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We demonstrate a Kerr-lens mode-locked femtosecond Yb:YAG thin-disk
oscillator and investigate the approach to increase the optical-to-optical
efficiency based on the scheme of direct multiple passes of the laser beam
through the thin-disk medium. With twelve passes through the thin disk, 266-
fs pulses were delivered from the oscillator with an average power of 105.6 W at a
repetition rate of 20 MHz. The corresponding optical-to-optical efficiency is
31.1%, which is, to the best of our knowledge, the highest efficiency of any
mode-locked thin-disk oscillator with pulse duration below 300 fs. This
demonstration paves the way to even more efficient mode-locked
femtosecond thin-disk oscillators, and provides an excellent laser source for
the applications such as non-linear frequency conversion and high-precision
industrial processing.
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1 Introduction

High-power high-energy femtosecond laser oscillators find growing applications in
various fields such as high-harmonic generation [1, 2], high-precision micromachining [3]
and biological imaging [4]. Thin-disk technology is one of the most promising approaches
for the generation of high power high-energy ultrashort laser pulses due to its excellent
properties. For example, the very thin gain medium attached on a water-cooled heat sink
yields a highly efficient cooling capacity, which greatly reduces the thermal effects under a
high pump power density compared to the traditional bulk-crystal lasers. Besides, the large
ratio of the disk diameter to the thickness also enables an almost one-dimensional heat flow
along the thickness direction, and results in excellent beam qualities during the laser
operation. Furthermore, due to the very small thickness of the disk and the large mode
size in it, the non-linear phase shift that ultrashort laser pulses experience in a thin disk is
much lower than in other gain medium geometries, supporting high intracavity peak power
in a mode-locked thin-disk oscillator and correspondingly high external peak power.

Since the invention of the thin-disk technology in 1994 [5], substantial progresses have
been made in the power and energy scaling of mode-locked thin-disk oscillators. With
semiconductor saturable absorber mirrors (SESAM) as the mode-locking devices, pulses
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with an average power up to 350 W [6] and energy up to 80 μJ [7]
have been achieved directly from the Yb:YAG thin-disk oscillators,
respectively. However, due to small modulation depth and slow
response time of the SESAM, the pulse duration obtained from
SESAM mode-locked Yb:YAG thin-disk oscillators are limited
above 500 fs [8]. Besides, non-linear phase shifts accumulated in
the air usually needs to be avoided by operating the oscillator in
vacuum or inert-gas atmosphere so as to stabilize the mode locking
with high-power pulses generation [9]. By contrast, Kerr-lens mode
locked (KLM) thin-disk oscillators can be reliably operated in
atmospheric air and offer high-power pulses with much shorter
pulse duration with large modulation depth and fast response time.
The highest average power up to 270 W has been achieved from a
KLM thin-disk oscillator with a pulse duration of 330 fs [10]. In the
meantime, short pulses with duration below 300 fs were generated
with relatively lower average powers (100–200 W) [11–13], which
enables the KLM thin-disk oscillators more flexible for practical use.
By enhancing the Kerr-lens effect and increasing the intracavity self-
phase modulation, the pulse duration from a KLM Yb:YAG thin-
disk oscillator was shortened further down to ~50 fs level [13–16],
much shorter than that of the gain bandwidth limit (full width at half
maximum, FWHM). These results have showed great advantage of
the KLM thin-disk oscillators in generating shorter pulse duration
with high average power.

In order to further scale the average power and pulse energy of
the thin-disk oscillators, one could adopt the geometric scaling
concept to acquire a large beam size while increasing the pump
power [11]. It will enable a constant pump power density well below
the damage threshold of the disk. However, this concept also creates
a challenge for the disk surface quality and the design of oscillator
cavity. Another method is to increase the optical-to-optical
efficiency. This can be realized in the Yb:YAG thin disk
oscillators by changing the wavelength of the pump diode from
940 nm to 969 nm, whereas at the price of an increase of the cost and
instability. The most effective way is based on the increased gain
provided by multiple passes through the thin-disk laser medium

[12], which until now has significantly improved the optical-to-
optical efficiency of the mode-locked thin-disk oscillators with both
KLM and SESAM techniques. However, the optical-to-optical
efficiencies of high-power thin-disk oscillators in short duration
region (<300 fs) are still limited below 30% (see Figure 1). Especially
for the direct multi-pass scheme without using an imaging section, it
is very challenging to achieve a high optical-to-optical efficiency
due to the growing difference in mode size on the disk among the
passes.

In this work, we investigate the direct multiple-pass scheme in a
KLM Yb:YAG thin-disk oscillator with an optimized laser cavity
design. The experimental results showed an evident improvement of
the optical-to-optical efficiencies when the number of laser passes
through the disk was increased. Pulses as short as 266 fs were
delivered from the twelve-pass cavity with an average power of
105.6 W and an optical-to-optical efficiency of 31.1%. To the best of
our knowledge, this is the highest efficiency of any mode-locked
thin-disk oscillator in the short pulse duration region (<300 fs)
so far.

2 Experimental setup

The schematic of the mode-locked oscillator is illustrated in
Figure 2. Initially we built the oscillator with four-pass
configuration, as shown in Figure 2A. The 130-μm thin Yb:YAG
disk with a Yb3+ doping concentration of 7% is placed inside a 48-
pass pump module. The disk is antireflection coated for the pump
and laser emission on the front surface and high-reflection coated
for both wavelengths (R > 99.9%) on the back side. It is pumped by a
fiber-coupled diode laser at 940 nm and used as a folding mirror
within a Z-shaped cavity. A 2-mm-thick sapphire plate is placed in
the focus of the telescope section composed of two concave mirrors
to act as a Kerr medium, affording the necessary Kerr-lens effect. We
also put a water cooled copper hard aperture in the beam path in
order to aid the stabilization of KLM. The laser beam is reflected
twice on the back side of the disk per round trip, corresponding to
four propagating passes through the disk medium. The total cavity
length is ~3,750 mm, corresponding to a repetition rate of 40 MHz.
After this initial arrangement, the cavity was rebuilt with the aid of a
pair of flat folding mirrors to exhibit four reflections on the disk
within one round trip, as shown in Figure 2B. The cavity length was
increased to 7,500 mm, corresponding to a repetition rate of
20 MHz. Figure 2C shows the cavity setup containing six
reflections on the disk via two pairs of flat folding mirrors with
cavity length same as in Figure 2B. The number of the laser passes
through the disk is eight and twelve in these two setups (Figures 2B,
C), respectively.

3 Results and discussion

In the four-pass configuration (Figure 2A), the pump spot
diameter was set to be 2.7 mm. The round-trip anomalous group
delay dispersion (GDD) was −12000 fs2, provided by a pair of high-
dispersion chirped mirrors. The mode locking was triggered by
perturbing the OC mounted on a translation stage. Under an output
coupling rate of 13%, an average power of 32 W was reached at a

FIGURE 1
Overview of optical-to-optical efficiencies and average power
for various mode-locked thin-disk oscillators with pulse the duration
less than 300 fs [11–29].
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FIGURE 2
Schematics of the KLM thin-disk Yb:YAG oscillator realized with passes of (A) four, (B) eight, and (C) twelve. HR: All flat mirrors are highly reflective;
HD: High-dispersion mirrors; OC: Output coupler; KM: Kerr medium; H: Hard aperture; R1 and R2: Concave mirrors with radius of curvature (ROC)
of −250 mm and −500 mm, respectively.

FIGURE 3
Spectra (A) and pulse durations (B) of the KLM Yb:YAG oscillator depicted in Figure 2 with passes of four, eight, and twelve.
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pump power of 220 W, corresponding to an optical-to-optical
efficiency of 14.5%. The mode-locked spectrum was measured
using a spectrometer (DEVISER, AE8600) with a width of 4.1 nm
at FWHM, as shown in Figure 3A. Figure 3B shows the pulse trace
measured with an intensity autocorrelator. The pulse duration was
271 fs assuming a sech2 fit, indicating an almost Fourier-transform
limited pulse with a time-bandwidth product of 0.32. The pulse
energy was limited as 0.8 μJ at the repetition rate of 40 MHz.
Optimizations were implemented based on the four-pass
configuration by increasing the pump power and output coupling
rate, and the average power and pulse energy could be increased to
54 W and 1.35 μJ, respectively. However, the mode locking showed
pronounced instability, accompanied with multi-pulsing effect or
continuous wave spike appearance in the spectrum.

Further improvement of the oscillator was realized by
increasing the number of the propagating passes through the
disk up to eight. In the meantime, the pump spot size was
increased to 3.3 mm, and the cavity length was extended to
reduce the repetition rate down to 20 MHz. Compared to the
first oscillator, there was a request for the eight-pass
configuration to design the cavity and avoid the difference in
mode size between the first and second reflections on the thin
disk. This would ensure efficient power extracting from the disk
medium and increase the round-trip gain. With this
configuration, the mode locking was realized with a round-

trip anomalous dispersion of −18000 fs2 and a raised output
coupling rate of 20%. 247-fs pulses with an average power of
60 W were generated under a pump power of 350 W,
corresponding to an increased optical-to-optical efficiency of
17.1% and a pulse energy of 3 μJ. The measured spectrum and
pulse duration are shown in Figure 3.

After this successful improvement, the number of the
propagating passes through the disk was increased to twelve.
In order to keep the mode size similar among the passes and
extract the power from the disk more efficiently, a symmetric
cavity configuration was used with the lengths of the two cavity
arms (One arm spans the distance from the KM to the output
coupler, and the second spans the remainder of the cavity)
comparable with each other. With round-trip dispersion
of −18000 fs2 and an output coupling rate of 19%, the
oscillator was mode locked and delivered 266-fs pulses with
an average power of 105.6 W under a pump power of 340 W.
The optical-to-optical efficiency was increased up to 31.1%, and
the pulse energy reached 5.3 μJ at a repetition rate of 20 MHz.
Figure 3 shows the measured spectrum and pulse duration
trace. In this case, the radio frequency (RF) spectrum was
characterized using a RF spectrum analyzer (Agilent
E4440A) at a resolution bandwidth of 100 Hz (see Figure 4).
The fundamental beat note has a signal-to-noise ratio of 73 dB,
indicating a stable mode-locked operation of the thin-disk
oscillator. With a simple monolithic housing, the KLM
operation was able to be maintained for several hours on a
day-to-day basis under ambient air conditions. The pulses have
an excellent beam profile with the beam quality factor M2

around 1.1.
For the next step, a larger number of passes can be employed

and should enable even higher output power and efficiency.
One might suffer from the spatial constraints while adding
further passes by flat folding mirrors due to the limited window
size of the multi-pass pump module. This can be solved by
guiding the laser beam on both horizontal and vertical plane.
Another challenge is the growing difference in mode size
among the passes, which can be avoided via an optimized
cavity design. Besides, an imaging concept called active
multipass cell (AMC) has been demonstrated in both KLM
and SESAM mode-locked thin-disk oscillators [6, 12], which
adopts concave mirrors for the pass folding and can increase the
number of thin-disk passes without affecting the main cavity
mode size. Based on this concept, further increase of the output
power and efficiency from a KLM thin-disk oscillator can be
expected. Such a high-power and high-energy KLM thin-disk
oscillator can be used as the seed source for the laser amplifiers,
which makes it possible to obtain pulses with high energy up to
1 J [30, 31].

FIGURE 4
Fundamental RF spectrum measured for twelve-pass
configuration at a resolution bandwidth of 100 Hz showing a signal-
to-noise ratio of 73 dB.

TABLE 1 Parameters of the realized oscillators with different thin-disk passes. frep, repetition rate; GDD, intra-cavity dispersion; Pavg, average power; EP, pulse
energy; τ, pulse duration; ηO−O, optical-to-optical efficiency.

Pass number frep [MHz] GDD [fs2] Pavg [W] EP [μJ] τ [fs ] ηO−O (%)

4 40 −12000 32 0.8 271 14.5

8 20 −18000 60 3 244 17.1

12 20 −18000 105.6 5.3 266 31.1
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4 Conclusion

In conclusion, we have realized the generation of high-power
femtosecond pulses from a KLM Yb:YAG thin-disk oscillator
based on the direct multiple-pass concept (see Table 1). We
have shown that an increased number of the thin-disk passes is
beneficial to the improvement of the optical-to-optical efficiency.
In addition, efficient power extracting can be enabled by an
optimized cavity configuration with similar mode size among
different passes. The twelve-pass configuration enables 266-fs
pulses generation with an average power up to 105.6 W and an
optical-to-optical efficiency up to 31.1%. Further increase of the
efficiency up to 40% will be feasible with a larger number of passes
through the gain medium. The current oscillator provides an
excellent laser source for non-linear frequency conversion and
high-precision industrial processing.
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