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Distributed Acoustic Sensor (DAS) has potential in applications such as
hydroacoustic detection. In this paper, a dual-pulse heterodyne distributed
acoustic sensor (DAS) system using a semiconductor optical amplifier (SOA)-
based fiber ring laser (FRL) is proposed. Unlike the previous DAS system
configurations, the SOA-based FRL replaces the narrow linewidth laser (NLL)
and pulse modulator, reducing costs and simplifying the system. The system is
demonstrated theoretically and validated experimentally. The adaptability of the
SOA-based FRL in the heterodyne DAS system has been demonstrated in the
experiments. Using the dual-pulse heterodyne detection method, the sensor
system responds well to distributed acoustic detection and achieves accurate
demodulation and positioning. A high signal-to-noise ratio (SNR) of 42.51 dB at
3 kHz is demonstrated as a demodulation result. The system’s frequency range is
5 Hz to 5 kHz with a spatial resolution of 12 m. The proposed approach shows a
broad application prospect for low-cost, large-scale, high-SNR distributed
acoustic detection in maritime surveillance.
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1 Introduction

Marine microseismic/acoustic monitoring is crucial for exploiting marine mineral
resources and national underwater military defense [1, 2]. DAS based on phase-sensitive
optical time-domain reflectometry (Φ-OTDR) has recently attracted attention in
applications such as hydroacoustic detection [3, 4]. Φ-OTDR, a promising technique for
DAS, has demonstrated its ability to provide real-time measurement reaching into the
acoustic range [5–7]. In particular, Φ-OTDR has attracted increasing interest in
hydroacoustic detection research due to its unique performance, including long sensing
range, high spatial resolution, and wide dynamic range.

The DAS introduces a phase demodulation part to obtain the phase change caused by
external acoustic signals compared to the traditional Φ-OTDR. Thus, several phase
demodulation schemes have been developed. Generally, these schemes can be divided
into homodyne [8, 9] and heterodyne [10, 11] according to different signaling methods. A
heterodyne DAS using dual pulses was proposed. The system can simultaneously detect the
actual waveforms of multiple vibration events with a high signal-to-noise ratio (SNR) [11].
Recently, researchers have been focusing on improving the performance of DAS to meet the
requirements of practical applications. To accurately perform high-precision vibration
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identification based on high SNR acoustic signals, the system must
have a high SNR level [12, 13]. To improve the SNR, signal
processing techniques, such as wavelet denoising [14–18],
filtering algorithms [19, 20], and pulse coding methods [21–23],
are employed in the system. Aside from approaches based on signal
processing, those based on optical techniques used a high-power
laser [24, 25], high-performance photodetectors (PDs) [26], or
optical amplifiers [27–29].

For interrogation purposes, a narrow linewidth laser (NLL)
combined with a pulse modulator is typically used in DAS [30].
The pulse modulator converts the continuous light from the NLL
into pulsed light. The non-ideal switching characteristics of the
modulator introduce noise into the system, a significant source of
the noise. Therefore, the modulator’s extinction ratio (ER) is an
intrinsic limiting factor that directly impacts the localization errors
and reduces the SNR of Φ-OTDR [31, 32]. SOA provides an
alternative idea for research due to its high ER and gains
characteristics. A high visibility Φ-OTDR has been demonstrated
for high-frequency vibration measurements. This was achieved by
using a SOA as a modulator. This approach relied on the SOA to
reduce coherent noise [5]. Furthermore, by controlling the carrier in
the SOA, the SNR of theΦ-OTDRwas improved in a study. A forced
carrier recombination method has been proposed to improve the ER
of a SOA. And experiments demonstrated 9 dB ER and 5.2 dB SNR
improvement [33]. Still, the SNR is relatively low.

A dual heterodyne pulse DAS system employing a SOA-based
FRL is proposed in this paper. Unlike previous DAS configurations,
the SOA-based FRL operates as a pulsed mode-locked laser. The
device replaces the NLL and pulse modulator, simplifying the system
and reducing costs. The proposed scheme is demonstrated
theoretically and experimentally. The SOA is a key component in
the device, used as a gain medium in the cavity [34] and an optical
pulse generator. A dual pulse heterodyne DAS system using the
device is presented to verify its adaptability. The proposed system
responds well to distributed acoustic signals, which achieves
accurate demodulation and localization. A high SNR of 42.51 dB
demodulation at 3 kHz is demonstrated in experiments. The SNR
improved by more than one order of magnitude compared with the
works mentioned above, such as [18], and [18, 33]. The system can
recover acoustic signals with a frequency range from 5 Hz to 5 kHz

with a spatial resolution of 12 m. The advantages of a simple and
small structure, reliable multi-wavelength operation at room
temperature, and a compact design offer potential in DAS
applications.

2 Working principle and system
structure

2.1 Basic principle for SOA-based FRL

Figure 1 shows the schematic of the proposed SOA-based FRL,
which comprises a SOA, an FBG working in reflection mode, an
optical isolator, and an optical circulator. In the device, the SOA acts
as a gain medium [34] and an in-loop pulse modulator in the cavity.
It is switched by a programmable pulse generator (PPG). Thus, the
SOA yields a pulsed output with a repetition rate equal to the applied
modulation frequency. The addition of the FBG modifies the intra-
cavity loss profile. The spectral shift of the reflected light from the
FBG changes as a result of exchange changes, which can be
dynamically observed in the output light intensity of the filter.
The FBG is also a wavelength-selective filter [30], which filters
the broadband pulsed light emitted from the SOA within the
bandwidth of the FBG, as shown in Figure 2. Most reflected light
circulates continuously within the cavity to ensure a stable coupled
output. Optical isolators are used to maintain the unidirectional
nature of the cavity and to protect the SOA, which is connected to a
10:90 single mode (SM) coupler and an erbium-doped fiber
amplifier (EDFA). The EDFA amplifies the output pulsed light
from the SM coupler.

The SOA-based FRL operates as a switchable pulsed mode-
locked laser [35], which works fundamentally differently than
traditional continuous wave (CW) or mode-locked lasers. The
cavity dynamics are much more complicated than either CW or
mode-locked lasers because of the multiple physical effects involved.
To date, a great deal of theoretical modeling and investigation of the
laser dynamics in the cavities of the devices has been demonstrated
[36–38]. The basic principle of the device is resonating frequency is
related to the transmitted light’s round-trip time, which is given by:

f cav �
νg

L0 + 2LFBG
(1)

where ]g is the group velocity, and L0 is the fixed fiber length
corresponding to the length of the ring. LFBG is the fiber length
between the circulator and the FBG.

It is worth noting that using the SOA and FBG in the ring cavity
aims to achieve a low side-mode suppression ratio (SMSR) laser
[35], which shows a high stability in theory. Two main factors affect
the stability of lasers: one is relaxation oscillation, and the other is
mode competition [39]. Since the SOA’s carrier recovery time is
significantly shorter than the photon rise time in the cavity [40], the
small fluctuations in optical power at the stimulated wavelength
caused by external environmental disturbances decay rapidly with
time. Thus, no relaxation oscillation is generated. The only factor
that significantly affects the stability of the device is mode
competition. As the fiber medium in fiber lasers cannot
effectively compress the side modes [41], the side mode
oscillation will compete with the main mode. When the mode

FIGURE 1
Schematic diagram of the SOA-based FRL.
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hopping occurs, the SNR of the fiber laser output decreases due to
interference between the two modes [42]. However, in the case of a
fiber laser as a gain medium, the side-mode oscillation is suppressed
by the gain saturation effect as long as it is in the gain saturation state
[43]. Then, the laser output power becomes flat, and the SNR is
improved. The side mode suppression effect is due to the nonlinear
effect of the SOA. The nonlinear compression effect in the proposed
SOA-based FRL is derived in detail below. The main mode and one
of the side modes of the FRL are assumed to have the same small
signal gain. At the input of the main mode, the main mode is
Ed � E · cosω0t, the side mode is written as
Es � δi · E · cos[(ω0 + Δω)t + ϕ], and the SMSR is δi ≪ 1. Then,
the SOA’s optical input power is obtained as follows:

Pi � 1
2

1 + δ2i( )E2 + δiE
2 cos Δωt + ϕ( ) � Pi + ΔPi t( ) (2)

The relative change in input power is defined as follows:

Ri � ΔPi| | max

Pi
� 2δi
1 + δ2i

(3)

Similarly, the relative changes of the side mode extinction ratio and
power of SOA output can be derived from the small signal dynamic
equation. The integral gain of SOA can be expressed as follows [44]:

h t( ) � ∫l

0
g z, t( )dz � �h + Δh t( ) (4)

where Δh(t) is the time-varying term due to the input optical power,
which is determined by the following equation:

τc · dΔh t( )
dt

+ (1 + Pi · e�h
Psat

)Δh t( ) � −ΔPt t( )
Psat

e
�h − 1)( (5)

where τc is the carrier lifetime. Psat is saturated power of the SOA.
Define the saturation coefficient to characterize the depth of
saturation as follows:

S � Pi · e�h
Psat

(6)

Then Δh(t) can be obtained as follows:

Δh t( )

� −SRi(1 − e�h)
1 + S( )2 + τcΔω( )2 · 1 + S( ) · cos Δωt + ϕ( ) + τc · sin Δωt + ϕ( )[ ]

(7)

The output power of the SOA can be written as follows:

Po � Pi · eh ≈ Pi · e�h + ΔPi t( ) · e�h + Pi · e�h · Δh t( ) (8)

Ignoring the higher-order small signals in Eq. 8, the expression
for the output power can be derived as follows:

ΔPo t( ) ≈ ΔPo t( ) · e�h + Pi · e�h · Δh t( )
� PiRie

�h (1 − 1 + S( )S(1 − e
�h)

1 + S( )2 + τcΔω( )2)[
cos Δωt + ϕ( ) − (1 − S(1 − e

�h)τcΔω
1 + S( )2 + τcΔω( )2) sin Δωt + ϕ( )] (9)

The relative change in output power is

Ro � ΔPi| | max

Pi
�

�������������������
1 − 1 + S( )2A 2 − A( )

1 + S( )2 + τcΔω( )2
√

· Ri (10)

where A � S(1−e�h)
(1+S) for 0<A< 1, then it can be derived that Ro <Ri.

When δ < 1, R decreases monotonically as δ decreases, so δ0 < δi. It
indicates that the side mode has a smaller effective gain than the
main mode. Although the side and main modes have the same small
signal gain, the oscillations are suppressed by the smaller effective
gain of the side mode.

Considering δi ≪ 1, then

Ro

Ri
� δo
δi

· 1 + δ2i
1 + δ2o

≈
δo
δi

(11)

The ratio of the effective gain of the side mode to the main mode
can be obtained from the above equation as follows:

η Δω( ) � Gs

Gd
� δo

δi
( )2

≈
Ro

Ri
( )2

� 1 − 1 + S( )2A 2 − A( )
1 + S( )2 + τcΔω( )2 (12)

The equation above suggests that η decreases as Δω decreases.
Therefore, the closer the side mode is to the main mode, the
stronger the suppression effect is. The side mode farther away from
the main mode has a weaker non-linear compression effect.
However, the small signal gain of it is also relatively lower.
Additionally, the FBG, as a frequency-selective element, makes
the side mode farther away a significant loss. Thus, these
frequencies far from the main mode can also be suppressed by
the non-linear effect. When Δω is fixed, if the average input power
is high, then S and A are also relatively high, then η is low. In other
words, the side modes are effectively suppressed when the SOA is

FIGURE 2
Operation principle of the SOA-based FRL.
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in deep saturation. Thus, the device is of high stability in theory
due to low SMSR output.

2.2 Principle of dual pulse heterodyne
detection

The working principle of Φ-OTDRs is the interference effect of
Rayleigh backscattering (RBS) light in optical fibers [30]. When
subjected to external disturbances, the scattered light changes during
its transmission through the fiber (intensity, phase, etc.). By
detecting changes in these properties, scattered light can be
identified. Observation of changes in the scattered light provides
information about external disturbances.

In contrast to a conventional Φ-OTDR system, the probe pulses
used in the proposed method are a pair of pulses. The principle of
operation based on dual pulse heterodyne detection is shown in
Figure 3. The receiver is disturbed by two RBS from the pair of probe
pulses. This causes a heterodyne signal to be generated at the
receiver. The acoustic signal can be obtained with a high SNR
using a suitable demodulation method with OTDR. The
waveform in the time domain and the signal’s frequency
spectrum can be effectively recovered.

Discrete the optical fiber intervals of ΔL for each probe pulse
[45]at the point Zm � mΔL. The RBS within a pulse width can be
expressed as follows:

E Zm( ) � E0 ∑m+N−1

k�m
γkσke

jθk ejφk e−αkΔL( ) (13)

where E0 is the amplitude of the incident light, and α is the fiber
attenuation coefficient. γk, σk and θk denote the polarization
attenuation coefficient, Rayleigh scattering cross section and
phase delay of the pulse through the point, respectively. φk is the
phase change caused by the acoustic signal at the point. N is the

total number of slices through which a single pulse passes. All
slices within the pulse width have the same properties. Then, γk,
σk and θk can be considered as constants, and the vibration
point spacing is related to ΔL. The above equation can be
simplified as:

E Zm( ) � Sm · ejϕm (14)
where Sm � E0e−αmΔLγmσme

jθm , and ϕm denotes the total phase
change caused by the vibration at that point. As long as the two
pulse widths are long enough, the total expression of the detected
RBS can be expressed as:

E Zm( ) � Sm · ejϕm · ej 2πf 1t+φ1( ) · Sm−Nd · ejϕm−Nd · ej 2πf 2t+φ2( ) (15)

where φ1 and φ2 are the initial phase of the dual pulses. Then the AC
component of the interferce signal can be expressed as:

Is Zm( ) � SmSm−Nd cos 2πΔf t +Φ t( ) + Δφ0[ ] (16)
where Δf is the heterodyne frequency mentioned above. Φ(t) �
ϕm − ϕm−Nd

is phase change caused by the acoustic signal,
and Δφ0 � φ1 − φ2.

Then, the output of the system based on the equation above can
be simplified as follows:

Is t( ) � A cos 2πΔf t +Φ t( ) + Δφ0[ ] (17)
where A � |SmSm−Nd| is the intensity amplitude of the
interferometric light, and 2πΔft is the heterodyne carrier term.
Φ(t) is the phase change term caused by the external vibration; Δφ0

is the initial phase noise of the dual pulses.
Φ (t) can be demodulated by an in-phase/quadrature (IQ) phase

demodulation algorithm [46], as shown in Figure 4. The output
signal needs to be mixed with cos(2πΔft) and sin(2πΔft)
respectively. Then, the mixed frequency terms will be low-pass
filtered, giving:

FIGURE 3
Operational diagram of the dual-pulse heterodyne Φ-OTDR employing SOA-based FRL.
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I t( ) � A
2
cos Φ t( ) + Δφ0( ) (18)

Q t( ) � A
2
sin Φ t( ) + Δφ0( ) (19)

The intensity and phase information of RBS can be obtained by
solving the summation and arctangent of the above two signals as follows:

A � �����������
I2 t( ) + Q2 t( )√

(20)

Φ t( ) � tan−1 Q t( )
I t( )( ) − Δφ0 (21)

As the phase noise Δφ0 is a slow variable, which can be filtered
using a high-pass filter. Thus, the phase variation Φ(t) due to
external acoustic signals can be obtained. The range of values of
the arctangent method is [−π

2,
π
2], and can be extended by the use of

the unwrapping algorithm [46].
Furthermore, as the pulses propagate forward in the fiber, the phase

information from the previous point is carried back. As a result, the RBS
at the location behind the interference point has the interference
information. This RBS cannot complete the positioning of the
interference signal. Separating the phase differences at a certain
distance can eliminate the problem of phase accumulation. It is
worth noting that the RBS results from coherence within a half
pulse. Therefore, the length of the phase difference should be greater
than half a pulse width. This should be greater than the spatial resolution
in this system. By the phase difference algorithm, the phase change of the
corresponding part of the fiber can be demodulated as follows:

ΔΦ t( ) � Φz1 t( ) −Φz2 t( ) (22)
For the demodulated amplitudes, the same is true. Thus, using

the different algorithms on the demodulation results can achieve
localization of the acoustic signal.

3 Experiments

3.1 SOA-based FRL output measurement

To verify the effectiveness of the SOA-based FRL, an experimental
setup is constructed, as shown in Figure 5. The modulated signals are

generated from a PPG. The driver circuit of the SOA amplifies them.
The amplified modulated signals are applied to the SOA. The driver
circuit integrates the temperature control system and the current
control system of the SOA optical chip. This mainly aims to prevent
damage to the optical chip during operation and improve the laser’s
power stability. The bandwidth of the FBG is <0.3 nm, and the
reflectance index is >90%. The light from the FRL is connected to
a photodetector after passing through a 20 dB attenuator (ATT). The
bandwidth of the PD is 200 MHz. The signal from the PD is acquired
by a high-speed data acquisition card (DAQ) with a sampling rate of
250 MHz. The output results are displayed on a personal computer
(PC). The output results of applying different pulse duration and
repetition frequency modulations to the SOA are shown in Figure 6.
The amplitude of the SOA-based FRL is large enough for DAS. The
short rise/fall SOA results also show good switching performance.

3.2 Dual pulses measurement

As shown in Figure 7, an unbalanced Mach-Zehnder
interferometer (MZI) converts the single pulse from the SOA-
based FRL into periodic double pulses separated by ΔT. The single
pulse is split into the MZI by a 30:70 SM coupler. The split pulses are
propagated along two different paths. The short path propagates
through an acoustic-optic modulator (AOM) with a frequency shift of
Δf � 80MHz, and the long path is through an attenuator and a delay.
The AOM is used only as a frequency shifter, driven by a DC source
and an RF driver. The center wavelength of the SOA-based FRL’s
output is f cav . Then, f 1 � f cav and f 2 � f cav + Δf . Thus, Δf, the
heterodyne frequency, also separates the dual pulses in the frequency
domain. The difference in length Ld of the two arms of the MZI is
50 m, which corresponds to the pulse interval ΔT � nLd

c ≈ 245ns. The
pulse repetition frequency is 10 kHz. The PD with a bandwidth of
200 MHz detects the pulse traces from the MZI. Figure 8 shows the
detected dual pulse with ten traces. The results show that when the
pulse width is 240 ns, the dual pulses can also be separated in the time
domain. However, when the pulse width is 250 ns, the dual pulses
overlap. The experimental results show that the rise/fall time of the
SOA-based FRL is less than 10 ns, which has significant advantages
over the commonly used AOM [47].

FIGURE 4
Operational diagram of the dual-pulse heterodyne detection.
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FIGURE 5
Experiment setup for SOA-based FRL output measurement.

FIGURE 6
Output whenmodulation signals are applied when the pulse duration and repetition frequency are (A) 10 kHz, 20 ns, (B) 50 kHz, 100 ns, (C) 20 kHz,
200 ns.

FIGURE 7
Experiment setup for dual pulse measurement.
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3.3 Acoustic signals detection

An experimental system is shown in Figure 9 to verify the ability
of the proposed method to detect acoustic signals. The length of the
FUT is 3 km long single-mode fiber (SMF). An arbitrary function

generator (AFG) controls a piezoelectric ceramic transducer (PZT).
The PZT simulates acoustic signals applied to 2 km of the FUT. In
the experiments, the AOM shifted the light by 80 MHz. The PPG
modulates the SOA so that the SOA-based FRL outputs an optical
pulse with τ � 240ns width and fr � 10kHz repetition frequency.

FIGURE 8
Dual pulse output when the repetition frequency is 10 kHz with different pulse durations of (A) 100 ns, (B) 150 ns,(C) 240 ns, and (D) 250 ns.

FIGURE 9
Experimental system for a dual-pulse heterodyne Φ-OTDR employing SOA-based FRL.
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FIGURE 10
Demodulation results for 1 Vpp and 1 kHz signal (A) in time-domain trace (B) in the frequency domain.

FIGURE 11
Amplitude and phase variations for 1 Vpp and 1 kHz signal.

FIGURE 12
Demodulation results for 1 Vpp and 100 Hz signal (A) in time-domain trace (B) in the frequency domain.
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FIGURE 13
Demodulation results for 1 Vpp and 3 kHz signal (A) in time-domain trace (B) in the frequency domain.

FIGURE 14
Demodulation results for 100 mVpp and 3 kHz signal (A) in time-domain trace (B) in the frequency domain.

FIGURE 15
Demodulation results for 12 Vpp and 3 kHz signal (A) in time-domain trace (B) in the frequency domain.
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For eachmeasurement,M � 2000 traces of RBS signals are collected.
In this case, the theoretical minimum detectable frequency is
fr

M � 5Hz, while the maximum is 5 kHz. And the maximum
detection range is up to about Ls � c

2nfrM
≈ 10.2km. Then the

given spatial resolution is wτ+Ld
2 � 11.8m , where wτ is the pulse

width in length. The interference signals can be reconstructed by
extracting specific points in each trace. The heterodyne
demodulation technique algorithm is used to retrieve the signal’s
phase information. The demodulation process is conducted in
the PC.

Figure 10 shows the demodulation results when the modulation
signal frequency with a peak amplitude of 1 V applied to the PZT is
1 kHz. A power spectral density (PSD) analysis is conducted with
the demodulation results. The results are in the time domain and
frequency domain.

A differential algorithm can be applied to the demodulated
signal, allowing the acoustic signal to be located. Figure 11 shows the
amplitude and phase variance results for a 1 Vpp and 1 kHz signal.
The results agree well with the location of the PZT. The results imply
that the system can localize the acoustic signal accurately.

The modulation signals applied to the PZT are varied with a fixed
amplitude to demonstrate the system’s response to other frequencies.
The sinusoidal signal applied to the PZT was fixed at a constant peak
voltage of 1 V. The frequency was gradually changed for the
measurement and demodulated, as shown in Figures 12, 13. As can
be seen from the demodulation results, the system can accurately detect
the acoustic signals at the fixed point of the fiber with a complete signal
waveform. The spectrum also shows that the system can achieve a high
SNR of 42.51 dB and accurately demodulate the signal frequencies.

The modulation signals applied to the PZT are varied in
amplitude at a fixed frequency to demonstrate the system’s
dynamic response. The sinusoidal signal applied to the PZT has
been set at 3 kHz; the amplitude is 100 mV and 12 V, respectively,
corresponding to 0.19 rad and 22.8 rad. The results of the
demodulation are shown in Figures 14, 15. The demodulation
results show that the system can accurately detect acoustic
signals with different amplitudes.

The experimental results illustrate that the proposed system can
detect acoustic signals with different frequencies and amplitudes.
The demodulation and positioning results are accurate, fitting the
modulation signals applied to the PZT well. For a 3 kHz acoustic
signal, the SNR can achieve 42.51 dB. Above 100 Hz, the SNR of the
demodulation results remained at 27.38 dB and above.

4 Conclusion

A dual pulse heterodyne DAS system is proposed by
introducing SOA-based FRL in this paper. The proposed system

is investigated theoretically and experimentally. The SOA-based
FRL operates as a pulsed mode-locked laser, which replaces the
NLL and pulse modulator, simplifying the system and reducing
costs. A narrow linewidth optical pulse output can be obtained
using the device, which fully exploits the gain and good switching
characteristics of SOA. The effectiveness of the device is
demonstrated in a dual pulse heterodyne DAS system. The
proposed system achieves accurate demodulation and
locatilization. The system’s frequency range is 5 Hz to 5 kHz,
and a high SNR of 42.51 dB demodulation is achieved at 3 kHz.
With a detection range of 10.2 km, the system’s spatial resolution is
12 m. The proposed system provides an alternative idea for DAS,
significantly reducing the cost and simplifying the system. It is
expected to greatly benefit from cost-effective, large-scale, and
high-SNR applications in DAS. As the system can be modified by
adding additional FBGs to support more laser wavelengths, further
work will focus on multi-wavelength SOA-based FRL and its
improvements. The multi-wavelength output is expected to
benefit the practical applications of DAS greatly.
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