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Environmental factors in social systems affect information spreading at all times.
This paper proposes a stochastic S2EIR model that considers the presence of
super-spreaders and implicit exposers in information spreading, as well as the
stochastic perturbation of model parameters. The existence of a global positive
solution using the Itô′s formula is then demonstrated. Sufficient conditions for
information disappearance and smooth distribution of information are calculated
by using the Borel–Cantelli lemma and the strong law of large numbers.
Furthermore, the optimal control strategy for the stochastic model is proposed
using the Hamiltonian function. The results of the theoretical analysis are
supported by numerical simulations and compared to the parameter variations
of the deterministic model. The results of this study indicate that white noise
facilitates the spread of information. The intensity of perturbation is proportional
to the fluctuation of information spreading. Controlling random parameters can
effectively facilitate the spread of information. For positive information, the
randomness and complexity of the social system should be utilized to increase
the spread of information. In contrast, for negative information, randomness in the
social system should be suppressed to the greatest extent possible to limit
information dissemination.
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1 Introduction

Information is essential to the development of human society and is the primary means
by which humans can comprehend society and improve their cognition. In general, the
effects of various types of information on society vary. Information that is beneficial to social
development, such as knowledge, innovation, and affinity, must be disseminated [1]; [2]; [3];
[4], while information that is harmful to social development, such as rumors and computer
viruses, must be contained [5]; [6]; [7]. Therefore, it is valuable to investigate the
characteristics and mechanisms of information dissemination.
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Information dissemination is similar to the spread of infectious
diseases. Daley and Kendall [8] first applied the classical infectious
disease model to the spread of rumors in order to study the spread of
harmful information, and they proposed the classical rumor spread
DKmodel. The SImodel [9], the SISmodel [10], the SIRmodel [11],
and other infectious disease models were then used as a research
foundation to propose the SEIR model [12], the SPNR model [13],
the ILSR model [14], etc.

The aforementioned models typically regard environmental
factors as deterministic factors and do not account for them.
However, there are many uncertain environmental factors in the
real social environment. Random factors, such as government
regulation of the media, sudden mass events, and outbreaks of
epidemics or geological disasters, can interfere with the
dissemination of information [15]. Therefore, researchers are
beginning to consider the impact of uncertain environmental
factors on the spread of information.

In recent years, extensive studies on stochastic factors in the field
of virus propagation have been proposed. Shang [16] developed a
low-dimensional system of nonlinear ordinary differential equations
to model the mixed susceptible–infected (–recovered) SI(R)
epidemics on a random network with general degree
distributions. Zhang and Li [17] developed the stochastic SEIR
model with migration and human awareness in complex
networks and compared the distance between stochastic and
deterministic systems at points of local disease equilibrium. Liu
and Jiang [18] developed the stochastic SEIR model with
asymptomatic infected individuals and calculated the specific
form of the probability density near the quasi-endemic
equilibrium of the stochastic system. Hussain et al. [19] proposed
the stochastic SIRV model with general nonlinear incidence and
vaccination and argued that stochastic fluctuations could limit the
spread of disease. Wang et al. [20] designed the stochastic SICA
model with standard incidence rates, provided sufficient conditions
for HIV extinction and persistence, and discovered that increasing
the intensity of stochastic perturbations could control the virus’s
spread. Bobryk [21] believed that the spread rate in the SIR model
must be positive, so he incorporated telegraphic noise, trichotomous
noise, and bounded noise into the stochastic model and then
discussed the effect of the stochastic perturbation on the stability
behavior of disease-free equilibrium points. Kiouach and Sabbar
[22] used Gaussian white noise and Lévy jumps to represent,
respectively, parametric perturbations in stochastic models, and
they calculated the disease’s mean persistence, ergodicity, and
extinction. In addition, the application of infectious disease
models with stochastic parameter perturbations to the novel
coronavirus has been a hot topic over the past few years [23];
[24]; [25].

In the field of information spread, researchers have focused on
the impact of stochastic factors on models of rumor spread. Cheng
et al. [26] argued that individual activities play a significant role in
rumor spread and that individual activities are affected by many
uncertainties. As a result, they constructed the IaIdSaSdRaRd model
and analyzed the dynamical behavior of the stochastic model based
on this argument. Zhang and Zhu [27] concluded that the spread
rate among individuals in rumor spread models is usually disturbed
by random factors, and increasing the noise intensity can effectively
control the spread of rumors. Tong et al. [28] constructed a

stochastic rumor spread model with media coverage and age
structure based on a deterministic model and confirmed the
existence of a global positive solution to the model and the
necessary conditions for rumor disappearance and smooth
distribution. Zhou et al. [29] argued that information
intervention influences rumor spread; consequently, they
developed a stochastic SIRZ rumor spread model considering the
information intervention mechanism and proposed an optimal
control strategy for rumor control. Yue and Huo [30] developed
a stochastic SICR rumor spreading model that accounted for media
coverage and science education; the study’s results demonstrated
that media coverage could inhibit rumor spread. Jain et al. [31]
proposed the S1S2Imodel with expert interaction on a homogeneous
network and discovered that noise perturbation caused persistent
rumor spread. Huo and Dong [32] developed a stochastic ISRmodel
with white noise media coverage, and the results of their study
demonstrated that media coverage was inversely proportional to
rumor spread. In addition, Mena et al. [33] analyzed the spread
characteristics by developing an optimal control model based on the
analysis of extinction and persistence of uncertain spread models.

The aforementioned scholars have conducted numerous studies
on the influence of random factors on disease spread and rumor
spread. In contrast, not all information is harmful to society in the
real world, and positive information must be disseminated. Some
beneficial information to society may be disseminated by individuals
with authority, also known as super-spreaders. Then, it is more likely
that the exposers who are in contact with the super-spreaders will
comprehend and continue to spread the information. Conversely,
the exposers who are not in contact with the super-spreaders are less
likely to do so. The former is referred to as explicit spreaders,
whereas the latter is referred to as implicit spreaders. This paper
develops a stochastic S2EIR model that takes super-spreaders and
exposers into account. Afterward, the existence of global positive
solutions is demonstrated, suitable parameters are selected as
control variables after calculating sufficient conditions for
information disappearance and smooth information distribution,
and the validity of the proposed theorem is validated through
numerical simulation. Different from previous studies, this article
considers that individuals with strong influence have played a
significant role in promoting information spreading while also
considering that some individuals are unwilling to spread
information even if they are aware of it. Therefore, the common
phenomena of “super-spreader” and “asymptomatic infection” in
virus spreading are applied to the information spreading model. In
addition, for each individual, the contact rate with information
spreaders and the spread rate of being an information spreader may
be affected by random perturbations in the environment. So, it is
more practical to add random factors to the information spreading
model. Meanwhile, the optimal control strategy containing random
parameters of this paper is based on the optimal values calculated by
the control variables.

The remainder of the paper is organized as follows. In Section 2,
the stochastic S2EIRmodel taking super-spreaders and exposers into
account is constructed. Section 3 proves the existence of a global
positive solution. In Section 4, sufficient conditions for the
disappearance of information are outlined. Section 5 provides
sufficient conditions for stationary information distribution. The
existence of optimal control and the optimal control strategy are
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discussed in Section 6. In Section 7, numerical simulation is used to
analyze the impact of stochastic disturbance intensity on
information spread and the effect of the control strategy. In the
last section, conclusions are provided.

2 The model

This paper examines an open virtual community whose
population size fluctuates over time t. The total population size
can be represented byN(t), where all populations can be divided into
five categories: 1) the receptive population S(t) who do not have
access to information but are receptive to it; 2) the explicitly exposed
population E1(t) that has contact with the super-spreaders; 3) the
implicitly exposed population E2(t) that does not have contact with
the super-spreaders; 4) the spread-information population I(t); and
5) the non-receptive population R(t) that is no longer interested in
the information.

The model flow diagram is presented in Figure 1.
In the model of this paper, the implicit exposers are rather

special. People who are not influenced by the information’s super-
spreaders typically do not easily comprehend the information’s
content since it is spread by super-spreaders. Then, these people
demonstrate a lack of interest in the information. Therefore, despite
being exposed to the information, these individuals choose not to
spread it.

The parameters in the S2EIR model can be interpreted as
follows:

1) The number of individuals in a social system fluctuates over time.
Therefore, in this paper, the author defines B as the number of
individuals moving into the social system and defines μ as the
emigration rate that is out of the social system due to force
majeure factors.

2) When information begins to spread through the social system,
the receptive population will contact the spreaders with a
probability of α. The proportion of super-spreaders is defined
asm. Since super-spreaders will speed up the information spread,
the spread rate of explicit exposers is defined as α(1 +m), and the
spread rate of implicit exposers is represented by α.

3) After the exposers make sense of the information, a portion of
the explicit exposers who are interested in the information
becomes the information spreaders with a probability of β.

Additionally, the explicit exposers who are not interested in
the information become implicit exposers with a probability of ϵ.

4) Due to the different degrees of information acceptance among
the exposers, the two types of exposers become the non-
receptive population with probabilities of γ1 and γ2.
Information is generally time-sensitive, and some spreaders
lose interest in the information after a period of time. As a
result, they become the non-receptive population with a
probability of λ.

In addition, the uncertain factors in social systems are
commonly referred to as environmental noise. It is not
scientific to study the spread of information while ignoring
random environmental noise fluctuations. Incorporating
environmental noise into deterministic models is more
representative of how information spreads in real society. The
random factors added to the spread models mainly include three
classical approaches: 1) Introducing Gaussian white noise into
deterministic parameter perturbation models [34]. 2) Random
perturbation encompassing the positive endemic equilibrium of
deterministic models [35]. 3) Alternating between regimes based
on the probability of Markov chains [36]. Since random
perturbations in the environment may affect the contact rate
of each individual with the information spreader and the spread
rate of becoming an information spreader, this paper uses
Gaussian white noise to generate random perturbations of α

and β, and the parameters of random perturbation are expressed
as follows:

α → α + σ1 _W1 t( ), β → β + σ2 _W2 t( ). (1)
Here, Wi(i = 1, 2) are independent standard Brownian motions

and σ2i > 0(i � 1, 2) represent the intensities of Wi(i = 1, 2),
respectively. In this paper, W1 and W2 represent the relationship
without mutual influence between α and β, respectively. In other
words, in real scenarios, the conversion rate of information
disseminators may be influenced by individual understanding
and information acceptability, but it is not affected by the natural
contact rate, and there is a state of mutual independence between
the two.

The stochastic perturbation parameters are introduced into the
deterministic model to construct a stochastic S2EIRmodel driven by
Gaussian white noise, and the stochastic model can be represented as
follows:

dS t( ) � B − α 1 +m( )SI − αSI − μS[ ]dt − σ1 1 +m( )SIdW1 t( )
−σ1SIdW1 t( ),

dE1 t( ) � α 1 +m( )SI − βE1 − γ1E1 − εE1 − μE1[ ]dt
+σ1 1 +m( )SIdW1 t( ) − σ2E1dW2 t( ),

dE2 t( ) � αSI + εE1 − γ2E2 − μE2( )dt + σ1SIdW1 t( ),
dI t( ) � βE1 − λI − μI( )dt + σ2E1dW2 t( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

3 Existence of the global and positive
solution

In the rest of this paper, let (Ω,F , {F t}t≥ 0, P) be a complete
probability space with a filtration {F t}t≥ 0 satisfying the usual
conditions. In addition, while F 0 contains all P − null sets, it is

FIGURE 1
Flow diagram of the model.
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increasing and right continuous [37]. It also can be denoted as
follows:

R4
+ � x1, x2, x3, x4( )|xi > 0, i � 1, 2, 3, 4{ }. (3)

The existence of the global solution is the basis of analyzing the
dynamic behavior of the stochastic system (Eq. 2). At the same time,
according to the actual situation, a positive value is required for the
dynamic model of information transmission. The stochastic system
(Eq. 2) can be proved as global and positive by Theorem 3.1.

Theorem 3.1. The existence of a unique positive solution
(S(t), E1(t), E2(t), I(t)) ∈ R4

+ of the stochastic system (Eq. 2) is
satisfied by any given initial value (S(t), E1(t), E2(t), I(t)) ∈ R4

+.
The probability of the solution is 1 and remains in R4

+.

Proof. The existence of a unique local positive solution
(S(t), E1(t), E2(t), I(t)) ∈ R4

+ of the stochastic system (Eq. 2) on
t ∈ [0, τe), which is based on the coefficients of the deterministic
system, is locally Lipschitz continuous of any given initial value
(S(0), E1(0), E2(0), I(0)) ∈ R4

+. τe is the explosion time [38]. It is
required to have τe = ∞ a.s. to show this solution globally. The
stopping time τ+ can be defined by

τ+ � inf t ∈ 0, τe[ ): S t( )≥ 0orE1 t( )≥ 0orE2 t( )≥ 0orI t( )≥ 0{ }. (4)
Let set inf∅ =∞ (∅ denotes the empty set). It is easy to get τ+ ≤

τe. So, if τ+ = ∞ a.s. is proved, then τe = ∞ and
(S(t), E1(t), E2(t), I(t)) ∈ R4

+ a.s. for all t ≥ 0. We assume that
τ+ <∞; then, T > 0 is existence such that P(τ+ < T) > 0. We define C2
function V: R4

+ → R4
+ by V(X) = InSE1E2I. Using the Itô′s formula,

we calculate the differential of V along the solution trajectories of the
stochastic system (2). For ω ∈ (τ+ < T) and for all t ∈ [0, τe), we get

dV X t( )( ) � B

S
− α 1 +m( )I − αI − μ − 1

2
σ21 1 +m( )2I2 − 1

2
σ21I

2[ ]dt
+ α 1 +m( )SI

E1
− β + γ1 + ε + μ( ) − 1

2
σ21

1 +m( )2S2I2
E2
1

− 1
2
σ22[ ]dt

+ αSI

E2
+ εE1

E2
− γ2 + μ( ) − 1

2
σ21
S2I2

E2
2

[ ]dt + βE1

I
− λ + μ( )[

− 1
2
σ22
E2
1

I2
]dt − σ1 1 +m( )IdW1 − σ1IdW1 + σ1 1 +m( )SI

E1
dW1

− σ2dW2 + σ1SI

E2
dW1 + σ2E1

I
dW2.

(5)

Positivity of X(t) implies that

dV X t( )( )≥L S, E1, E2, I( )dt − σ1 1 +m( )I + I − 1 +m( )SI
E1

− SI

E2
[ ]dW1

− σ2 1 − E1

I
( )dW2,

(6)
where

L S, E1, E2, I( ) � −μ − β + γ1 + ε + μ( ) − γ2 + μ( ) − λ + μ( ) − 1
2
σ21 1 +m( )2I2

− 1
2
σ21I

2 − 1
2
σ21

1 +m( )2S2I2
E2
2

− 1
2
σ21
S2I2

E2
2

− 1
2
σ22 −

1
2
σ22
E2
1

I2
.

(7)

So, we have

V X t( )( )≥V X0( ) + ∫t

0
L S u( ), E1 u( ), E2 u( ), I u( )( )du

− ∫t

0
σ1 I u( ) − 1 +m( )S u( )I u( )

E1 u( ) − S u( )I u( )
E2 u( )[ ]dW1 u( )

− ∫t

0
σ2 1 − E1 u( )

I u( )( )dW2 u( ).
(8)

Note that some components of X(τ+) equal 0. Thereby,

lim
t→τ+

V X t( )( ) � −∞ . (9)

Letting t → τ+ in the system (Eq. 8), we have

−∞≥V X0( ) + ∫τ+

0
L S u( ), E1 u( ), E2 u( ), I u( )( )du

− ∫τ+

0
σ1 I u( ) − 1 +m( )S u( )I u( )

E1 u( ) − S u( )I u( )
E2 u( )( )dW1 u( )

− ∫τ+

0
σ2 1 − E1 u( )

I u( )( )dW2 u( )> −∞ .

(10)
According to Eqs. 8–9, it can be obtained that Eq. 10 is less than

or equal to −∞. Meanwhile, for any given initial value,
(S(0), E1(0), E2(0), I(0)) ∈ R4

+ and S(u), E1(u), E2(u), I(u) in Eq.
10 belong to a positive invariant set and are bounded. Therefore,
S(u), E1(u), E2(u), I(u) are greater than 0 and greater than −∞, and
then, Eq. 10 is greater than −∞. This result is contradictory. In
addition, the result obtained by Eq. 10 rejects the original hypothesis
τ+ < ∞. Thus, τ+ = ∞.

4 Disappearance of the information

Theorems 4.1 and 4.2 give the condition for the disappearance of
the information. The condition is expressed by intensities of noises
and parameters of the deterministic system. In the stochastic S2EIR
model built in this paper, information disappearance needs to meet
the following conditions: 1) all exposers affected by the super-
spreaders disappeared, and 2) all spreaders of information
disappeared. If any of the two aforestated conditions is satisfied,
information can disappear in the social system.

First, Theorem 4.1 gives the condition for the disappearance of
information caused by the disappearance of the exposers affected by
the super-spreaders.

Theorem 4.1. : For any given initial value
(S(0), E1(0), E2(0), I(0)) ∈ R4

+, lim
t→∞ sup lnE1(t)

t ≤G(σ21, σ22) holds
a.s. Furthermore, G(σ21, σ22)< 0. Then, E1(t) tend to
0 exponentially a.s., where G(σ21, σ22) � α2

2σ21
− (β + γ1 + ε + μ + 1

2σ
2
2).

Proof. use the Itô′s formula to calculate the differentiation of E1(t)
in the stochastic system (2), and d ln E1(t) can be written as

d lnE1 t( ) � α 1 +m( )SI
E1

− β + γ1 + ε + μ( ) − 1
2
σ2
1

1 +m( )2S2I2
E2
1

− 1
2
σ2
2[ ]dt

+ σ1
1 +m( )SI

E1
dW1 − σ2dW2.

(11)
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Thus, lnE1(t) can be denoted as

lnE1 t( ) � lnE1 0( ) + ∫t

0

α 1 +m( )S u( )I u( )
E1 u( ) − β + γ1 + ε + μ( )

−1
2
σ2
1

1 +m( )2S2 u( )I2 u( )
E2
1 u( ) − 1

2
σ22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦du

+ ∫t

0
σ1

1 +m( )S u( )I u( )
E1 u( ) dW1 u( ) − σ2W2 t( ).

(12)
Φ1 t( ) � ∫t

0
σ1

1 +m( )S u( )I u( )
E1 u( ) dW1 u( ), (13)

Here, Φ1(t) is a continuous local martingale. The quadratic
variation of Φ1(t) can be denoted as

〈Φ1 t( )〉 � σ21∫t

0

1 +m( )2S2 u( )I2 u( )
E2
1 u( ) du. (14)

By exponential martingale inequality [38], it can be known that

P sup
0≤t≤k

Φ t( ) − c

2
〈Φ t( )〉[ ]> 2

c
ln k{ }≤ k−

2
c , (15)

where 0 < c < 1, k is a random integer. Using the Borel–Cantelli
lemma, it is easy to know that the random integer k0(ω) exists such
that for k > k0, for almost all ω ∈ Ω, sup0≤t≤k[Φ(t) − c

2 〈Φ(t)〉]≤ 2
c.

Therefore, for all t ∈ [0, k], we have

∫t

0
σ1

1 +m( )S u( )I u( )
E1 u( ) dW1 u( )≤ 1

2
cσ21∫t

0

1 +m( )2S2 u( )I2 u( )
E2
1 u( ) du

+ 2
c
ln k.

(16)
Then, it can be obtained that

lnE1 t( )≤ lnE1 0( ) + ∫t

0

α 1 +m( )S u( )I u( )
E1 u( ) − β + γ1 + ε + μ( )

−1
2

1 − c( )σ21
1 +m( )2S2 u( )I2 u( )

E2
1 u( ) − 1

2
σ22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦du

+ 2
c
ln k − σ2W2 t( ),

(17)
noting that

α 1 +m( )S u( )I u( )
E1 u( ) − 1

2
1 − c( )σ21

1 +m( )2S2 u( )I2 u( )
E2
1 u( ) ≤

α2

2 1 − c( )σ21
.

(18)
Substituting Eq. 18 into Eq. 17, ln E1(t) can be written as

lnE1 t( )≤ lnE1 0( ) + ∫t

0

α2

2 1 − c( )σ21
− β + γ1 + ε + μ( ) − 1

2
σ22[ ]du

+ 2
c
ln k − σ2W2 t( ) � lnE1 0( ) + α2

2 1 − c( )σ21
− β + γ1 + ε + μ + 1

2
σ22( )[ ]t

+ 2
c
ln k − σ2W2 t( ).

(19)

Hence, for k − 1 ≤ t ≤ k, lnE1(t)
t can be obtained as

lnE1 t( )
t

≤
lnE1 0( )

t
+ α2

2 1 − c( )σ21
− β + γ1 + ε + μ + 1

2
σ22( ) + 2

c
ln k

− σ2W2 t( ).
(20)

By the strong law of large numbers to the Brownian motion, let
k → ∞ and then t → ∞. It can be known that lim

t→∞ supW2(t)
t � 0.

Therefore,

lim
t→∞

sup
lnE1 t( )

t
≤

α2

2 1 − c( )σ21
− β + γ1 + ε + μ + 1

2
σ22( ). (21)

Finally, let c → 0. Then, lim
t→∞ sup lnE1(t)

t can be obtained as

lim
t→∞

sup
lnE1 t( )

t
≤

α2

2σ21
− β + γ1 + ε + μ + 1

2
σ22( ). (22)

Next, Theorem 4.2 gives the condition for the disappearance of
information caused by the disappearance of the spreaders.

Theorem 4.2. For any given initial value,
(S(0), E1(0), E2(0), I(0)) ∈ R4

+, lim
t→∞ sup ln I(t)

t ≤G(σ22) holds a.s.
Furthermore, G(σ22)< 0. Then, I(t) tend to 0 exponentially a.s.,
where G(σ22) � β2

2σ22
− (λ + μ).

Proof. use the Itô′s formula to calculate the differentiation of I(t) in
the stochastic system (Eq. 2), and d ln I(t) can be written as

d ln I t( ) � βE1

I
− λ + μ( ) − 1

2
σ22
E2
1

I2
[ ]dt + σ2

E1

I
dW2. (23)

Thus, ln I(t) can be denoted as

ln I t( ) � ln I 0( ) + ∫t

0

βE1 u( )
I u( ) − λ + μ( ) − 1

2
σ22
E2
1 u( )

I2 u( )[ ]du
+ ∫t

0
σ2
E1 u( )
I u( ) dW2 u( ). (24)

We denote

Φ2 t( ) � ∫t

0
σ2
E1 u( )
I u( ) dW2 u( ), (25)

where Φ2(t) is a continuous local martingale. The quadratic
variation of Φ2(t) can be denoted as

〈Φ2 t( )〉 � σ22∫t

0

E2
1 u( )

I2 u( ) du. (26)

Similar to Theorem 4.1, for all t ∈ [0, k], one can obtain

∫t

0
σ2
E1 u( )
I u( ) dW2 u( )≤ 1

2
cσ22∫t

0

E2
1 u( )

I2 u( ) du + 2
c
ln k. (27)

Then, it can be obtained that

ln I t( )≤ ln I 0( ) + ∫t

0

βE1 u( )
I u( ) − λ + μ( ) − 1

2
1 − c( )σ22

E2
1 u( )

I2 u( )[ ]du
+ 2
c
ln k.

(28)
It can be noted that

βE1 u( )
I u( ) − 1

2
1 − c( )σ22

E2
1 u( )

I2 u( ) ≤
β2

2 1 − c( )σ22
. (29)

Substituting Eq. 29 into Eq. 28, ln I(t) can be written as
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ln I t( )≤ ln I 0( ) + ∫t

0

β2

2 1 − c( )σ22
− λ + μ( )[ ]du + 2

c
ln k

� ln I 0( ) + β2

2 1 − c( )σ22
− λ + μ( )[ ]t + 2

c
ln k.

(30)

Hence, for k − 1 ≤ t ≤ k, ln I(t)t can be obtained as

ln I t( )
t

≤
ln I 0( )

t
+ β2

2 1 − c( )σ22
− λ + μ( ) + 2

c
· ln k
k − 1

. (31)

By the strong law of large numbers to the Brownian motion, let
k → ∞ and then t → ∞. It can be known that

lim
t→∞

sup
ln I t( )

t
≤

β2

2 1 − c( )σ22
− λ + μ( ). (32)

Finally, let c → 0. Then, lim
t→∞ sup ln I(t)

t can be obtained as

lim
t→∞

sup
ln I t( )

t
≤

β2

2σ22
− λ + μ( ). (33)

Remark 4.1: G(σ21, σ22) � α2

2σ21
− (β + γ1 + ε + μ + 1

2σ
2
2) and

G(σ22) � β2

2σ22
− (λ + μ) are decreasing in σ21 and σ22. The

information will disappear eventually if σ21 and σ22 are large
enough, where G(σ21, σ22)< 0 and G(σ22)< 0.

5 A sufficient condition for the
stationary distribution

Theorem 5.1 gives the unique stationary distribution of the
existence of the stochastic system (Eq. 2). This also means stability in
a stochastic sense.

Theorem 5.1. If R0 �
�����������

Bαβ(1+m)
μ(β+γ1+ε+μ)(λ+μ)

√
> 1, the stochastic system

(Eq. 2) with initial condition (S(0), E1(0), E2(0), I(0)) ∈ R4
+ and

the following conditions are satisfied:

0< Γ<min ξ1S
2, ξ2E

2
1, ξ3E

2
2, ξ4I

2( ), (34)
where

Γ � 2σ21S
*2I*2 + 1

2
σ22E1* + σ22E

*2
1 ,

ξ1 � μ,

ξ2 � γ1 + μ − σ22,

ξ3 � γ2 + μ,

ξ4 � λ + μ.

(35)

Then, the stationary distribution π exists, and the solution of the
stochastic system (Eq. 2) is ergodic.

By the information-existence equilibrium point
E* � (S*, E1*, E2*, I*), where S* � B

μR2
0
, E1* � B(1+m)(R2

0−1)
(2+m)(β+γ1+ε+μ)R2

0
,

E2* � B(β+γ1+ε+μ)(R2
0−1)+Bε(1+m)(R2

0−1)
(2+m)(γ2+μ)(β+γ1+ε+μ)R2

0
, and I* � μ(R2

0−1)
α(2+m) . Then, it can be

obtained that

lim
t→∞

1
t
E∫t

0

ξ1 S u( ) − S*( )2 + ξ2 E1 u( ) − E1*( )2
+ξ3 E2 u( ) − E2*( )2 + ξ4 I u( ) − I*( )2[ ]du< Γ. (36)

Proof. define a C2 function V:

Θ S, E1, E2, I( ) � Θ1 S( ) + Θ2 E1( ) + Θ3 E2( ) + Θ4 I( )
+ Θ5 S, E1, E2, I( ), (37)

where

Θ1 E1( ) � E1 − E1* − E1* ln
E1

E1*
,

Θ2 E2( ) � E2 − E2* − E2* ln
E2

E2*
,

Θ3 I( ) � I − I* − I* ln
I

I*
,

Θ4 S, E1, E2, I( ) � 1
2

S + E1 + E2 + I − S* − E1* − E2* − I*( )2.

(38)

The differential L operator to Θ1 can be calculated as

LΘ1 � α 1 +m( )SI − β + γ1 + ε + μ( )E1[ ] zΘ1

zE1
+ 1
2

σ2
1 1 +m( )2S2I2 + σ22E

2
1( ) z2Θ1

zE2
1

� E1 − Ep
1( ) α 1 +m( )SI

E1
− β + γ1 + ε + μ( )[ ] + 1

2
σ2
1 1 +m( )2S2I2 + 1

2
σ2
2E

p
1 .

(39)

According to E* � (S*, E1*, E2*, I*), it is easy to get that

β + γ1 + ε + μ � α 1 +m( )S*I*
E1*

, (40)

and then, LΘ1 can be expressed as

LΘ1 � E1 − Ep
1( ) α 1 +m( ) SI

E1
− S*I*

E1′
( )[ ] + 1

2
σ2
1 1 +m( )2S2I2 + 1

2
σ2
2E

p
1

� E1 − Ep
1( ) −α 1 +m( ) SI E1 − Ep

1( )
E1E

p
1

+ α 1 +m( ) S − S*( ) I − I*( )
Ep
1

[ ]
+ 1
2
σ2
1 1 +m( )2S2I2 + 1

2
σ22E

p
1 ,

(41)

where α(1 +m) SI(E1−E1*)2
E1E1*

≥ 0 and E1* > 0.
By simple calculation, one can get

LΘ1 ≤ α 1 +m( ) S − S*( ) I − I*( ) E1 − E1*( )
+ 1
2
σ21 1 +m( )2 S − S*( ) + S*[ ]2 I − I*( ) + I*[ ]2 + 1

2
σ22E1*.

(42)
Due to 1

2(x + y)2 ≤ x2 + y2, it is easy to obtain that

LΘ1 ≤ α 1 +m( ) S − S*( ) I − I*( ) E1 − E1*( )
+ σ21 1 +m( )2 S − S*( )2 I − I*( )2 + σ21S

*2I*2 + 1
2
σ22E1*.

(43)

Similarly, the differential L operator to Θ2 can be calculated as

LΘ2 � αSI + εE1 − γ2E2 − μE2[ ] zΘ2

zE2
+ 1
2

σ21S
2I2( ) z2Θ2

zE2
2

� E2 − E2*( ) αSI

E2
+ εE1

E2
− γ2 + μ( )[ ] + 1

2
σ21S

2I2.

(44)

According to E* � (S*, E1*, E2*, I*), it is easy to get that

Frontiers in Physics frontiersin.org06

Kang et al. 10.3389/fphy.2023.1194804

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1194804


γ2 + μ � αS*I*
E2*

+ εE1*
E2*

, (45)

and then, LΘ2 can be expressed as

LΘ2 � E2 − E2′( ) αSI

E2
− αS*I*

E2′
+ εE1

E2
− εEp

1

E2′
[ ] + 1

2
σ2
1S

2I2

� E2 − Ep
2( )

−α SI E2 − Ep
2( )

E2E
p
2

− ε
E1 E2 − Ep

2( )
E2E2′

+α S − S*( ) I − I*( )
E2′

+ ε
E1 − E1′( )
E2′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +

1
2
σ2
1S

2I2,

(46)

where αSI(E2−E2*)2
E2E2*

≥ 0, εE1(E2−E2*)2
E2E2*

≥ 0, and E2* > 0.
By simple calculation, one can get

LΘ2 ≤ α S − S*( ) I − I*( ) E2 − E2*( ) + ε E1 − E1*( ) E2 − E2*( )
+ 1
2
σ21 S − S*( ) + S*[ ]2 I − I*( ) + I*[ ]2. (47)

Due to 1
2(x + y)2 ≤ x2 + y2, it is easy to obtain that

LΘ2 ≤ α S − S*( ) I − I*( ) E2 − E2*( ) + ε E1 − E1*( ) E2 − E2*( )
+ σ21 S − S*( ) I − I*( ) + σ21S

*2I*2.
(48)

Next, the differential L operator to Θ3 can be calculated as

LΘ3 � βE1 − λ + μ( )I[ ] zΘ3

zI
+ 1
2

σ22E
2
1( ) z2Θ3

zI2

� I − I*( ) βE1

I
− λ + μ( )[ ] + 1

2
σ2
2E

2
1.

(49)

According to E* � (S*, E1*, E2*, I*), it is easy to get that

λ + μ � βE1*
I*

, (50)

and LΘ3 can be obtained as

LΘ3 � I − I*( ) βE1

I
− βE1*

I*
[ ] + 1

2
σ22E

2
1

� I − I*( ) −βE1 I − I*( )
II*

+ β E1 − E1*( )
I*

[ ] + 1
2
σ22E

2
1,

(51)

where βE1(I−I*)
II* ≥ 0 and I* >0.

By simple calculation, one can get

LΘ3 ≤ β E1 − E1*( ) I − I*( ) + 1
2
σ22 E1 − E1* + E1*( )2, (52)

Due to 1
2(x + y)2 ≤ x2 + y2, it is easy to obtain that

LΘ3 ≤ β E1 − E1*( ) I − I*( ) + σ22 E1 − E1*( )2 + σ22E
*2
1 . (53)

Finally, the differential L operator to Θ4 can be calculated as

LΘ4 � S + E1 + E2 + I
−S* − Ep

1 − Ep
2 − I*

( ) B − μS − γ1 + μ( )E1 − γ2 + μ( )E2 − λ + μ( )I[ ]
� S − S* + E1 − Ep

1

+E2 − Ep
2 + I − I*

( ) −μ S − S*( ) − γ1 + μ( ) E1 − Ep
1( )

− γ2 + μ( ) E2 − Ep
2( ) − λ + μ( ) I − I*( )[ ]

≤ − μ S − S*( )2 − μ S − S*( ) E1 − Ep
1( ) − μ S − S*( ) E2 − E2′( ) − μ S − S*( ) I − I*( )

− γ1 + μ( ) E1 − Ep
1( ) S − S*( ) − γ1 + μ( ) E1 − Ep

1( )2 − γ1 + μ( ) E1 − Ep
1( ) E2 − Ep

2( )
− γ1 + μ( ) E1 − Ep

1( ) I − I*( ) − γ2 + μ( ) E2 − Ep
2( ) S − S*( ) − γ2 + μ( ) E2 − Ep

2( )2
− γ2 + μ( ) E2 − Ep

2( ) E1 − Ep
1( ) − γ2 + μ( ) E2 − Ep

2( ) I − I*( ) − λ + μ( ) I − I*( )2
− λ + μ( ) I − I*( ) S − S*( ) − λ + μ( ) I − I*( ) E1 − E1′( ) − λ + μ( ) I − I*( ) E2 − Ep

2( ).
(54)

Substituting Eqs 43, 48, 53, and 54 into Eq. 37, we get

Θ S, E1 , E2 , I( )≤ σ21S
*2I*2 + 1

2
σ22E

p
1( ) + σ21S

*2I*2 + σ22 E1 − Ep
1( )2 + σ22E

p2
1[ ]

+ −μ S − S*( )2 − γ1 + μ( ) E1 − Ep
1( )2 − γ2 + μ( ) E2 − Ep

2( )2 − λ + μ( ) I − I*( )2[ ]
� − μ S − S*( )2 − γ1 + μ − σ22( ) E1 − Ep

1( )2 − γ2 + μ( ) E2 − Ep
2( )2

− λ + μ( ) I − I*( )2 + 2σ21S
*2I*2 + 1

2
σ22E

p
1 + σ22E

p2
1 .

(55)

By Eq. 34, the ellipsoid

−ξ1 S − S*( )2 − ξ2 E1 − E1*( )2 − ξ3 E2 − E2*( )2 − ξ4 I − I*( )2 + Γ � 0

(56)
lies entirely in R4

+. According to [37], it is easy to know that the
stochastic system (Eq. 2) has a stable stationary distribution. □
Remark 5.1: By Theorem 5.1, there exist

lim
σ1 ,σ2( )→0

Γ � 0,

lim
σ1 ,σ2( )→0

ξ1 � μ> 0,
lim

σ1 ,σ2( )→0
ξ2 � γ1 + μ> 0,

lim
σ1 ,σ2( )→0

ξ3 � γ2 + μ> 0,

lim
σ1 ,σ2( )→0

ξ4 � λ + μ> 0,

(57)

so that the solution of the stochastic system (Eq. 2) fluctuates around
E*. Moreover, the difference between the deterministic system and
stochastic system (Eq. 2) decreases with the decrease in the values of
σ1, σ2.

6 The stochastic optimal control model

Based on the stochastic model described earlier, this paper
proposes a control objective to promote the mass spread of
information, considering that information, such as science,
technology, and knowledge, plays a positive role in social
development. Therefore, the two proportional constants α

and β in the model are changed into control variables α(t)
and β(t), respectively, which control the contact rate of the
receptive and spread-information population and the
proportion of the explicit exposers converted into the
spread-information population.

Hence, the objective function can be proposed as

J E1, I( ) � ∫tf

0
E1 t( ) + I t( ) − c1

2
α2 t( ) − c2

2
β2 t( )[ ]dt, (58)

and the objective function satisfies the state system as

dS t( ) � B − α t( ) 1 +m( )SI − α t( )SI − μS[ ]dt
− σ1 1 +m( )SIdW1 t( ) − σ1SIdW1 t( ),

dE1 t( ) � α t( ) 1 +m( )SI − β t( )E1 − γ1E1 − εE1 − μE1[ ]dt
+ σ1 1 +m( )SIdW1 t( ) − σ2E1dW2 t( ),

dE2 t( ) � α t( )SI + εE1 − γ2E2 − μE2[ ]dt + σ1SIdW1 t( ),
dI t( ) � β t( )E1 − λI − μI[ ]dt + σ2E1dW2 t( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(59)

The initial conditions for system (Eq. 59) are satisfied:

S 0( ) � S0, E1 0( ) � E1,0, E2 0( ) � E2,0, I 0( ) � I0, (60)
where

α t( ), β t( ) ∈ UΔ � α, β( ) ∣∣∣∣ α t( ), β t( )( )measurable, 0≤ α t( ), β t( )≤ 1,∀t ∈ 0, tf[ ]{ },
(61)
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while U is the admissible control set. 0 and tf are the time interval.
The control strength and importance of control measures are
expressed as c1 and c2, respectively, which are the positive weight
coefficients.

Theorem 6.1. There exists an optimal control pair (α*, β*) ∈ U, so
the function is established as

J α*, β*( ) � max J α, β( ): α, β( ) ∈ U{ }. (62)

Proof. Let X(t) � (S(t), E1(t), E2(t), I(t))T and

L t;X t( ), α t( ); β t( )( ) � E1 t( ) + I t( ) − c1
2
α2 t( ) − c2

2
β2 t( ). (63)

The following five conditions must be satisfied, and then, the
optimal control pair is in existence.

i) The set of control variables and state variables is nonempty.
ii) The control set U is convex and closed.
iii) The right-hand side of the state system is bounded by a linear

function in the state and control variables.
iv) The integrand of the objective functional is convex on U.

v) There exist constants d1, d2 > 0 and ρ > 1 such that the integrand
of the objective functional satisfied

−L t;X t( ), α; β( )≥ d1 α| |2 + β
∣∣∣∣ ∣∣∣∣2( )ρ2 − d2. (64)

It is clear that conditions (i)–(iii) are established. Then,
condition (iv) can be easily established such that

S t( )≤B, E1 t( )≤ α t( ) 1 +m( )SI, E2 t( )≤ α t( )SI
+ εE1, I t( )≤ β t( )E1. (65)

Next, for any t ≥ 0, there is a positive constant M, which is
satisfied when |X(t)| ≤ M; therefore,

−L t;X t( ), α; β( ) � c1α2 t( ) + c2β
2 t( )

2
− E1 t( )

− I t( )≥d1 α| |2 + β
∣∣∣∣ ∣∣∣∣2( )ρ2 − 2M. (66)

Let d1 � min c1
2 ,

c2
2{ }, d2 � 2M and ρ = 2. Then, condition (v) is

established. Hence, the optimal control can be realized.

Theorem 6.2. There exist adjoint variables δ1, δ2, δ3, δ4 for the
optimal control pair (α*, β*) that satisfy

FIGURE 2
Frequency histograms of (A) S(t), (B) E1(t), (C) E2(t), and (D) I(t) when σi(i =1,2)=0.001.
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dδ1 t( ) � α t( ) δ1 − δ2( ) 1 +m( )I + α t( ) δ1 − δ3( )I
+σ1 λ1 − λ2( ) 1 +m( )I − λ1σ1I + μδ1

[ ]dt − 2λ1dW1 ,

dδ2 t( ) � 1 + β t( ) δ2 − δ4( ) + σ2 λ2 − λ4( ) + δ2 γ1 + ε + μ( )[ ]dt + λ2dW1 − λ2dW2 ,
dδ3 t( ) � δ3 γ2 + μ( )[ ]dt + λ3dW1 ,

dδ4 t( ) � 1 − α t( ) δ1 − δ2( ) 1 +m( )S + α t( ) δ1 − δ3( )S
+δ4 λ + μ( ) + σ1 λ1 − λ2( ) 1 +m( )S + σ1 λ1 − λ3( )S[ ]dt + λ4dW2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(67)

The boundary conditions are as follows:

δ1 tf( ) � δ2 tf( ) � δ3 tf( ) � δ4 tf( ) � 0. (68)

In addition, the optimal control pair (α*, β*) of the state system
(Eq. 59) can be given by

α* t( ) � min 1, max 0,
δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI

c1
{ }{ },

β* t( ) � min 1, max 0,
δ2 − δ4( )E1

c2
{ }{ }.

(69)

Proof. In order to obtain the expression of the optimal control
system and optimal control pair, we define a Hamiltonian function,
which can be written as

H � −E1 t( ) − I t( ) + c1
2
α2 t( ) + c2

2
β2 t( ) + δ1 B − α t( ) 1 +m( )SI − α t( )SI − μS[ ]

+ δ2 α t( ) 1 +m( )SI − β t( )E1 − γ1E1 − εE1 − μE1[ ] + δ3 α t( )SI + εE1 − γ2E2 − μE2[ ]
+ δ4 β t( )E1 − λI − μI[ ] + −λ1σ1 2 +m( )SI[ ] + λ2 σ1 1 +m( )SI − σ2E1( )[ ]

+ λ3σ1SI + λ4σ2E1.

(70)

According to the Pontryagin maximum principle, the adjoint
system can be written as

dδ1
dt

� −zH
zS

,
dδ2
dt

� −zH
zE1

,
dδ3
dt

� −zH
zE2

,
dδ4
dt

� −zH
zI

, (71)

and the boundary conditions of the adjoint system are

δ1 tf( ) � δ2 tf( ) � δ3 tf( ) � δ4 tf( ) � 0. (72)

The optimal control formula can be written as

zH

zα
� c1α − δ1 1 +m( )SI − δ1SI + δ2 1 +m( )SI + δ3SI � 0,

zH

zβ
� c2β − δ2E1 + δ4E1 � 0.

(73)
Then, the optimal control pair (α*, β*) can be calculated based

on Eq. 73 as

α* t( ) � min 1, max 0,
δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI

c1
{ }{ },

β* t( ) � min 1, max 0,
δ2 − δ4( )E1

c2
{ }{ }.

(74)

Remark 6.1: So far, the optimal control system that can be obtained
includes the state system (Eq. 59) with the initial conditions S(0) = S0,
E1(0) = E1,0, E2(0) = E2,0, I(0) = I0 and the adjoint system (Eq. 67)
with boundary conditions with the optimization conditions. The
optimal control system can be written as

dS t( ) �
B −min 1, max 0,

δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI
c1

{ }{ } 1 +m( )SI

−min 1, max 0,
δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI

c1
{ }{ }SI − μS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt

− σ1 1 +m( )SIdW1 t( ) − σ1SIdW1 t( ),

dE1 t( ) �
min 1, max 0,

δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI
c1

{ }{ } 1 +m( )SI

−min 1, max 0,
δ2 − δ4( )E1

c2
{ }{ }E1 − γ1E1 − εE1 − μE1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt

+ σ1 1 +m( )SIdW1 t( ) − σ2E1dW2 t( ),

dE2 t( ) �
min 1, max 0,

δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI
c1

{ }{ }SI
+εE1 − γ2E2 − μE2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt

+ σ1SIdW1 t( ),

dI t( ) � min 1, max 0,
δ2 − δ4( )E1

c2
{ }{ }E1 − λI − μI[ ]dt + σ2E1dW2 t( ),

dδ1 t( ) �

min 1, max 0,
δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI

c1
{ }{ } δ1 − δ2( ) 1 +m( )I

+min 1, max 0,
δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI

c1
{ }{ } δ1 − δ3( )I

+σ1 λ1 − λ2( ) 1 +m( )I − λ1σ1I + μδ1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dt

− 2λ1dW1 ,

dδ2 t( ) �
1 +min 1, max 0,

δ2 − δ4( )E1

c2
{ }{ } δ2 − δ4( )

+σ2 λ2 − λ4( ) + δ2 γ1 + ε + μ( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dt + λ2dW1 − λ2dW2 ,

dδ3 t( ) � δ3 γ2 + μ( )[ ]dt + λ3dW1

dδ4 t( ) �

1 −min 1, max 0,
δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI

c1
{ }{ } δ1 − δ2( ) 1 +m( )S

+min 1, max 0,
δ1 2 +m( ) − δ2 1 +m( ) − δ3[ ]SI

c1
{ }{ } δ1 − δ3( )S

+δ4 λ + μ( ) + σ1 λ1 − λ2( ) 1 +m( )S + σ1 λ1 − λ3( )S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dt

+ λ4dW2 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(75)

and

δ1 tf( ) � δ2 tf( ) � δ3 tf( ) � δ4 tf( ) � 0. (76)

7 Numerical simulations

In this section, numerical simulation is conducted using the
Runge–Kutta algorithm to validate the theorem of the stochastic
system (2). Since the values of the parameters are not explicitly given
in most recent studies, this section determines reasonable values for
the model’s parameters by combining the value range of the basic
reproduction number R0 and the basic conditions proposed by the
theorem.

To observe the effect of external environmental factors on
information spread and the effect of stochastic perturbations on
changes in population characteristics in the deterministic model, the
parameter values must satisfy the fundamental condition that
information can spread in the social system, i.e., the basic
regeneration number R0 > 1. Therefore, the parameter value can
be B = 1, α = 0.5, m = 0.3, μ = 0.3, γ1 = 0.5, γ2 = 0.7, β = 0.6, ε =
0.2, λ = 0.2.

First, the perturbation strength can be σ = 0.001. Figure 2 shows
the probability histogram of population S(t), E1(t), E2(t), I(t). As
shown in Figure 2, the probability of all populations obeying the
social system is stable. Figure 3 compares the density change trend
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FIGURE 3
Comparison between the deterministicmodel and stochasticmodel of the densities of (A) S(t), (B) E1(t), (C) E2(t), and (D) I(t) change over timewhen σi(i=1,2)=0.001.

FIGURE 4
Frequency histograms of (A) S(t), (B) E1(t), (C) E2(t), and (D) I(t) when σi(i =1,2)=0.0001.
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between deterministic and stochastic systems about population S(t),
E1(t), E2(t), I(t) over time. As shown in Figure 3, information spreads
significantly better in the system with the addition of stochastic
perturbation than in the deterministic system, indicating that
stochastic environmental perturbations play a positive role in
information spread. However, the information is in an unstable
state as it spreads through the social system, and the population
density of each group constantly fluctuates over time.

Second, the perturbation strength σ is reduced to 0.0001, while
all other parameters remain unchanged. Figure 4 depicts the
population S(t), E1(t), E2(t), I(t) probability histogram. Compared
to Figure 2, the probabilities obeyed by all populations in the social
system are stable, and their distributions have converged in Figure 4.
Figure 5 compares the density change trend between deterministic
and stochastic systems about population S(t), E1(t), E2(t), I(t) over
time. Even though the perturbation intensity decreases in Figure 5,
the stochastic system has greater information spread than the
deterministic system. The information spread throughout the
social system is not sufficiently stable as it is subject to
fluctuations. In other words, information spread in a stochastic
system produces fluctuations regardless of changes in perturbation
strength. Due to the addition of random environmental factors, the
densities of all populations are greater than those spread in a
deterministic system.

Next, to observe the effects of different perturbation strengths on
information spread, the trend plots of information spread over time
for the stochastic system with perturbation strengths of 0.001 and

0.0001, respectively, are combined to be analyzed. As shown in
Figure 6, as the intensity of the perturbation decreases, the
fluctuation of information spread tends to become smoother,
indicating that information spreads more easily in systems with
random environmental factors and that controlling the random
factors in the system can control the fluctuation of information
spread effectively.

Finally, to verify the effect of the control strategy proposed in
this chapter, the author kept other parameters constant and
observed the density trends of the population E1(t) and I(t) over
time when the optimal control strategy was used by controlling the
stochastic parameters α and β. As shown in Figure 7, when the
perturbation strength σ = 0.001, the densities of populations E1(t)
and I(t) with the optimal control strategy for stochastic parameters α
and β are superior to those without a control strategy. As shown in
Figure 8, optimal control has a positive effect on information
dissemination when the perturbation intensity σ = 0.0001 is
reduced further. Furthermore, change the values of other
parameters and compare the densities of E1(t) and I(t) change
trends with different control strategies under different intensities
of perturbation. As shown in Figure 9, no matter how the parameter
values change, the optimal control strategy proposed in this paper
can promote information dissemination effectively. At the same
time, adopting optimal control strategies can suppress the
fluctuations of information during its spreading.

According to the results of theoretical analysis and
numerical simulation, random factors can promote the

FIGURE 5
Comparison between the deterministic model and stochastic model of the densities of (A) S(t), (B) E1(t), (C) E2(t), and (D) I(t) change over time when
σi(i =1,2)=0.0001.
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dissemination of information. For positive information, it is
necessary to fully utilize the random phenomena in the social
system to spread beneficial information for social development.
For negative information, it is necessary to minimize the
interference of random factors on the information to suppress
the dissemination of information that is harmful to social
development. Technological innovation information plays an
important role in the development of enterprises in practical
applications [3]. It is usually necessary to leverage the

randomness of the social system for technological innovation
information, enhance the range of exposure to technological
innovation information in society, and promote the random
dissemination of technological innovation information among
different individuals so as to maximize the diffusion effect. On
the contrary, the spread of rumor information hinders the
development of society. During the outbreak of COVID-19 all
over the world, the rumor that Shuanghuanglian oral liquid
could treat COVID-19 was widely spread in China [39], which

FIGURE 6
Comparison between σi(i =1,2)=0.001 and σi(i =1,2)=0.0001 of the densities of (A) S(t), (B) E1(t), (C) E2(t), and (D) I(t) change over time.

FIGURE 7
Densities of (A) E1(t) and (B) I(t) change over time when σi(i =1,2)=0.001 under constant control measure and optimal control.
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led to the citizens rushing to purchase the drug and caused social
panic. It can be seen from this incident that the continuous
emergence of We-media and unscrupulous merchants is a
random phenomenon, and effective control of these random
phenomena can quickly suppress the spread of rumors.

8 Conclusion

In this paper, stochastic factors in social systems are added to the
deterministic model. Then, the stochastic S2EIR model with
parameter perturbations is proposed, with two parameters
represented by Gaussian white noise: the contact rate of super-
spreaders and the conversion rate of information spreaders. The
existence of a global positive solution is demonstrated, and sufficient
conditions for information disappearance and smooth distribution
of information are calculated. In addition, the optimal control
strategy for the stochastic model is proposed. The effect of the
probability density distribution and white noise perturbation on

information dissemination is validated through numerical
simulation. The dissemination trends of the information with
different perturbation strengths are compared.

From the research presented in this paper, the following
conclusions can be drawn: 1) White noise perturbation can
promote information dissemination, and random environmental
factors play a positive role in information dissemination. 2) As the
intensity of perturbation increases, the randomness of the model
and the fluctuation of the information spread trend become more
obvious. 3) Information spread can be effectively controlled by
controlling the stochastic parameters, and the optimal control
strategy of this paper is based on the optimal values calculated
by the control variables, which is different from previous studies.

There are many uncertainties in the actual social system, and it is
more scientific to incorporate these uncertainties into deterministic
models in order to develop stochastic models of dissemination. In
this paper, the author considers the information spread phenomena
of super-spreaders and implicit exposers and uses random
perturbation terms to analyze the method of controlling

FIGURE 8
Densities of (A) E1(t) and (B) I(t) change over time when σi(i =1,2)=0.0001 under constant control measure and optimal control.

FIGURE 9
Densities of (A) E1(t) and (B) I(t) change over time with different intensities of perturbation under constant control measure and optimal control.
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information spread in the actual social system. The results indicate
that for positive information, the randomness and complexity of the
social system should be utilized to increase the spread of
information. In contrast, for negative information, randomness in
the social system should be suppressed to the greatest extent possible
to limit information dissemination.
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