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Network representation learning is an important tool that can be used to optimize
the speed and performance of downstream analysis tasks by extracting latent
features of heterogeneous networks. However, in the face of new challenges of
increasing network size, diverse latent features, and unseen network noise,
existing representation models need to be further optimized. In this paper, a
robust and fast representation learning model is proposed for heterogeneous
networks, called RFRL. First, the global features of a heterogeneous network are
divided into multiple intra-type local features and inter-type local features, and a
type-aware biased sampling is designed to generate training samples for each
local feature. Second, a node-type-aware and a link-type-aware shallow
representation strategy are used to learn intra-type features and inter-type
features respectively. This enables the model to achieve good performance
while having high speed through the divide-and-conquer learning process and
shallow learning model, thus coping with increasing network size and latent
feature diversity. Finally, adversarial learning is used to integrate the above two
representation strategies to address unseen network noise and enhance the
robustness of representation learning. Extensive experiments on three network
analysis tasks and three public datasets demonstrate the good performance of our
RFRL model.
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1 Introduction

In the real world, many systems (such as traffic systems and social systems) can be
abstracted into heterogeneous information networks (HINs) with different node types and
link types [1]. However, as HINs grow in size, complex coupled network data cannot cope
with the real-time demands of downstream network analysis tasks [2]. For this reason,
heterogeneous network representation learning has been proposed and is developing rapidly
[3]. Heterogeneous network representation learning is the process of converting high-
dimensional complex HINs into low-dimensional simple discrete vectors that retain as much
of the underlying features of the network as possible [4]. After heterogeneous network
representation learning, the resulting low-dimensional vectors can be used as feature input
for downstream network analysis tasks to improve speed and performance [5].
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Heterogeneous network representation learning has proved to be
very useful in many downstream tasks [6] such as link prediction,
node classification, node clustering, etc.

Depending on the depth of the model structure, existing
heterogeneous network representation models can be simply
classified into shallow and deep models [7]. Shallow models learn
the feature representation of nodes by neural networks with fewer
layers [8, 9]. In the metapath2vec [10] model, a meta-path guided
walk strategy is used to sample node sequences. These node
sequences are then used to generate node embedding via a word
vector model skip-gram, which maps the feature information of
HINs into low-dimensional vectors. The ASPEM [11] model
proposes a multi-aspect-based approach to capture the semantic
information of HINs by learning low-dimensional discrete vectors of
nodes in multiple semantic spaces. Shallow models have fewer
model layers and parameters and are therefore faster to train and
rarely suffer from overfitting problems [12]. Deep models generally
extract feature information in HINs through multiple nonlinear
transformations between multiple hidden layers [13]. The HAN
model first splits the graph into multiple sub-graphs with the same
type guided by meta-paths, and then uses a node-level attention
strategy to learn the features of nodes in each sub-graph. Finally,
these sub-graphs with different types are mapped into the same
feature space by the semantic-level attention strategy. In HetGNN
[14], both long short-term memory (LSTM) and Multilayer
Perceptron (MLP [15]) are used to extract and understand the
feature information of HINs and convert it into low-dimensional
discrete vectors. With more complex structures, deeper models can
learn higher dimensional features and be applied to more tasks such
as image processing, speech recognition, etc. In summary, shallow
models are faster than deep models but perform worse.

In the new era of big data, the scale of HINs is getting larger and
larger, the network features are getting more and more complex and
diverse, and the network noise is getting more and more numerous
[16]. Facing the characteristics of HINs in the new era, there are
three further challenges to existing models.

• Speed and performance are difficult to balance.With the rapid
development of IoT [17] and cloud computing technologies,
the size of HINs is increasing [18]. Meanwhile, downstream
network analysis tasks are increasingly time-sensitive. Existing
deep models perform well, but their timeliness cannot meet
the demands of the big data era. Existing shallow models have
good speed and scalability, but they struggle to accurately
capture network features and have yet to improve their
performance.

• Accurate network features are difficult to extract. In the era of
big data, the number of node types and link types in a HIN is
also increasing, and the latent features it represents are
becoming increasingly complex and diverse. Moreover,
multiple features are increasingly coupled and mixed. As a
result, feature extraction becomes increasingly difficult. Most
traditional models try to extract all features directly and fail to
separate multiple features better, thus facing the dilemma of
insufficient feature extraction accuracy.

• The effect of network noise is neglected. There is often some
noise in HINs, such that some nodes are lost and some
nonexistent links are constructed. These noises can cause

local features of nodes or links to be lost or inaccurate.
During model training, this noise increases the
generalization error of the model and degrades its
performance when dealing with unseen data. Overall, this
noise can make the learned heterogeneous network
representation vectors less accurate, which can affect the
performance of downstream tasks.

To solve the above problems, the motivation of this paper is to
design a heterogeneous network representation model that can
adapt to network noise with high speed and performance. For
one thing, to maintain the high-speed of representation learning,
shallow models rather than deep models are chosen to cope with
large-scale HINs. And for another, to maintain the performance of
representation learning, the features of the heterogeneous network
are further decomposed into intra-type and inter-type features.
Intra-type features refer to the proximity of multiple nodes under
the same node type. Inter-type features refer to the semantic
similarity of nodes between two different node types. The
accuracy of feature extraction is further improved by converting
the original one learning process of global features into multiple
learning processes of different sub-features. And thirdly, to attenuate
the effect of network noise, generative adversarial networks (GANs
[19]) are introduced into the representation learning process to
enhance the generalization ability. Based on the above ideas, we
propose a robust and fast representation learning model for HINs,
called RFRL. The main contributions of this paper are as follows.

• A type-aware bias sampling strategy is proposed to treat each
node type and each link type as independent subspaces, and
generate both intra-type training samples for each node type
and inter-type training samples for each link type using a
random walk strategy.

• A node type-aware adversarial learning strategy is designed to
learn intra-type features in each node type space using a
shallow network, and generate more unseen samples using
GAN to enhance the robustness of feature extraction and
attenuate the effects of noise.

• A link-type-aware adversarial learning strategy is designed to
learn inter-type features in each link type space using another
one shallow network, and also to enhance the robustness and
generalization of feature extraction using adversarial learning
as well.

• The RFRL model is designed to achieve a balance between speed
and performance by combining the above strategies. Extensive
experiments on three analysis tasks and three public datasets
demonstrate the excellent performance of our RFRL model.

The rest of the paper is organized as follows. Related work and
definitions are presented in Section 2 and Section 3, respectively.
Section 4 shows our RFRL model in detail. The experimental analysis
is described in Section 5. Finally, Section 6 concludes the paper.

2 Related work

From the technical perspective, existing models or methods can
be simply divided into two categories:
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(1) Shallow model-based algorithms. The first shallow
representation models are random walk-based models. These
models first use a random walk strategy to obtain training
samples with both intra-type and inter-type features, and
then use a shallow skip-gram model to learn both features
simultaneously [10, 20–22]. For example, in metapath2vec [10],
the setting of meta-paths guides the model to sample intra-type
features and inter-type features. The Spacey [20] model
proposes a meta-path-based random walk method for
heterogeneous personalized space to collect samples on a
meta-graph collapsed from a given meta-path. The HHNE
[21] model uses meta-path guided random walk to generate
heterogeneous neighborhoods for each node to obtain intra-
type features and inter-type features. The MARU [22] model
uses a meta-context-aware skip-gram based model to learn
dynamic meta-contextual relationships to collect samples.
Such algorithms have high speed and performance, but most
rely on supervised information given by external experts to
guide the learning patterns of intra-type features and inter-type
features. The second shallow representation models are
decomposition-based models. These models decompose the
original network into multiple subnetworks and perform
shallow learning for each sub-network [23–25]. For example,
the EOE [23] model incorporates a harmonious embedding
matrix to further embed the embedding that only encode intra-
network links. In RHINE [24], pairs of network links are used to
distinguish relations into affiliation relations (ARs) and point-
to-point structured interaction relations (IRs) to capture the
unique structure of the relations. The MIFHNE [25] method
models structural proximity, attribute information, and label
information in the framework of non-negative matrix
decomposition (NMF). The PME [26] model propose to
build object and relation embedding in separate object space
and relation spaces. Such algorithms do not rely on external
supervised information and are fast in time. However, the
integration and fusion of multiple subgraph features is
difficult, resulting in the performance of this type of
algorithm being weak and stable.

(2) Deep model-based algorithms. To better capture intra-type
features and inter-type features, multiple deep models are
used to enhance the feature learning capability of the models
[27]. For example, in MAGNN [28], inner and outer
aggregation of meta-paths are designed to collect samples
containing inter-type features and intra-type features. The
HAN [29] model proposes a node-level attention mechanism
and semantic-level attention mechanism to learn intra-type
features and inter-type features of HINs, respectively. Both
models are designed to consider intra-type and inter-type
features of HINs, but both rely on the setting of meta-paths.
The HetSANN [34] model and the HGT model take the same
type of node as the center and calculate the importance of other
types of nodes around it. These two methods can capture the
interactions between different types of nodes well, but do not do
specialized learning of intra-type node features. The HetGNN
[14] model uses a restarted random walk strategy instead of
meta-path-based walk strategy, using multiple artificial neural
networks to learn the attributes and structures of the nodes,
respectively. The model considers and explicitly uses both

artificial neural networks to learn intra-type features and
inter-type features. However, due to the complexity of the
model structure, the training learning of the model is slow
and the generalization ability is not strong [30]. The MV-ACM
[31] model is a GAN-based model of multiple views divided by
link relations, using a game of generators and discriminators to
robustly learn the relations between views.

In summary, shallowmodels have high speed but relatively weak
learning ability for network features; deep models can better capture
the nonlinear features of complex networks, but their time
complexity is higher. Moreover, existing models rarely consider
the effect of noise in the network. With the rapid development of
new technologies (such as IoT and cloud computing), HINs are
getting more large, heterogeneous, and noisy, and their features are
getting more complex. The existing models need to be further
improved in the face of new features of HINs. To this end, this
paper tries to decompose complex and diverse feature learning into
intra-type feature learning for node-type subspaces and inter-type
feature learning for link-type subspaces to reduce the learning
difficulty and enhance the learning accuracy. Meanwhile, in this
paper, we try to design a novel shallow model that guarantees the
speed and performance of learning. To reduce the effect of network
noise, adversarial learning is incorporated into the shallow model to
generate more unseen training samples using adversarial learning,
which results in more generalized and robust network features.

3 Definition

In this section, several definitions in this paper are first
introduced.

Definition 1: Heterogeneous Information Networks (HINs). The
heterogeneous network G (N, E, T, R) is composed of a node set N=
{n1, n2, . . ., nn} with node type T= {T1, T2, . . ., Tn}. and a link set E=
{e1, e2, . . ., en} with link type R= {R1, R2, . . ., Rn}. The mapping
relations between node types T with nodes V and between link types
Rwith links E are φ. Specifically, if nodes vi and vj belong to the same
node type T1, then there exists φ(vi) = φ(vj) = T1. The links ei and ej
belong to the same link type R1, then there exists φ(ei) = φ(ej) = R1.

Definition 2: Heterogeneous Network Representation Learning.
Heterogeneous network representation learning is the process of
mapping node vi to low-dimensional vectors xi ∈ R1×d by learning
from a HIN, that is f(vi)→xi ∈ R1×d. A feature matrix X ∈ R│V│×d is
formed with the low-dimensional vectors of all nodes, where │V│ is
the number of nodes. The feature matrix X of nodes can be used in
the analysis of downstream tasks of the network.

4 The proposed model

4.1 Overview

With the advent of the era of big data, complex systems in the
real world are getting larger and noisier, and their internal
heterogeneity is getting stronger. That is to say, in the network,
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the types of nodes and links are increasingly numerous, the features
are increasingly complex and diverse, and the correlations between
features are increasingly strong. To cope with the change of HINs,
the paper constructs a robust and fast heterogeneous network
representation model, called RFRL. Based on the idea of “divide
and conquer”, the model decomposes the heterogeneous network
global features into intra-type local features and inter-type local
features. Specifically, the model treats each node type and each link
type as a feature subspace. The intra-type features refer to node
proximity under each node type feature subspace, and inter-type
features refer to semantic similarity between each link type feature
subspace. Through multiple learning of intra-type and inter-type
features instead of one learning of global features, the accuracy of
feature learning increased. Moreover, the model uses shallowmodels
instead of deep models to ensure the high-speed of feature learning,
and use adversarial learning to enhance generalization of learned
features and compatibility with network noise.

The overview of the RFRL model is shown in Figure 1. The
whole model contains four parts.

• Type-aware biased sampling is the first part. In this part, a
type-aware random walk strategy is designed to
simultaneously generate intra-type training samples for
each node type and inter-type training samples for each
link type in one sampling process. Furthermore, the global

information of node types is used as weights to generate the
final biased intra-type samples of different node types.
Meanwhile, the global information of link types is used as
weights to generate the final biased inter-type samples of
different link types.

• Node-type-aware adversarial learning is the second part. In
this part, each node type is first viewed as an intra-type feature
subspace. Then, based on the idea that “if two nodes are near
neighbors, the coordinates of the two nodes in the subspace
should be close”, a shallow network is designed as a
discriminator to accurately learn intra-type features of the
subspace. Next, a noisy version of the same shallow model is
used as a generator to generate fake intra-type features. The
fake features are disguised as more unseen fake samples to
cheat the discriminator. Finally, the discriminator identifies
real and fake features from real and fake samples to generate
more robust features and reduce the influence of network
noise.

• Link-type-aware adversarial learning is the third part. Similar
to above part, each link type is viewed as an inter-type feature
subspace. Then, based on the idea that “if a link exists between
two nodes with different types, the embedding vector of one
node can reach the embedding vector of another node by

FIGURE 1
The overview of the RFRL model.
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transforming the semantic features of the link”, another
shallow network is designed as a discriminator to
accurately learn inter-type features of the subspace. Next, a
noisy version of the same shallow model is used as a generator
to generate fake inter-type features as unseen fake samples to
cheat the discriminator. Finally, adversarial learning between
generator and discriminator can capture more robust and
generalized inter-type features and weaken the impact of
network noise.

• Joint training is the fourth part. This part uses the intra-type
features of each node as shared parameters. By the alternate
execution of intra-type feature learning and inter-type feature
learning, the global node representation is further improved.

4.2 Type-aware biased sampling

To accurately learn intra-type and inter-type features in HINs, it is
essential to generate suitable training samples for these features. This
involves generating intra-type training samples for each node type and
inter-type training samples for each link type. However, in HINs,
different node types have different global distributions (in terms of
the number of nodes with different types), and different link types also
have different global distributions (in terms of the number of links with
different types). This global information determines the importance of
different intra-type features or different inter-type features in the global
features. Therefore, the intra-type training samples should satisfy the

global distribution of node types, and inter-type training samples should
satisfy the global distribution of link types. Moreover, due to intra-type
features and inter-type features are coupled to each other, it is important
to use a same sampling process to generate both intra-type and inter-
type training samples, so as to preserve the coupling between them.

Based on the above ideas, supervised by the global distribution
information, a type-aware biased sampling strategy is designed to
simultaneously generate intra-type samples for each node type and
inter-type samples for each link type. The detailed procedure of this
strategy consists of three steps, as shown in Figure 2.

Step 1, calculate global information of node types and link types.
First, grouping the network topology by node type, the proportion of
nodes in each group is the weight WN of all intra-type features in
global feature learning, as shown in Figure 2A. Second, grouping the
network topology by link type, the proportion of links in each group
is the weight WL of all inter-type features in global feature learning,
as shown in Figure 2B.

Step 2, type-aware sampling. First, a sample queue QN(Tk) is
assigned to each node type Tk for storing intra-type feature samples
and a sample queue QL(Rs) is assigned to each link type Rs for storing
inter-type feature samples. After that, a node ni as npre is randomly
selected from the HIN as the starting point. The node npre walks
randomly from its neighbors to the next node npre through a link.
Following this, node nnext as npre walks to the next node nnext at
random. Each walked node nnext is dropped into the queue QN of its
type. And the link (npre, nnext) is dropped into the queue QL of its
type. A walking ends when the number of walking nodes exceeds the
preset random walk length. When all nodes in the network are used

FIGURE 2
The process of type-aware biased sampling. (A) calculate global information of node types. (B) calculate global information of link types. (C)
generate intra-type biased samples. (D) generate inter-type biased samples.
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as the starting point for a walking, the random walk process ends.
Finally, in each queue QN(Tk), the node sequence is further divided
into multiple subsequences with window size L. In each
subsequence, any two nodes ni and nj can form a positive
sample < ni, Tk, nj > to preserve 1-order and high-order intra-
type features. And, two nodes ni and nm in different subsequences
can generate a negative sample< ni, no Tk, nj >. Moreover, in each
queue QL(Rs), a link and its two vertices can generate a positive
sample< ni, Rs, nj > for the inter-type feature learning of type Rs.
And, a positive sample < nx, Rl, nh > of type Rl can be transformed to
a negative sample < nx, Rs, nh >of type Rs by replacing Rl with Rs. In
the two training samples, the ratio of positive samples to negative
samples is 1:3.

Step 3, generate biased samples. After sampling, the intra-type
training samples (or inter-type training samples) must be
proportionally consistent with the weights WN (or WL) calculated
in step 1. Therefore, the expected number of each intra-type training
samples (or inter-type training samples) is first calculated based on
the weight WN (or WL). Then, for a node type (or link type), if the
number of generated samples is larger than the expected number,
the redundant part is randomly removed. Finally, if the number of
generated samples is smaller than the expected number, the missing
parts are randomly copied from the existing samples.

4.3 Node-type-aware adversarial learning
for intra-type features

The first important feature of a HIN is the intra-type feature,
which refers to the proximity among multiple nodes with the same
type. In this paper, each node type corresponds to a feature subspace
with a special intra-type feature. Compared to global features, each
intra-type feature will be purer, and its learning process will be

simpler and accurate. Moreover, the difference in the number of
training samples for different node types helps more accurate intra-
type features to meet global distribution. In addition, the learning
process of multiple intra-type features can be executed in parallel to
improve the speed of the representation model. In order to further
resist the noise in the network, we try to employ the generative
adversarial network (GAN) to learn the distribution of each intra-
type feature. This allows us to generate more unseen training
samples and reduce the impact of noise on model training. By
using the GAN, we are able to capture more robust and generalized
intra-type features for nodes.

Based on the above ideas, a node type-aware adversarial
learning strategy is designed to use the shallow network
instead of deep network to learn more robust and accurate
intra-type features of nodes, as shown in Figure 3. The whole
strategy consists of two components: the generator and the
discriminator, which engage in a game to learn more robust
and accurate the intra-type features of nodes. Then, a noised
version of the same shallow model is used as a generator to
generate fake intra-type features. The fake features are disguised
as more unseen fake samples to cheat the discriminator. Next, the
discriminator identifies real and fake features from real and fake
samples. Finally, adversarial learning between generator and
discriminator can capture more robust and generalized inter-
type features and weaken the impact of network noise. As an
example, the adversarial learning process of the intra-type feature
learning for node type T1 is as follows.

4.3.1 Intra-type feature learning
Based on the idea that “if two nodes are neighbors, the

coordinates of the two nodes in the subspace should be close”,
the intra-type feature learning of node type T1 is to project two T1-
type nodes into the same feature subspace, and then pull the

FIGURE 3
The process of node-type-aware adversarial learning.
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coordinates of the two nodes as close together as possible when the
two nodes are neighbors, or push the coordinates of the two nodes as
far away as possible when the two nodes are not neighbors. Taking
two T1-type nodes i and j as examples, the intra-type feature learning
process is as follows.

First, the two nodes are mapped to the feature subspace of node
type T1, and the position coordinates of the two nodes are obtained
respectively, as follows.

f i( ) � xi · ST1

f j( ) � xj · ST1
(1)

Where xi (or xj)∈ R1×d is the global representation vectors of node i
(or node j). The ST1∈ R d×d is the projection matrix of node type T1,
which represents the feature subspace of node type T1.

Second, since the coordinates of two nodes are vectors, the inner
product of the two vectors is used to calculate the proximity of the
coordinates of the two nodes in the feature subspace, as follows.

dis i, j( ) � f i( ) · f j( )[ ]T (2)
Then, the Sigmoid function is used to regularize the distance

between nodes for easy comparison, as follows.

Sim i, j( ) � sigmoid dis i, j( )( ) � 1
1 + exp −dis i, j( )( ) (3)

After regularization, the distance between two nodes is
quantified into the range of [0, 1]. If two T1-type nodes are
neighbors, then the distance between the two nodes in the
subspace of node type T1 should converge to 1, otherwise the
distance between the two nodes should converge to 0.

4.3.2 Intra-type generator
Based on the above pattern of feature learning, we try to design a

noisy feature extractor as a generator G1 to generate fake intra-type
features of node type T1, so as to help the model tolerate noise and
extract more robust and general intra-type features. Specifically, the
fake intra-type feature generation process of node type T1 is as
follows.

Fake intra-type feature generation. First, another projection
matrix ST1

G ∈ R d×d of node type T1 is generated and randomly
initialized, which represents the feature subspace of node type T1 in
the generator G1 and competes with the projection matrix ST1of the
T1-type real feature subspace.

Second, one node i is mapped to the T1-type fake feature
subspace of G1, and the position coordinate is calculated
respectively, as follows.

fG i( ) � xi · ST1
G (4)

Where fG(i)∈ R1×d is the coordinate of node i in T1-type real feature
subspace.

Then, to generate noisy fake intra-type features, we use Gaussian
noise to disturb the coordinate of node i in the T1-type fake feature
space of G1, defined as follows.

fnoise
G i( ) � N fG i( ), σ2I( ) (5)

Where the σ is the variance of Gaussian noise, which is a preset
hyper-parameter. The I is the unit vector, N(*,σ) is a function to
generate a Gaussian distribution with mean * and variance σ.

Finally, we use a multi-layer perceptron to enhance the
nonlinearity of the noise coordinate of node i, and defined as.

fnoise
G i( ) � g · · ·g fnoise

G i( ) ·W1 + b1( ) · · ·Wk + bk( ) (6)
WhereW∈ R d×d is the parameter matrix of the MLP and b∈R1×d

is the bias of the MLP. And the MLP is set to one layer in this paper.
The g() is the nonlinear activation function(LeakyReLU is used in
this paper).

Loss function. To ensure the effectiveness of the generated fake
feature distribution, we hope that the generated fake feature
distribution is as close as possible to the real distribution. To
achieve this goal, we use the positive intra-type samples <i, T1,
j> of node type T1 to train the generator G1.

Therefore, the loss function of generator G1 consists of two
parts. The first part is that the coordinates of two nodes of one
positive sample in G1 should be as close as possible, defined as
follows.

Loss1 � − ∑
< i,j> ∈

postive
samples

{ }
log Sim fnoise

G i( ), fnoise
G j( )( )( ) (7)

The second part is that the fake coordinate in G1 of any node in
one positive sample should be as close as possible to the coordinate
in the real subspace, defined as follows.

Loss2 � − ∑
< i,j> ∈

postive
samples

{ }
log Sim fnoise

G i( ), f i( )( )( )

+ log Sim fnoise
G j( ), f j( )( )( ) (8)

Where f(j) and f(i) is the representation vector (the coordinate) in
the real feature subspace of node type T1.

The final loss of generator G1 is defined as follows.

LossG1 � Loss1 + Loss2 (9)

4.3.3 Intra-type discriminator
As a game competitor of the generator G1, a discriminator

D1 needs to be constructed. In this way, the generator G1 and the
discriminatorD1 form an adversarial generative network GAN. In this
paper, to simplify the structure of GAN, the D1 needs to have two
capabilities. The first capability is to learn the true feature distribution in
the feature subspace of node type T1. The second capability is to identify
the real feature distribution and the fake feature distribution.

Real intra-type feature learning and discrimination. The fake
feature distribution fnoise

G generated by G1, positive intra-type
samples <i, T1, j> and negative intra-type samples<i, not T1, j>
generated by the type-aware biased sampling strategy are inputs of
the discriminator D1. To achieve the two capabilities of D1, three
inputs are transformed into three types of training samples.

The first type of training samples are real positive samples <i, T1,
j>∈RPS, and they are generated by the type-aware biased sampling
strategy. For a real positive sample<i, T1, j>, the proximity of the
coordinates of two nodes i and j in the T1-type true feature subspace
of should be 1. That is to say, Sim(i,j) = 1 according to Equation 3.

The second type of training samples are real negative samples <i,
not T1, j>∈RNS, and they are also generated by the type-aware biased
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sampling strategy. For a real negative sample<i, not T1, j>, the
proximity of the coordinates of two nodes i and j in the T1-type true
feature subspace of should be 0. That is to say, Sim(i,j) = 0 according
to Equation 3.

The third type of training samples are fake positive samples <i,
T1, G(j)>(or <G(i), T1, j>)∈FPS where the G(j) represents the fake
feature vector of node j in G1. For a fake positive sample <i, T1, G(j)
>, the proximity of the coordinates of two nodes i and j in the T1-
type true feature subspace should be 0. That is to say, Sim(i,j) =
0 according to Equation 3.

When the discriminatorD1 is trained only with real positive and
real negative samples, theD1 can accurately capture the true feature
distribution in the T1-type feature subspace. When the discriminator
D1 is trained with real positive and fake positive samples, theD1 can
accurately identify the real and fake feature distribution. Therefore,
through the combined training of three training samples, theD1 can
not only learn the real feature distribution, but also distinguish the
real and fake feature distributions. Moreover, driven by the fake
feature distribution generated by generator G1, a large number of
unseen training samples are generated. These fake samples can
further help D1 to learn more robust and generalized intra-type
features, and reduce the influence of network noise.

Loss function. According to three types of training samples, the
loss function of discriminator D1 consists of three parts, defined as.

LossD1 � ∑
< i,j> ∈RPS

−log Sim f i( ), f j( )( )( )
+ ∑

< i,j> ∈RNS

−log 1 − Sim f i( ), f j( )( )( )
+ ∑

< i,j> ∈FPS
−log 1 − Sim f i( ), fnoise

G j( )( )( )
− log 1 − Sim fnoise

G i( ), f j( )( )( ) (10)

4.4 Link-type-aware adversarial learning for
inter-type features

The second important feature of a HIN is the inter-type
feature, which refers to the semantic similarity between two node
types. That is to say, if there is a link of type R1 between node i of
type T1 and node j of type T2, then the node i can reach the node j
through the semantic relation R1. In this paper, each link type is
also regarded as a feature subspace possessing a unique inter-type
feature that enables the semantic transformation of two
heterogeneous nodes. More specifically, if a link of type R1

exists between node i of type T1 and node j of type T2, then
the T1-type intra-type feature of node i can be similar to the T2-
type intra-type feature of node j through the semantic
transformation of relation R1, abbreviated as <i, T1, R1, T2, j>.
Similar to the intra-type feature learning, the difference in the
number of training samples for different link types helps more
accurate inter-type features to meet global distribution. To
reduce the impact of network noise, we also employ the
generative adversarial network (GAN) to learn the more
robust and generated inter-type feature distribution.

Based on the above ideas, a link-type-aware adversarial learning
strategy is designed to learn more robust and accurate inter-type

features of nodes, as shown in Figure 4. The whole strategy consists
of generators and discriminators, each of which uses a shallow
network. It is important to note that the inter-type feature learning
aims to capture the relation between two intra-type feature spaces.
For instance, in the case of link type R1, we use a generator and a
discriminator to learn inter-type features as follows.

4.4.1 Inter-type feature learning
Based on the idea that “if a link exists between two nodes with

different types, the embedding vector of one node can be transformed to
the embedding vector of another node by the semantic features of the
link”, the inter-type feature of link typeR1 is to learn the transform from
the intra-type feature of one node to the intra-type feature of another
node in theR1 feature subspace. Then, the two intra-type feature vectors
are pushed close when there is anR1 relation between them, and the two
feature vectors are drawn far apart when there is not an R1 relation
between them. TakingT1-type node i andT2-type node jwith an edge of
type R1 as example<i, T1, R1, T2, j>, the inter-type feature leaning
process is as follows.

First, the intra-type feature f(i) of node i in T1-type feature space
and the intra-type feature f(j) of node j in T2-type feature space are
first obtained from the Section 4.3. Meanwhile, the link type R1 is
regarded as a semantic feature subspace, and a transformation
matrix SR1 is defined to represent the semantic transformation
process in the subspace.

Second, the intra-type feature f(i) of T1-type node i is mapped to
the R1 feature subspace, and defined as.

Tran i( ) � f i( ) · SR1 (11)
Where S R1∈ R d×d is the semantic transformation matrix of link

type R1, and the · is the function of matrix multiplication.
Then, the similarity between the transformation feature Tran(i)

of node i and the intra-type features f(j) of node j is calculated as.

Sim i, j( ) � Tran i( ) · f j( )[ ]T (12)
Finally, the Sigmoid function is used to regularize the similarity

to the range of [0,1], as follows.

Sim i, j( ) � 1
1 + exp −Sim i, j( )( ) �

1

1 + exp −Tran i( ) · f j( )[ ]T( )
(13)

The similarity is adjusted according to the correctness of the
semantic transformation of R1. Specifically, the value of similarity
should be increased to 1 when Tran(i) can correctly reach the T2

features space. Conversely, the value of similarity should be
decreased to 0.

4.4.2 Inter-type feature generator
Same as the intra-type generator, the generator G2 is used to

generate the noisy fake inter-type features and apply them to the
inter-type discriminator D2, so as to learn more robust features and
reduce the impact of the network noise. The generating process for
the fake inter-type features of R1 is as follows.

Fake inter-type feature generation. First, another projection
matrix SR1

G ∈ R d×d of link type R1 is generated and randomly
initialized, which represents the fake feature subspace of R1 in
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G2. And, the intra-type feature of node i is transformed by the fake
feature subspace in G2 to obtain the transformation feature
TranG(i).

TranG i( ) � fG i( ) · SR1G (14)
Second, to better obtain the fake inter-type feature, we add some

Gaussian noise to the inter-type feature TranG(i), defined as follows.

TrannoiseG i( ) � N TranG i( ), σ2I( ) (15)
Where the size of the variance σ can be adjusted to control the

degree of disturbance of Gaussian noise.
Finally, to enhance the expressiveness of TrannoiseG (i), the model

continues using the MLP model with two layers to obtain the final
fake inter-type features in the following way.

TrannoiseG i( ) � g · · ·g TrannoiseG i( ) ·W1 + b1( ) · · ·Wk + bk( ) (16)
Where W∈ R d×d is the parameter matrix of the MLP and b∈R1×d is
the bias of the MLP. And the g() is the nonlinear activation function
(LeakyReLU is used in this paper).

Loss function: For inter-type features, the concern is whether the
node intra-type features can reach the correct feature subspace after
the semantic transformation. Therefore, we use the cross-entropy
loss to make the fake inter-type features Trannoise G(i) similar to the
true intra-type features f(j), so that the fake inter-type features of
type T1 can arrive correctly in the feature subspace of T2. To achieve
this goal, we use the positive inter-type samples <i, T1, R1, T2, j> to
train the generator G2. The details are as follows.

LossG2 � − ∑
< i,j> ∈

postive
samples

{ }
log Sim TrannoiseG i( ), f j( )( )( ) (17)

4.4.3 Inter-type feature discriminator
Similarly, we need an inter-type discriminator D2 as a

competitor to the inter-type generator G2. In this way, the
generator G2 and the discriminator D2 form an adversarial
generative network GAN. Similar to D1, D2 also needs to have
two capabilities. The first capability is to learn real inter-type
features. The second capability is to achieve discrimination
between true inter-type features and fake inter-type features.

Real inter-type feature learning and discrimination. The fake
feature distribution Trannoise G(i) generated by G2, positive
inter-type samples <i, T1, R1, T2, j> and negative intra-type
samples <i, T1, not R1, T2, j> generated by the sampling
strategy are inputs of the discriminator D2. To achieve the
two capabilities of D2, three inputs are transformed into three
types of training samples.

The first type of training samples are real positive samples. For
the real positive samples <i, T1, R1, T2, j>∈RPS, the similarity of the
inter-type features Tran(i) and f(j) should be 1. That is to say,
Sim(i,j) = 1 according to Equation 13.

The second type of training samples are real negative samples.
For a real negative sample <i, T1, not R1, T2, j>∈RNS, the similarity of
the inter-type features Tran(i) and f(j) should be 0. That is to say,
Sim(i,j) = 0 according to Equation 13.

The third type of training samples are fake positive samples <
G2(i), T1, R1, T2, j> (or < i, T1, R1, T2,G2(j)>∈FPS. For a fake positive
sample < G2(i), T1, R1, T2, j>, the similarity of the inter-type features
TrannoiseG (i) and f(j) should be 0. That is to say, Sim(G2(i), j) =
0 according to Equation 13.

When discriminator D2 is trained with only true positive
samples and true negative samples, D2 can accurately capture
the true inter-type feature distribution. When discriminator
D2 is trained with true positive and fake positive samples,

FIGURE 4
Comparison of intra-type feature learning and inter-type feature learning. (A)Node-type-aware adversarial learning for intra-type features. (B) Link-
type-aware adversarial learning for intra-type features.
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D2 can accurately identify the true and fake feature
distributions. Therefore, through the joint training of three
training samples, D2 can not only incrementally learn the
true inter-type features, but also achieve the discrimination
of true inter-type features and fake inter-type features. In
addition, the large number of unseen training samples
generated by generator G2 can further help D2 to achieve
robust and accurate learning of inter-type features and thus
reduce the effect of network noise.

Loss function. Based on the above idea, the cross-entropy loss
function is used as the loss of D2, and defined as follows.

LossD2 � ∑
< i,j> ∈RPS

−log Sim Tran i( ), f j( )( )( )
+ ∑

< i,j> ∈RNS

−log 1 − Sim Tran i( ), f j( )( )( )
+ ∑

< i,j> ∈FPS
−log 1 − Sim TrannoiseG i( ), Tran i( )( )( ) (18)

4.5 Joint learning

Comparing intra-type feature learning with inter-type
feature learning, it is not difficult to get the following
finding, as shown in Figure 4. First, the two learning
processes use different shallow learning strategies. Intra-type
feature learning attempts to learn the positional proximity of the
projected coordinates of two nodes in the same subspace. Inter-
type feature learning attempts to learn the semantic similarity
between two nodes by the semantic transformation of one link
type. Second, the two learning processes are closely related to
each other. The global representation vector of each node is
shared in the two learning processes. Moreover, the learned
intra-type features of node types are used as input in the inter-
type feature learning process. In addition, an adversarial
learning strategy is used in two learning processes to capture
more robust and generalized network features and reduce the
impact of network noise.

Therefore, node-type-aware intra-type feature learning and
link-type-aware inter-type feature learning need to be jointly
trained for better performance. In our experiment, the intra-
type feature learning process is performed for 5 consecutive
epochs with separate sampling, where the sampled intra-type
samples are used and the inter-type samples are kept. After the
intra-type features are learned, the inter-type feature learning
process are performed without sampling for 5 epochs, where
each epoch uses the inter-type samples reserved by the intra-
type feature learning process. This can help the two learning
processes capture the coupling between the intra-type feature
and inter-type feature. All training procedures use the
stochastic gradient descent algorithm (SGD) for parameter
updates. The ratio of the iterations of generator and
discriminator is adjusted during training to balance the
learning rates of both, resulting in a steady improvement in
the performance of both. In addition, adjusting the ratio of two
learning rates also controls the learning speed of both. However,
it is important to note that adjusting the learning rate may cause
the performance of the generator and the discriminator to

degrade. In this paper, the learning rate of the generator and
discriminator is set to 1e-4.

5 Experiments

5.1 Experimental setup

Datasets. We select three datasets with different sparsity levels,
which are related to the literature citation network, the shopping
network, and the business network. (1) DBLP network is a citation
network with journal and conference bibliographic information
(https://dblp.uni-trier.de/xml/). (2) Amazon network comes from
the user and product information of the Amazon platform (http://
jmcauley.ucsd.edu/data/amazon/). (3) Yelp network contains
information on merchants and users in multiple cities in the
United States (https://www.yelp.com/dataset). The details of each
dataset are shown in Table 1.

Baselines. In the comparison experiments, we selected five
models as baselines: two shallow models (RHINE [24] and
Metapath2vec [10]), two deep models (HAN [29] and HGT
[32]), and one GAN-based representation model (HeGAN [33]).
In addition, recommended meta-paths and default parameter
settings are used for all models. The details of the baselines are
shown in Table 2.

Tasks and metrics. We chose the following three tasks and five
metrics to comprehensively evaluate the performance of our model.
(1) Node classification. Based on the learned node representation
vector, the classifier predicts the labels of the nodes. In this task, we
use Macro_F1 and Micro_F1 metrics to evaluate the performance of
the node classification task. (2)Node clustering. Based on the learned
node representation vector, the nodes are divided into multiple
clusters, where each cluster represents a category. We evaluate the
performance of the node clustering task using the NMI metric. (3)
Link prediction. Based on the learned node representation vector, we
predict whether there is a link between two nodes. We use AUC and
ACC metrics to evaluate the performance of link prediction tasks.

Setting. The experimental platform is a PC server equipped with
an NVIDIA T4 card. The server is outfitted with a 32-core Intel
Xeon Cascade Lake (2.5 Hz) processor, 64 GB of RAM, and the
Ubuntu 18.04 operating system. The RFRL algorithm was
programmed using the PyCharm IDE.

5.2 Node classification

In this section, we perform the node classification task on three
datasets Amazon, DBLP, and Yelp, compared to five baselines to
test our performance. In this experiment, to verify the stability,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of the real labeled
samples as 9 training datasets are used to train all models, and 10%
of other real labeled samples are used as the test set. For the
classifier, we use SoftMax to calculate the probability of each
category and evaluate the classification result with Macro_
F1 and Micro_F1 metrics.

Figure 5 shows the accuracy of node classification on
3 different networks, where Figures 5A–C are the Macro_
F1 metrics and Figures 5D–F are the Micro_F1 metrics. In
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each graph, we used different colored lines to indicate the
performance scores of different algorithms. By observing, we
can obtain the following results. (1) Comparing all models, the
best average performance in the three datasets is RFRL and HGT,
followed by HeGAN, HAN, and finally RHINE, metapath2vec.
For example, in the Macro_F1 metric, RFRL outperforms the
second-best HGT by 0.76% on average across the three datasets;
In the Micro_F1 metric, the average performance of RFRL is
1.01% higher than that of the second-best HGT. (2) Considering
the stability, the stability of the RFRL model is better than that of
the shallow model and better than that of the deep model on three
networks. For example, on Macro_F1 of the DBLP dataset, the
performance drift range of 3.75% for RFRL is lower than the
ranges of 4.33% for metapath2vec and 5.21% for HGT.
Meanwhile, for the training set with fewer labels, the RFRL
model outperforms the other models. For example, on
Amazon network, the Micro_F1 score of our RFRL model is
6.22% higher than the second-best model in the training set with
20% labels. (3) Comparing the structure of the models, the deep
models (HGT and HAN) generally outperforms the shallow
models (metapath2vec and RHINE). For example, on the
Amazon dataset, the average performance of Macro_F1 of

HGT is 3.01% higher than that of RHINE. (4) Considering the
potential of capturing information, the RFRL model has a better
potential to capture information than other models. That is to
say, it can obtain good performance on fewer training sets. For
example, on the Amazon training sets with 10%–30% labels,
RFRL is on average about 3% better than the second-best Macro_
F1 metric. (5) In summary, the RFRL model has high
generalization ability and performance, especially when most
of the node information is unknown (few label samples).

5.3 Node clustering

In this section, we test our performance on the node clustering
task by choosing the same datasets and baselines as in the above
experiments. In this experiment, we use the k-means algorithm to
divide the nodes into multiple clusters based on the learned node
representation vectors, each of which is a category. Finally, the NMI
metric is used to evaluate the consistency of these categories with the
true labeled categories.

Table 3 shows the comparison of the best clustering results of
the six algorithms on the three datasets. The following

TABLE 1 Datasets.

Dataset Nodes Number of nodes Relation Number of relations Avg.Degree

DBLP

Author(A) 14,475

9.04

Paper(P) 14,376 P-A 41,794

Conference(C) 20 P-C 14,376

Type(T) 8,920 P-T 114,624

Amazon

User(U) 344

10.29

Item(I) 95 I-U 365

View(V) 3,773 I-V 195,791

Brand(B) 5 I-B 95

Yelp

User(U) 1,286

19.77

Business(B) 2,614 B-U 30,838

Service(S) 2 B-S 2,614

Star(St) 9 B-St 2,614

Reservation(R) 2 B-R 2,614

TABLE 2 Baselines.

Algorithms Full name Implement

RHINE [24] Relation Structure-Aware Heterogeneous Information Network Embedding Python

Metapath2vec [10] metapath2vec: Scalable Representation Learning for Heterogeneous Networks Python

HAN [29] Heterogeneous Graph Attention Network Python

HGT [32] Heterogeneous Graph Transformer Python

HeGAN [33] Adversarial Learning on Heterogeneous Information Networks Python
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conclusions are drawn from Table 3. (1) Comparing all models,
the clustering performance of RFRL is higher than baseline
algorithms in the three datasets, which proves the effectiveness
and accuracy of RFRL. (2) Considering the stability, RFRL is more
stable relative to the other models. For example, the smallest
differences from the peak in the three datasets are 0.802% for
RFRL, 2.75% for HeGAN, and 3.68% for HAN. (3) Comparing the
structure of the models, GAN-based models (HeGAN, RFRL)
generally outperform the other models. For example, in the Yelp
dataset, the NMI of HeGAN is 0.3965 and that of RFRL is 0.4253;
while the NMI of the other models is below 0.3872. In addition,
the deep models (HAN, HGT) generally outperform the shallow
models (metapath2vec, RHINE). For example, the NMI of HAN

and HGT are roughly 1%–9% higher than metapath2vec and
RHINE in all three datasets. (4) Comparing GAN-based models,
RFRL outperforms HeGAN overall. For example, in the Amazon
dataset, HeGAN has an NMI of 0.397 and RFRL has an NMI of
0.4375. (5) In summary, the RFRL model is robust and effective in
the node clustering task.

5.4 Link prediction

In this section, we test our model using the link prediction task.
In this task, we concatenate the node representation vector at the
two ends of the link as a low-dimensional feature vector of the link,
and then use logistic regression to implement a binary classification
to determine the existence of a link. As with node classification, to
demonstrate the stability of the model, we still use 5 baselines as
competitors and 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of
the real labeled samples as 9 training datasets for comparison
experiments.

Figure 6 shows the link prediction performance of the six
algorithms on three datasets. The following conclusions can be
drawn from the observations. (1) Comparing the ACC of all
models, the best average performance is achieved by RFRL and
HeGAN, followed by HGT and HAN, and finally RHINE and
metapath2vec. For example, in the ACC metrics, the average
ACC performance of RFRL is 66.53%, and the average ACC
performance of HAN is 64.97%. (2) Comparing the AUC of all
models, the performance of HeGAN has decreased. The best
performances on average were RFRL and HGT, followed by

FIGURE 5
Performance of multiple algorithms in node classification. (A) The Macro-f1 scores of multiple algorithms on the Amazon dataset; (B) The Macro-f1
scores ofmultiple algorithms on theDBLP dataset; (C) TheMacro-f1 scores ofmultiple algorithms on the Yelp dataset; (D) TheMicro-f1 scores ofmultiple
algorithms on the Amazon dataset; (E) The Micro-f1 scores of multiple algorithms on the DBLP dataset; (F) The Micro-f1 scores of multiple algorithms on
the Yelp dataset.

TABLE 3 Performance of multiple algorithms in node clustering.

Amazon Yelp DBLP

NMI NMI NMI

metapath2vec 0.2989 0.3069 0.6738

RHINE 0.3479 0.3739 0.7352

HAN 0.3893 0.3631 0.7831

HGT 0.3981 0.3871 0.7438

HeGAN 0.367 0.3965 0.7689

RFRL 0.4375 0.4253 0.7576
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HeGAN and HAN, and finally RHINE and metapath2vec. For
example, on the Yelp dataset, the average performance of
HeGAN is 64.50% and that of RFRL is 72.10%, a difference of
7.60%. (3) Considering the stability, the GAN-based models RFRL
and HeGAN are the best. For example, in the DBLP dataset, the
extreme differences of RFRL and HeGAN are 2.76% and 2.89%.
Meanwhile, the performance of these two GAN-based models is
relatively better in the training set with 30% labels. For example,
on the ACC of Amazon dataset, the average performance of RFRL
and HeGAN is 61.62% and 60.15%. (4) Comparing the structure
of the models, the GAN-based models (RFRL and HeGAN)
outperform the other models on average, and the deep models
(HGT and HAN) outperform the shallow models (RHINE and
Metapath2vec) overall. For example, in DBLP dataset, the
average AUC value of HGT is 4.41% higher than that of
metapath2vec and 3.57% higher than that of RHINE. (5) In
summary, RFRL outperforms the other baselines by 1%–13%
on the link prediction task. The good performance of RFRL on
the datasets with less real samples demonstrates the effectiveness
and robustness of the model.

5.5 Additional experiments

To further demonstrate the advantages of the biased sampling
strategy, the robustness and Scalability of the model, we perform the
following additional comparison experiments based on the link
prediction task.

5.5.1 The biased sampling strategy
In this experiment, the samples collected by biased and

unbiased sampling strategy are fed into our RFFL model as two
different models for training, and finally, the performance of the
two models is evaluated on the link prediction task using the ACC
metric.

Figure 7 shows the performance on the ACC metric for link
prediction with two different sampling strategies. In the figure,
red bars represent the results of the unbiased sampling strategy
and blue bars represent the results of the biased sampling
strategy. We can get the following findings. (1) Comparing

FIGURE 6
Performance of multiple algorithms in link prediction. (A) The ACC scores of multiple algorithms on the Amazon dataset; (B) The ACC scores of
multiple algorithms on the DBLP dataset; (C) The ACC scores ofmultiple algorithms on the Yelp dataset; (D) The AUC scores ofmultiple algorithms on the
Amazon dataset; (E) The AUC scores of multiple algorithms on the DBLP dataset; (F) The AUC scores of multiple algorithms on the Yelp dataset.

FIGURE 7
Performance of biased and unbiased sampling strategy in link
prediction.
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the two strategies, the overall performance of biased sampling is
better than random sampling. For example, on the Amazon,
Yelp and DBLP datasets, the performance improves by 2.25%,

6.93% and 4.4%, respectively. This demonstrates that the biased
sampling can indeed better preserve the feature information of
heterogeneous networks. (2) Comparing different datasets, the
performance optimizations of the biased sampling strategy on
different datasets are different. For example, the optimization on
the Yelp dataset is 6.93%, while on the DBLP it is only 2.25%.
This may be related to the sparsity of the data, as well as the
number of types. Specifically, the Yelp dataset has a larger
number of types and degrees than the other two datasets. (3)
In summary, the biased sampling strategy captures the intra-
type and inter-type features in the network better and performs
better.

5.5.2 Robustness
In this experiment, a noise network is obtained by randomly

removing 20% of the links from the original heterogeneous network.
On the noise network, RFRL is compared with other baseline
algorithms in terms of ACC metric for link prediction. The ratio
of the training set to the test set is 9:1.

Figure 8 shows the link prediction performance of different
algorithms on the noise networks. From the figure, we can

FIGURE 8
Performance ofmultiple algorithms in the noise networks. (A) The ACC scores ofmultiple algorithms on the Amazon dataset with noise; (B) The ACC
scores of multiple algorithms on the DBLP dataset with noise; (C) The ACC scores of multiple algorithms on the Yelp dataset with noise.

FIGURE 9
The scalability performance of the RFRL model.
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observe the following information. (1) Comparing all the
models, the overall performance of all models decreased.
RFRL showed the smallest decrease in performance with an
average decrease of 16.96%; followed by HeGAN, RHINE,
metapath2vec with average decreases of 20.43%, 21.13%,
23.6%, and HAN, HGT with average decreases of 22.97% and
23.60%, respectively. (2) Comparing different datasets, the
model performance degradation varies, which is related to
the structure and semantics of the network. Although the
degradation of RFRL in the Amazon dataset is slightly higher
at 19.8% than that of metapath2vec at 19.1%, good noise control
performance is achieved in all other datasets. For example,
RFRL performance decreases by only 15.2% on Yelp. (3)In
summary, RFRL is more robust and more compatible with
noise.

5.5.3 Scalability
In the era of big data, the scalability of the model is very

important, so we further validate the scalability of the RFRL
model. In this experiment, intra-type feature learning process is
parallelized using multi-threading techniques, and the ratio of
parallelized threads to accelerated multipliers is recorded. The
experimental results are shown in Figure 9.

Figure 9 plots the number of threads versus the speedup
multiplier. In the figure, the vertical axis is the acceleration
multiplier, the horizontal axis is the number of concurrent
threads, and the curve is the ratio between the two. By
analyzing Figure 9, we can see that the RFRL model has a
significant speedup with fewer threads. Specifically, a speedup
of 10–12 times is achieved when using 16 threads for concurrent
execution. As the number of threads increases, the speedup
increases more slowly. For example, when 40 threads are
executed concurrently, the speedup is only 18 to 19 times. In

addition, the speedup almost stops growing when the experiment
is performed concurrently with 78 threads.

5.6 Parameter sensitivity

The context window length L is an important hyper-parameter
for our RFRL model, which determines the range of node intra-type
proximity features needs to learn. In the type-aware biased sampling
strategy, any two nodes in a context window constitute a positive
sample. That is to say, if the window length L is larger, then the two
nodes are farther away in the original network, and the order of
proximity between them is higher. On the contrary, if the window
length L is smaller, the closer the two nodes are in the original
network, the lower the order of proximity between them is. In this
experiment, the performance of our RFRL model with different
window lengths is evaluated on the link prediction task using the
ACC metric.

Figure 10 shows the ACC accuracy of our RFRL model with
different window lengths L. From the figure, we can get the following
observations. (1) Focusing on a network, the link prediction accuracy
rises and then falls as the L value increases. For example, for the
DBLP dataset, the ACC value increases rapidly in the range [1,2].
Then, in the range [2,4], the ACC values stabilize. Finally, in the
range [4,7], the ACC value decreases slowly. This indicates that too
small L values cannot fully capture the intra-type features of nodes in
the network, and too large L leads to capturing imprecise intra-type
features. Specifically, the relative stability range of the parameter L is
[1,3] on Amazon, [2,4] on DBLP and Yelp. (2) Comparing different
datasets, the window length of the Yelp and DBLP datasets should be
larger than that of the Amazon dataset. This is because neighboring
nodes in a walk sequence are more closely related in a dense
network. It experimentally demonstrates that the first- and

FIGURE 10
Sensitivity analysis of the hyper-parameter L. (A) The ACC scores of the different parameters L on the Amazon dataset; (B) The ACC scores of the
different parameters L on the DBLP dataset; (C) The ACC scores of the different parameters L on the Yelp dataset.
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second-order neighbor relations of nodes are the most worth
learning, which can help the model to capture the proximity
feature information between nodes well. (3) In summary, with
context window length L in the range of [2,3], the model has the
most stable performance for different datasets. In all our
experiments, the value of the context window length is 2 as default.

6 Conclusion

In this paper, we propose a robust and fast representation
learning model for heterogeneous networks, called RFRL. The
RFRL model is well adapted to the following characteristics of
future heterogeneous networks: larger scale, more diverse
features, and stronger noise. To better cope with large-scale
networks, two novel shallow learning strategies are designed
to replace the traditional deep learning network to quickly
generate the low-dimensional feature vectors of nodes. To
better learn complex and diverse features, each node type and
link type is treated as a feature subspace to perform
representation learning separately. The RFRL model uses
multiple learning processes for partial features instead of a
single learning process for all features to achieve high speed
and performance. To reduce the impact of network noise, GANs
are further used to generate fake training samples in each
subspace, and the adversarial learning between generator and
discriminator can help the RFRL model to capture more robust
and generalized node features. Extensive experimental results
on multiple networks and multiple tasks demonstrate the
performance of our model.
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