for the original BMW scheme
coincide with those reported in [17], i.e., η ≈ 0.039, ] ≈ 0.632, and ω ≈
0.78. The estimates in Table 1 can be compared with those of the
conformal field theory (CFT), i. e., η = 0.0362978(20), ] = 0.6299709
[38], and ω = 0.82951(61) [39], which are claimed to be very accurate.
This comparison shows that the considered truncated RG equations
give rather accurate values of ], but the values of η are less accurate and
somewhat overestimated.

Concerning ω, there are still some doubts about the acceptable
value. Probably, the CFT value ωCFT = 0.82951 (61) is just the
acceptable one. However, as discussed in [40], some numerical
estimates, including the Monte Carlo renormalization group

(MCRG) values ω ≈ 0.7 [42], ω = 0.75 (5) [42], the MCRG
estimate from the reanalyzed data of [41] ω = 0.741 (21) [40], and
the large mass expansion result ω ≈ 0.8002 [43] tend to give
smaller ω values. Seeking for a compromise between these
estimations, we set 0.76 as the lower bound for ω in our
formal analysis. This choice is partly motivated by the fact
that even smaller ω values would poorly fit in this analysis,
where the refined estimates are expected to be at least slightly
better than those of the LPA.

Thus, we consider ω = ωCFT as one option, allowing also a
theoretical possibility that ω is smaller than ωCFT, but not smaller
than 0.76. In this case, the actual RG estimates of η, ], and ω in
Table 1 are closer to the exact values than the corresponding PMS
estimates of LPA, i. e., ηLPA = 0, ]LPA = 0.650601 (10), and ωLPA =
0.654115 (30) [36] for the cut-off function (62). It can be seen from
the values of the parameter

ζλ � λ − λex
λ − λLPA

, (76)

where λ = η, ], ω is the actual RG estimate of the critical exponent,
λex is its exact value, and λLPA is its LPA value. The parameters ζλ,
calculated from the PMS values of λ and λLPA, are collected in
Table 2. We evaluated ζω at ωex = ωCFT, ωex = 0.8, and ωex = 0.76 in
(76) to see how this parameter changes if the exact ω value is
0.76 ≤ ω ≤ ωCFT. It should be noted that ζλ > 1/2 would mean that
the estimate of λ in Table 1 is worse than that of the LPA. It would
be true for λ = ω in the scheme of [10] if ωex ≤ 0.757.

We further used these parameters for a rough estimation of
possible error bars for the subleading correction-to-scaling exponent
ω2 in Sec. 7.3, assuming that |ζω2

| does not essentially exceed the
largest values of |ζλ| for λ = η, ], ω.

7.3 Estimation of the critical exponent ω2

The developed techniques allow us to extract from the RG flow not
only the leading correction-to-scaling exponent ω but also the
subleading one ω2. To the best of our knowledge, it has not yet
been obtained from the Wetterich equation beyond the LPA, where
ω2 ≈ 3.18 has been reported in [15] for the actually considered scalar 3D
model.

TABLE 1 Values of the critical exponents η, ω, and ν, extracted from
approximate RG flow equations (Sec. 6) of three schemes, using the principle of
minimal sensitivity to find the optimal parameter α for each of the exponents,
as shown in Figure 1.

Truncation scheme η ω ]

The original BMW scheme 0.03938 (15) 0.7795 (30) 0.63212 (30)

The modified BMW scheme 0.04166 (15) 0.7957 (30) 0.63099 (30)

The scheme of [10] 0.0454 (1) 0.8606 (30) 0.6292 (2)

TABLE 2 Parameters ζλ with λ = η, ν, ω, calculated from the PMS values of the
critical exponents (Table 1) of three truncation schemes. The last three rows
contain ζω values forωex = ωCFT (top), ωex = 0.8 (middle), andωex = 0.76 (bottom)
in (76).

ζλ

λ The original The modified The scheme

BMW scheme BMW scheme of [10]

] −0.116 −0.052 0.036

η 0.078 0.129 0.200

−0.399 −0.239 0.151

ω −0.163 −0.030 0.293

0.156 0.252 0.487
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The RG flow is described by the state vector X depending on t,
where X includes all the independent variables contained in the RG
flow equations. In particular, considering our semi-analytic
approximations, the components of X are the coefficients um,k in
(73) and the functions fm,k(y) in (74). The RG flow equations have
the form

∂tX � F X, t( ), (77)
where the explicit t dependence of F (X, t) shows up only in the
upper cut-off and is irrelevant in vicinity of the fixed point X =
X*. A standard method is to linearize X = X* + δX with respect to
an infinitesimal deviation δX from the fixed point. It leads to the
solution of the linearized RG, which has the form

δX � C1X1e
ωt + C2X2e

ω2t +O eω3t( ) (78)

on the critical surface at large −t values (t < 0), where ω is the leading
correction-to-scaling exponent, ω2 > ω is the subleading correction-
to-scaling exponent, ω3 > ω2 is the next exponent in this hierarchy of
the eigenvalues, and Xi is the eigenvector corresponding to ωi (where
ω1 ≡ ω). For a unique representation, the eigenvectors are
normalized appropriately. The constants Ci depend on the initial
conditions.

Our basic idea is to find such initial conditions, at which C1 =
0. In this case, δX∝ eω2t � kω2 holds in the linearized RG at
t→ −∞. Obviously, it holds also beyond the linearized RG since
the non-linear corrections are those proportional to (C1eωt)2,
(C1eωt)3, C1C2e(ω+ω2)t, etc., which are formally contained in
O((δX)2). It means that all terms containing the exponent ω
vanish at C1 = 0. It allows us to extract numerically the exponent
ω2 from the RG flow at C1 = 0 just as we extracted ω at C1 ≠ 0.

A direct numerical extraction of ω2 from the RG flow at C1 ≠ 0 is
difficult since δX contains a full set of correction terms in this case,
including all ∝ knω terms with integer n ≥ 1. The vanishing of all
these ∝ knω terms at C1 = 0 is a great advantage. We strictly verified
numerically that these terms really vanish at C1 = 0. Namely, we have
always obtained by our method such ω2 value, which is not just an

integer multiple of ω, despite the fact that nω < ω2 holds for
some n > 1.

We integrated the RG flow with a certain initial condition at k =
k0, where k0 = Λ = 1, choosing fm,k0 � δm,0, u3,k0 � 1, and um,k0 � 0
for m > 3. We set u2,k0 � 0.2, iteratively adjusting u1,k0 to the critical
surface and determining the critical exponents η and ω, as described
in Sec. 7.2. For the estimation of ω2, additional calculations were
performed at different values of u2,k0 (adjusting u1,k0 for each of them
to fit the critical surface) and finding such u2,k0 value u2,k0 � u+2 , at
which the condition C1 = 0 is satisfied. At this condition, amplitude a
of the leading scaling behavior u1,k − u1* � akω at k→ 0 (where u1* is
the fixed-point value of u1,k) vanishes, and the scaling u1,k −
u1*∝ kω2 is observed on the critical surface at k → 0, in
agreement with our previous analysis.

Considering the running exponent ω(k) (calculated just as
described in Sec. 7.2) for various u2,k0, we observe that ω(k)
tends to a certain value ω2 > ω at a certain u2,k0 � u+2 . As an
example, we show this in Figure 2 for the equations of the
modified BMW scheme at α = 4.5 with n = 13 and n′ = 10 in
(73)–(74). We find from this set of curves that u+2 ≈ 0.6548703 and
ω2 ≈ 1.962. The truncation error in (73)–(74) was roughly estimated

FIGURE 2
Running exponent ω(k) in the modified BMW scheme at α = 4.5.
From top to bottom u2,k0 � 0.654, 0.6547, 0.65485, 0.654867,
0.6548703, 0.654873, 0.6549, and 0.6554. The plot converges to ω2 ≈
1.962 at u2,k0 � u+

2 ≈ 0.6548703.

TABLE 3 Subleading correction-to-scaling exponent ω2, obtained from
approximate RG flow equations of three truncation schemes at the given
values of parameter α in (62).

ω2

Truncation scheme α = 2 α = 4.5 α = 8 α = 10

The original BMW scheme — — 2.33 (3) 2.245
(30)

The modified BMW scheme 2.144 (30) 1.962 (20) 1.875 (20) —

The scheme of [10] 1.773 (10) 1.817 (15) — —

FIGURE 3
ω2 vs. ln α plots, obtained from approximate RG flow equations of
the modified BMW scheme (the upper curve) and the scheme of [10]
(the lower curve). The interval α ∈ [1.99, 5.65] of the preferable α values
is between the vertical dotted lines. Our final result ω2 = 2.02 (40),
evaluated in themiddle of the corresponding ln α interval at α= 3.353 is
indicated by the dashed lines, showing the error bars by the horizontal
dotted lines and the vertical arrows. The LPA valueωLPA

2 � 3.14(7) at α=
3.353 is shown by the horizontal dot–dashed line for comparison.
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as the modulus of the difference (about 0.015) between the actual result
and that one obtained at n = 10, n′ = 7. Taking into account also the
uncertainty about 0.002 of the estimation in Figure 2 and rounding up
the error bars, we have ω2 = 1.962 (20) in this example. Such results at
selected values of α for all three schemes are collected in Table 3,
whereas the plots of ω2 vs. α at n = 13, n′ = 10 are shown in Figure 3.

Because of a poor scaling of ω(k) at u2,k0 ≈ u+2 , observed in the
original BMW scheme at α ≤ 6.7, our ω2 results for this scheme are
limited to α = 8 and α = 10, and the corresponding plot in Figure 3 is
not shown. The maximal values of α (8.2 and 5.5), at which the
results in the remaining two schemes were obtained, are limited by
the problems of finding the solution with C1 = 0. In addition, the
range of α values for the modified BMW scheme is restricted from
below by α ≥ 2 because the ω(k) scaling appeared to be relatively
poor at a smaller α value (α = 1.3) we considered.

The critical exponents η, ], and ω are routinely estimated at the
PMS values of α. The problemwith ω2 is that no such α values can be
identified in Figure 3. Moreover, an extrapolation of the plots in
Figure 3 suggests that the extremum points, which could be
identified with these PMS values, probably, are located at very
large α values of about 20 or even > 20. The choice of such α

values as optimal ones seems to be doubtful since the overall
accuracy of the solution is relatively low at α ~ 20, i. e., η, ], and
ω deviate remarkably from the optimally estimated values.

The estimation can be performed at reasonable values of α,
chosen according to some extra criteria. In particular, ω2 is
determined from the RG flow on the critical subsurface, where
C1 = 0 holds; therefore, it makes sense to consider such α values,
which allow describing this flow as far as possible accurately. The
critical exponents η and ω2 are relevant for this flow; therefore,
we are looking for such α values, which are acceptable or
preferable for the estimation of both these exponents
simultaneously.

We focus mainly on the estimation of ω2 from the equations of
the modified BMW scheme. This method is advantageous from the
point of view that it appears to be much more accurate than the LPA
if ω = ωCFT, as well as if ω has a significantly smaller value within
[0.76, ωCFT]. It is evident from the coefficients ζλ in Table 2. We
argue that preferable values of α for the estimation of ω2 from these
equations are α ∈ [αηopt, 5.65], where αηopt � 1.99 is the optimal α
value for the estimation of η. Indeed, both η and ω2 become more
sensitive with respect to the variation of α if α is decreased below
αηopt. Therefore, we choose α > 1.99. On the other hand, the deviation
from the exact η value monotonously increases with α for α> αηopt
and, at α = 5.65, becomes twice as large as at αηopt. Therefore, we
consider α ∈ [1.99, 5.65] as preferable values of α, corresponding to
the interval ln α ∈ [0.688, 1.732] between the vertical dotted lines in
Figure 3. We choose ln α = 1.21 as an intuitively well-acceptable or
nearly optimal ln α value in the middle of this interval. It gives ω2 =
2.017 (20), as shown in Figure 3 by the dashed lines. The error bars
of ω2 = 2.017 (20) include only the uncertainty of this estimation at
ln α = 1.21 or α = 3.353.

The estimation of the total error bars, including the
systematic deviation from the exact value due to the closing
approximation used in the modified BMW truncation scheme, is
based on the assumption that, at appropriate α values (including
α = 3.353), |ζω2

| does not essentially exceed the largest value
0.252 of |ζλ| for λ = η, ], ω in this scheme, see Table 2. We have set

somewhat larger maximal value 0.3 for |ζω2
| to increase the confidence

level of our estimation. Thus, we evaluated the truncation error bars as
0.3|ωLPA

2 − ω2|, whereωLPA
2 is the LPA value ofω2 at α= 3.353 andω2 =

2.017 (20) is our actual estimate at this α. We obtained ωLPA
2 � 3.14(7)

at α= 3.353 by our techniques, setting n′ = 0 in (74) and considering n≤
13 in (73). This LPA value is close to ωLPA

2 ≈ 3.18 reported in [15].
Taking into account all error estimates in our calculations, our final
result is

ω2 � 2.02 40( ) (79)
for the scalar model in three dimensions, which belongs to the 3D Ising
universality class. Although the error bars in (79) are not rigorous, no
much larger discrepancy with the exact value is expected according to
the arguments provided. These arguments basically rely on the
assumption that the convergence of ω2 values, estimated at the
truncation orders s = 0, 2, 3, 4, etc., in the modified BMW scheme,
would not be essentially slower than the convergence for all other
exponents (η, ], and ω) considered here. Since the actual results include
only the cases s = 0 and s = 2, no strict validation of this assumption is
possible at themoment; therefore, the error bars in (79) are preliminary.
From this point of view, one could allow even larger error bars, but the
current information is insufficient to state how much larger. It can be
clarified by extended calculations at higher orders.

The error bars of this estimation and the LPA value are shown in
Figure 3 for an analysis and comparison. The results extracted from the
equations of [10] support (79) since the corresponding lower curve in
Figure 3 well fits within these error bars. This estimate agrees also with
the RG value ω2 = 1.67 (11) obtained earlier in [37] from the
approximated Polchinski RG equation within the derivative
expansion at the O(∂2) order. The relatively small (as compared to
ours) error bars stated for this value presumably reflect only the
uncertainty of the estimation from this approximate equation.

8 Summary and outlook

In this section, we give a brief summary of the obtained results,
as well as discuss some possible further applications and
developments.

In the current paper, we reported our new developments in
the BMW truncation scheme for the Wetterich non-
perturbative RG equation. We derived explicit RG flow
equations for the scalar model at the arbitrary order of
truncation, proposing also new closing approximations for
the hierarchy of equations for the n-point functions in the
BMW scheme (Sec. 4). A surprising similarity between the
original and the modified equations of the BMW scheme at
s = 2 order of truncation and those recently reported in [10] was
shown (Secs. 5–6). As an example, calculations of the critical
exponents for the 3D scalar model were performed, solving
these equations by the method of semi-analytic approximations
recently proposed in [36] (Sec. 7).

Particularly, the subleading correction-to-scaling exponent ω2 has
been evaluated from the Wetterich equation beyond the LPA. Our
estimate ω2 = 2.02 (40) is significantly smaller than the LPA value
3.18 reported in [15] and compares well with the value ω2 = 1.67 (11),
obtained in [37] from the Polchinski equation at theO(∂2) order of DE.
The error bars of our estimate ω2 = 2.02 (40) are relatively large because
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they include the expected truncation error due to the closing
approximation in the BMW scheme.

The calculations of ω2 demonstrate the usefulness of our new
developments. In particular, just the modified equations of the
BMW scheme and those derived in [10] appeared to be
practically most useful for these calculations, allowing obtaining
the results at reasonable values of the optimization parameter α.

The estimation of the critical exponent ω2 is crucial for testing
the consistency between the RG exponents and those of the CFT.
While the RG critical exponents η, ], and ω appear to be reasonably
close to the corresponding CFT values (see Sec. 7.2), there is clearly a
problem with ω2. As already pointed out in Sec. 1, the known
estimation in [37] gives a much smaller ω2 (i. e., ω2 = 1.67 (11)) than
the CFT value 3.8956 (43) [39]. Our current estimation ω2 = 2.02
(40) allows for significantly larger than 1.67 values; however, these
are still very small to speak about a consistency with CFT. In fact, the
current estimations urge us to think that the RG exponent ω2,
probably, is unrelated to the conformal symmetry since the RG
values appear to be incompatibly smaller than 3.8956 (43).

The proposed scheme has the potential for various applications in
calculations at higher than s = 2 orders. In particular, it would help in a
further clarification of the question about the relation between the RG
exponents and the CFT exponents. Development of improved solution
techniques would be quite important for such calculations. Following
[44,45], an interesting option is to use the expansion in Chebyshev
polynomials for semi-analytic approximations. It could be an
advantageous method owing to the guaranteed fast convergence
properties of such expansions [45]. These can be used as an
alternative to the expansions in powers of z in (73)–(74). One can
also think about appropriate semi-analytic approximations for the
momentum dependence of the n-point functions to make the
calculations at higher than s = 2 orders more feasible.

Apart from very extensive and systematic applications of the non-
perturbative RG approach to equilibrium statistical physics, it has also
been applied to the out-of-equilibrium systems and critical dynamics
[32–34]. The employed truncation schemes include the LPA and its
refinedmodification [34]. There is still room for potential applications of
other truncation schemes, including the currently introduced modified
BMW scheme, which could be adjusted to this problem. It would be a
quite interesting application, eventually, allowing obtaining refined RG
estimates for the dynamical exponent z. Indeed, the actual estimates of
this exponent are not very accurate, and there is a continued discussion of
z values obtained from Monte Carlo simulations, experiments, and RG
equations [34, 46].

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

All authors listed made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Acknowledgments

The authors acknowledge the Latvian Grid Infrastructure and
High Performance Computing Centre of Riga Technical
University for providing resources. JK acknowledges the
support from the Science Support Fund of Riga Technical
University. RM acknowledges the support from the NSERC
and CRC programs.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphy.2023.1182056/
full#supplementary-material

References

1. Amit DJ. Field theory, the renormalization group, and critical phenomena.
Singapore: World Scientific (1984).

2. Sornette D. Critical phenomena in natural sciences. Berlin, Germany: Springer (2000).

3. Shang–Keng Ma.Modern theory of critical phenomena. New York, NY, USA: W.A.
Benjamin, Inc. (1976).

4. Zinn–Justin J. Quantum field theory and critical phenomena. Oxford, England:
Clarendon Press (1996).

5. Kleinert H, Schulte–Frohlinde V. Critical properties of ϕ4 theories. Singapore: World
Scientific (2001).

6. Wetterich C. Exact evolution equation for the effective potential. Phys Lett B (1993) 301:90.
doi:10.1016/0370-2693(93)90726-X

7. Polchinski J. Renormalization and effective Lagrangians. Nucl Phys B (1984) 231:
269. doi:10.1016/0550-3213(84)90287-6

8. Bagnuls C, Bervillier C. Exact renormalization group equations. An introductory
review. Phys Rep (2001) 348:91. doi:10.1016/S0370-1573%2800%2900137-X

9. Berges J, Tetradis N, Wetterich C. Non-perturbative renormalization flow in
quantum field theory and statistical physics. Phys Rep (2002) 363:223. doi:10.1016/
S0370-1573%2801%2900098-9

10. Kaupužs J, Melnik RVN. A new method of solution of the Wetterich equation and
its applications. J Phys A: Math Theor (2020) 53:415002. doi:10.1088/1751-8121/abac96

11. Balog I, Chate H, Delamotte B, Marohnic M, Wschebor N. Convergence of
nonperturbative approximations to the renormalization group. Phys Rev Lett (2019)
123:240604. doi:10.1103/PhysRevLett.123.240604

Frontiers in Physics frontiersin.org13

Kaupužs and Melnik 10.3389/fphy.2023.1182056

https://www.frontiersin.org/articles/10.3389/fphy.2023.1182056/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2023.1182056/full#supplementary-material
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/0550-3213(84)90287-6
https://doi.org/10.1016/S0370-1573(00)00137-X
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1088/1751-8121/abac96
https://doi.org/10.1103/PhysRevLett.123.240604
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1182056


12. Papenbrock T, Wetterich C. Two-loop results from improved one loop
computations. Z Phys C (1995) 65:519. doi:10.1007/BF01556140

13. Litim D. Optimized renormalization group flows. Phys Rev D (2001) 64:105007.
doi:10.1103/PhysRevD.64.105007

14. Canet L, Delamotte B, Mouhanna D, Vidal J. Optimization of the derivative
expansion in the nonperturbative renormalization group. Phys Rev D (2003) 67:065004.
doi:10.1103/PhysRevD.67.065004

15. Litim DF. Critical exponents from optimised renormalisation group flows.
Nucl.Phys B (2002) 631:128. doi:10.1016/S0550-3213(02)00186-4

16. Bender CM, Sarkar S. Asymptotic analysis of the local potential approximation to
the Wetterich equation. J Phys A: Math Theor (2018) 51:225202. doi:10.1088/1751-
8121/aabf63

17. Benitez F, Blaizot J-P, Chate H, Delamotte B, Mendez-Galain R, Wschebor N.
Non-perturbative renormalization group preserving full-momentum dependence:
implementation and quantitative evaluation. Phys Rev E (2012) 85:026707. doi:10.
1103/PhysRevE.85.026707

18. De Polsi G, Balog I, Tissier M, Wschebor N. Precision calculation of critical
exponents in the O(N) universality classes with the nonperturbative renormalization
group. Phys Rev E (2020) 101:042113. doi:10.1103/PhysRevE.101.042113

19. Berges J, Jungnickel D-U, Wetterich C. Two flavor chiral phase transition from
nonperturbative flow equations. Phys Rev D (1999) 59:034010. doi:10.1103/PhysRevD.
59.034010

20. Schütz F, Kopietz P. Functional renormalization group with vacuum expectation
values and spontaneous symmetry breaking. J Phys A: Math Gen (2006) 39:8205. doi:10.
1088/0305-4470/39/25/S28

21. Benedetti D, Groh K, Machado PF, Saueressig F. The universal RGmachine. JHEP
(2011) 06:079. doi:10.1007/JHEP06(2011)079

22. Demmel M, Saueressig F, Zanusso O. RG flows of Quantum Einstein Gravity on
maximally symmetric spaces. JHEP (2014) 06:026. doi:10.1007/JHEP06(2014)026

23. Wetterich C, Yamada M. Variable Planck mass from the gauge invariant flow
equation. Phys Rev D (2019) 100:066017. doi:10.1103/PhysRevD.100.066017

24. Platania AB. Asymptotically safe gravity: from spacetime foliation to cosmology.
Berlin, Germany: Springer (2018). p. 29–46.

25. Wetterich C. Quantum correlations for the metric. Phys Rev D (2017) 95:123525.
doi:10.1103/PhysRevD.95.123525

26. Eichhorn A. An asymptotically safe guide to quantum gravity and matter. Front
Astron Space Sci (2019) 5:47. doi:10.3389/fspas.2018.00047

27. Alwis SP. Exact RG flow equations and quantum gravity. JHEP (2018) 03:118.
doi:10.1007/JHEP03(2018)118

28. Litim DF, Trott MJ. Asymptotic safety of scalar field theories. Phys Rev D (2018)
98:125006. doi:10.1103/PhysRevD.98.125006

29. Bond AD, Litim DF. Price of asymptotic safety. Phys Rev Lett (2019) 122:211601.
doi:10.1103/PhysRevLett.122.211601

30. Falls KG, Litim DF, Schroder J. Aspects of asymptotic safety for quantum gravity.
Phys Rev D (2019) 99:126015. doi:10.1103/PhysRevD.99.126015

31. Lahoche V, Samary DO. Progress in solving the nonperturbative renormalization
group for tensorial group field theory. Universe (2019) 5:86. doi:10.3390/
universe5030086

32. Canet L, Chate H. General framework of the non-perturbative renormalization
group for non-equilibrium steady states. J Phys A (2007) 40:1937. doi:10.1088/1751-
8113/40/9/002

33. Canet L, Chate H, Delamotte B. General framework of the non-perturbative
renormalization group for non-equilibrium steady states. J Phys A: Math Theor (2011)
44:495001. doi:10.1088/1751-8113/44/49/495001

34. Roth JV, Smekal L. Critical dynamics in a real-time formulation of the functional
renormalization group (2023). https://arxiv.org/pdf/2303.11817.pdf.

35. Dupuis N, Canet L, Eichhorn A, Metzner W, Pawlowski JM, Tissier M, The
nonperturbative functional renormalization group and its applications. Phys Rep (2021)
910:1. doi:10.1016/j.physrep.2021.01.001

36. Kaupužs J, Melnik RVN. Functional truncations for the solution of the
nonperturbative RG equations. J Phys A: Math Theor (2022) 55:465002. doi:10.
1088/1751-8121/ac9f8c

37. Newman KE, Riedel EK. Critical exponents by the scaling-field method: the
isotropic N-vector model in three dimensions. Phys Rev B (1984) 30:6615. doi:10.1103/
PhysRevB.30.6615

38. Poland D, Simmons-Duffin D. The conformal bootstrap. Nat Phys (2016) 12:535.
doi:10.1038/nphys3761

39. Reehorst M. Rigorous bounds on irrelevant operators in the 3d Ising model CFT.
JHEP (2022) 09:177. doi:10.1007/JHEP09(2022)177

40. Kaupužs J, Melnik RVN. Corrections to scaling in the 3D Ising model: A
comparison between MC and MCRG results. Int J Mod Phys C (2023):2350079.
doi:10.1142/S0129183123500791

41. Gupta R, Tamayo P. Critical exponents of the 3D Ising model. Int J Mod Phys C
(1996) 7:305–19. doi:10.1142/S0129183196000247

42. Ron D, Brandt A, Swendsen RH. Surprising convergence of the Monte Carlo
renormalization group for the three-dimensional Ising model. Phys Rev E (2017) 95:
053305. doi:10.1103/PhysRevE.95.053305

43. Yamada H. Critical exponents from large mass expansion (2014). https://arxiv.
org/pdf/1408.4584.pdf.

44. Borchardt J, Knorr B. Global solutions of functional fixed point equations via
pseudospectral methods. Phys Rev D (2015) 91:10. doi:10.1103/PhysRevD.91.
105011

45. Borchardt J, Knorr B. Solving functional flow equations with pseudospectral
methods. Phys Rev D (2016) 94:025027. doi:10.1103/PhysRevD.94.025027

46. Zhang W, Barkema GT, Pauja D, Ball RC. Critical dynamical exponent of the
two-dimensional scalar ϕ4 model with local moves. Phys Rev E (2018) 98:062128.
doi:10.1103/PhysRevE.98.062128

Frontiers in Physics frontiersin.org14

Kaupužs and Melnik 10.3389/fphy.2023.1182056

https://doi.org/10.1007/BF01556140
https://doi.org/10.1103/PhysRevD.64.105007
https://doi.org/10.1103/PhysRevD.67.065004
https://doi.org/10.1016/S0550-3213(02)00186-4
https://doi.org/10.1088/1751-8121/aabf63
https://doi.org/10.1088/1751-8121/aabf63
https://doi.org/10.1103/PhysRevE.85.026707
https://doi.org/10.1103/PhysRevE.85.026707
https://doi.org/10.1103/PhysRevE.101.042113
https://doi.org/10.1103/PhysRevD.59.034010
https://doi.org/10.1103/PhysRevD.59.034010
https://doi.org/10.1088/0305-4470/39/25/S28
https://doi.org/10.1088/0305-4470/39/25/S28
https://doi.org/10.1007/JHEP06(2011)079
https://doi.org/10.1007/JHEP06(2014)026
https://doi.org/10.1103/PhysRevD.100.066017
https://doi.org/10.1103/PhysRevD.95.123525
https://doi.org/10.3389/fspas.2018.00047
https://doi.org/10.1007/JHEP03(2018)118
https://doi.org/10.1103/PhysRevD.98.125006
https://doi.org/10.1103/PhysRevLett.122.211601
https://doi.org/10.1103/PhysRevD.99.126015
https://doi.org/10.3390/universe5030086
https://doi.org/10.3390/universe5030086
https://doi.org/10.1088/1751-8113/40/9/002
https://doi.org/10.1088/1751-8113/40/9/002
https://doi.org/10.1088/1751-8113/44/49/495001
https://arxiv.org/pdf/2303.11817.pdf
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1088/1751-8121/ac9f8c
https://doi.org/10.1088/1751-8121/ac9f8c
https://doi.org/10.1103/PhysRevB.30.6615
https://doi.org/10.1103/PhysRevB.30.6615
https://doi.org/10.1038/nphys3761
https://doi.org/10.1007/JHEP09(2022)177
https://doi.org/10.1142/S0129183123500791
https://doi.org/10.1142/S0129183196000247
https://doi.org/10.1103/PhysRevE.95.053305
https://arxiv.org/pdf/1408.4584.pdf
https://arxiv.org/pdf/1408.4584.pdf
https://doi.org/10.1103/PhysRevD.91.105011
https://doi.org/10.1103/PhysRevD.91.105011
https://doi.org/10.1103/PhysRevD.94.025027
https://doi.org/10.1103/PhysRevE.98.062128
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1182056

	Original and modified non-perturbative renormalization group equations of the BMW scheme at the arbitrary order of truncation
	1 Introduction
	2 Wetterich equation
	3 The BMW scheme of truncation
	4 Equations of the BMW scheme at the arbitrary order of truncation
	4.1 Exact RG flow equations for the n-point functions
	4.2 Some useful relations
	4.3 Closing approximations

	5 Comparison of equations at s = 2
	6 Dimensionless equations at s = 2
	7 Calculation results
	7.1 The method of solution
	7.2 Estimation of the critical exponents η, ν, and ω
	7.3 Estimation of the critical exponent ω2

	8 Summary and outlook
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


