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Scattering of weakly bound nuclei with a pronounced cluster structure is strongly
affected by their breakup. Usually, this mechanism is accounted for in a three-
body model with pairwise potentials. The interaction potentials between complex
systems are non-local due to the existence of excitation channels and
antisymmetrization. However, a common practice is to use local optical
potentials in cluster scattering studies. To assess the validity of replacing non-
local optical potentials by their local equivalents, we extend the local-equivalent
continuum-discretized coupled-channel (LECDCC) approach proposed by us for
deuteron scattering in [Phys. Rev. C98, 011601(R) (2018)] to the case of cluster
scattering. We consider the case of 6Li + 120Sn at 27 and 60 MeV, and compare the
angular distributions and reaction cross sections for elastic and breakup cross
sections with those obtained in the standard continuum-discretized coupled-
channel (CDCC) method with local equivalents of non-local potentials. We found
that while elastic scattering is not significantly affected by non-locality, the
breakup observables could be affected by up to 20% depending on kinematical
conditions of their observation.
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1 Introduction

The phenomenon of clustering has been known in nuclear physics for a long time. It is
present in most light nuclei where two neutrons and two protons gain from gathering into an
α-particle [1]. α-clustering also occurs in even–even N = Z nuclei [2]. A special class of
clustering, the halo nuclei, has been found around neutron and proton driplines [3]. More
generally, clustering can occur in excited nuclear states close to the thresholds of particle
emission channels. It influences cross sections of nuclear reactions involving them. Many
such reactions are of importance for stellar nucleosynthesis [4], thus contributing much to
shaping the world we live in.

Scattering of weakly bound nuclei with a pronounced cluster structure is at the frontier of
modern experimental nuclear research [5, 6]. The information obtained from these studies is
affected by the choice of theoretical models used to predict and/or analyze the measured
observables. It has been known for a long time that theoretical models should include cluster
breakup. To account for this important reaction mechanism, the scattering problem is often
described in a three-body model with pairwise interactions, which are always chosen to be
local. However, the general Feshbach theory states that interactions between complex
systems are non-local [7]: they depend on the inter-nuclear separation both before and
after collision. Non-locality comes both from removing the target excitation from
consideration and from antisymmetrization between nucleons from both the target and
projectile. It most naturally emerges in all ab initio calculations [8]. Therefore, an assessment
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of validity of replacing non-local optical potentials by their local
equivalents in cluster scattering calculations is a timely and vital task
needed to correctly understand the uncertainties in observables due
to optical potential choices.

We first note that two-body scattering with non-local
interactions is very well studied. Phenomenological non-local
potentials are often considered in the Perey–Buck model [9], for
which the localization procedure has been established [9, 10].
Two-body scattering problems with non-local potentials of a
general form can be treated easily by the R-matrix approach with
a Lagrange mesh [11]. Many other methods of solving the non-
local Schrödinger equation exist, examples of which, as well as
references to other works, could be found in [12–14]. The
solutions of two-body non-local scattering problems can be
used to model wave functions both in the entrance and exit
channels of various nuclear reactions when calculating their cross
sections. Examples of such calculations are reviewed in [15] for
the case of transfer reactions.

Three-body scattering problems with non-local potentials have
been extensively studied for the case of three nucleons. They are
usually solved either with the help of the Faddeev method [16, 17] or
by using hyperspherical harmonics expansions [18, 19]. The
Faddeev treatment of non-locality has also been extended to the
case of deuteron scattering (d, d), transfer (d, p), and (p, d) reactions
from heavy targets [20–22]. It was shown there that using local-
equivalent nucleon-target potentials does not reproduce exact non-
local calculations. Moreover, including non-locality in
nucleon–target potentials significantly improves the description
of experimental differential cross sections of these reactions as
compared to those obtained in studies with local-equivalent
nucleon optical potentials. These findings, together with the rapid
development of microscopic models for optical potentials, have
motivated the present study.

Modeling cluster scattering with non-local potentials
requires a special theoretical technique. The Faddeev approach
of [20–22] was applicable to (d, d) and (d, p) reactions because the
two-body description of n − A and p − A bound states for the
carefully selected target A works well. When applied for cluster
scattering, Faddeev approach’s requirement to achieve correct
asymptotic conditions in all channels could be unachievable due
to the complexity of the problem. In addition, there is no clarity
in choosing two-body interaction potentials that would describe
simultaneously bound and scattering states in the two-body
subsystems. The normalization to unity of the two-body
bound states in the Faddeev approach may not correspond to
reality. For these reasons, we use the idea of [23], where the
continuum-discretized coupled-channel (CDCC) approach [24,
25] was extended to provide an approximate three-body
treatment of optical potentials’ non-locality in the n + p + A
problem. Following [23], we derive a leading-order local-
equivalent continuum-discretized coupled-channel (LECDCC)
model for the case of scattering of nuclei with a well-pronounced
two-cluster structure. We then compare the LECDCC
predictions to those obtained in standard CDCC with local-
equivalent potentials. We perform calculations for a popular
choice of the projectile, 6Li, which is well represented by the
α − d cluster structure.

We start by formulating a three-body model for cluster
scattering in Section 2, followed by developing LECDCC at the
leading order in Section 3. In Section 4, we apply the formalism to
the case of 6Li + 120Sn scattering using non-local Sao Paulo
potentials [26–28] comparing LECDCC with traditional CDCC,
in which local-equivalent potentials are used. Section 5
summarizes the work undertaken and draws conclusion.
Appendix provides additional mathematical details relevant to
formalism development.

2 Three-body model for cluster
scattering

Let us consider scattering of the nucleus C composed by two
clusters C1 and C2 from the target A. We assume that this
problem can be well-described by the three-body wave
function Ψ(r, R), which depends on coordinates r � rC1 − rC2

and R � C1rC1+ C2rC1
C1+ C2

− rA, shown in Figure 1. We also assume
that the interaction between any pair c of nuclei, chosen from
C1, C2, and A, is described by a two-body Schrödinger equation:

Tc + Vcoul
c rc( ) − Ec( )ϕc rc( ) � −∫drc′Vc rc′, rc( )ϕc rc′( ) (1)

with non-local nuclear potential Vc(rc′, rc) and the local Coulomb
interaction Vcoul

c (rc). The three-body Schrödinger equation in this
case is written as follows (see Appendix for derivation):

Tr + TR + Vcoul
C1A

R + γ1r( ) + Vcoul
C2A

R − γ2r( ) + Vcoul
C1C2

r( ) − E( )Ψ r,R( )
� −∫ dr′VC1C2 r′, r( )Ψ r′,R( )
−∫ dR′ J 1VC1A R′ + γ1r +

γ1μC
C1

R′ − R( ),R + γ1r( )Ψ r + μC
C1

R′ − R( ),R′( )[
+J 2VC2A R′ − γ2r +

γ2μC
C2

R′ − R( ),R − γ2r( )Ψ r − μC
C2

R′ − R( ),R′( )],
(2)

where Tr and TR are the kinetic energy operators associated with
the coordinate r and R, respectively, E = E3 − Ec.m., where E3 is
the three-body energy in the laboratory system, while γ1 = C2/
(C1 + C2), γ2 = C1/(C1 + C2), and μc = CA/(C + A). The two
Jacobians are

J 1 � C

C1

A + C1

A + C
( )3

, J 2 � C

C2

A + C2

A + C
( )3

. (3)

We will assume for simplicity that the clusters and targets have zero
spin. The three-body Schrödinger Eq. 2 is solved within the CDCC
framework using the expansion

Ψ r,R( ) � ∑nmax

i�1
χi R( )ϕi r( ), (4)

where ϕi is the C1 − C2 bound state wave function or a continuum
bin, obtained in the non-local C1 − C2 model and χi is the wave
function of the relative motion of the bin i with respect to the target
A. It satisfies the equation

TR + UC − Ei( )χi R( ) � −∑
i′

∫ dR′U i′i R′,R( )χi′ R′( ), (5)

where UC is the local C − A Coulomb potential and
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U i′i R′,R( ) � ∫ dr ϕi′ r( ) J 1VC1A R′ + γ1r +
γ1μC
C1

R′ − R( ),R + γ1r( )ϕi r + μC
C1

R′ − R( )( )[
+J 2VC2A R′ − γ2r +

γ2μC
C2

R′ − R( ),R − γ2r( )ϕi r − μC
C2

R′ − R( )( )].
(6)

In this paper, we will consider phenomenological non-local
potentials in each pair c choosing them in the Perey–Buck form [9],

V r, r′( ) � Hi x( )Ui X( ), (7)
where x = r − r′ and X = (r + r′)/2, and

H x( ) � π−3/2β−3 exp −x
2

β2
( ), (8)

where β is the range of non-locality.
Usually, the non-locality range β for nucleon scattering is

around 0.85–0.9 fm; for deuterons, it is ~ 0.54 fm, and for α-
particles, it is ~ 0.25 fm. This is because in most cases, the
clusters C1 and C2 are not the same, and different non-locality
ranges are required in each pair c. Moreover, non-local potentials
themselves could be represented by several terms of the Perey–Buck
type with different non-locality ranges, such as in the non-local
dispersive optical model (NLDOM) in [29]. Therefore, we consider
pairwise potentials given by

Vc rc′, rc( ) � ∑
j

Hj xc( )U c( )
j Xc( ), (9)

where the index c is associated with a chosen pair of nuclei (clusters)
and j is associated with a non-locality range βj. When dealing with
potentials (9), we use the experience of handling NLDOM potentials
in constructing the local-equivalent adiabatic model for (d, p)
reactions from Ref. [30].

3 Leading-order local-equivalent
CDCC

Our aim is to find an equivalent local potential model that gives
the same scattering phase shifts as the non-local model (18) does. We
will follow Refs. [23, 31] to perform this. We will exploit the fact that
the non-locality ranges are small. To simplify the R.H.S. of Eq. 6, we
use the Perey–Buck presentation (7) of the non-local potentials VC1A

and VC2A. After introducing a new variable, associated with cluster i,

s � C

Ci

A + Ci

A + C
R′ − R( ). (10)

Equation 5 can be rewritten as

TR + UC R( ) − Ei( )χi R( )
� −∑

j

∫ ds drHj s( )

× ϕi′ r( )U C1A( )
j R + γ1r +

1
2
s( )ϕi r + A

A + C1
s( )χi′ α1s + R( )[

+ϕi′ r( )U C2A( )
j R − γ2r +

1
2
s( )ϕi r − A

A + C2
s( )χi′ α2s + R( )],

(11)
where

αi � Ci

C

A + C

A + Ci
. (12)

In previous d + A studies [30, 31], the following step was the
introduction of a new variable x � r − 2A

A+2 (R′ − R) and neglecting
s/(A+ 2) in the arguments ofUnA andUpA potentials. However, a similar
strategy would result in the appearance of 1

2 [(C2 − C1)/C1 ·
A/(A + C) − C/(A + C)]s in the arguments of these potentials. In
the case of C2 ≠ C1, this term could be important, especially for
scattering of one-nucleon halo nuclei such as 11Be or 15C. Therefore,
a different strategy is adopted here. In the term associated with cluster
C1, a new variable y � γ1r + 1

2 s is introduced. In the term associated
with cluster C2, the integration variable r is replaced by −r, followed by
the introduction of y � γ2r + 1

2 s. It gives

TR + UC R( ) − Ei( )χi R( )
� −∑

i′
∑
c

∑
j

π c( )
ii′ ∫ ds dyHj s( )

× ϕi′ γ−1c y − 1
2γc

s( )U c( )
j y + R( )ϕi γ−1c y − βcs( )χi′ αcs + R( ),

(13)
where

π c( )
ii′ � 1 for c � C1

� −( )li+li′ for c � C2,
(14)

βc �
1
2γc

− A

A + Cc
. (15)

Because of the short range ofHj(s), the wave function χi′(αs + R) can
be represented by the leading-order expansion that retains only
spherical components in s (see [31]):

χi′ αcs + R( ) ≈ ∑nmax

n�0
γn αcs( )2nTn

R χi′ R( ), (16)

in which

γn �
−( )n

n! 2n + 1( )‼
μ

Z2
( )n

, (17)

where μ is the reduced mass of A + C (not to be confused with
dimensionless reduced mass number μC of the previous section).
Then, the coupled system of equations takes the form

TR + UC R( ) − Ei( )χi R( )
� −∑

i′
∑nmax

n�0
∑
c

∑
j

π c( )
ii′ ∫dyU c( )

j y + R( )
× γnα

2n
c ∫ ds s2nHj s( )ϕi γ−1c y − 1

2γc
s( )ϕi′ γ−1c y − βcs( )[ ]

× Tn
R χi′ R( ) � −∑

i′
∑nmax

n�0
γnU

n( )
ii′ R( )Tn

R χi′ R( ), (18)

where

U n( )
ii′ R( ) � ∑

c

∑
j

π c( )
ii′ α

2n
c ∫ dyU c( )

j y + R( )
× ∫ ds s2nHj s( )ϕi γ−1c y − 1

2γc
s( )ϕi′ γ−1c y − βcs( ). (19)

Equation 18 could be rewritten in the following form:

TRχi R( ) � −∑
i′

Ei′ − UC R( )( )δii′ −∑
n

γnU
n( )

ii′ R( )Tn
R

⎡⎣ ⎤⎦χi′ R( ). (20)

Then, imposing the requirement that the local-equivalent coupling
potentials Uloc

ii′ satisfy
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TR + UC R( ) − Ei( )χi R( ) � −∑
i′
Uloc

ii′ R( )χi′ R( ), (21)

we obtain a system of the transcendental matrix equations

f 0( )
ii′ − Ei − UC( )δii′ +∑

k

f 1( )
ik + δik( )Xki′ +∑

kl

f 2( )
ik XklXli′ +/ � 0,

(22)
for

Xii′ � Ei′ − UC( )δii′ − Uloc
ii′ , (23)

in which f(n)
ij � γnU

(n)
ii′ . The system of Eq. 22 could be solved using

the Newton method, as was solved in [23], and then, Uloc
ii′ could be

read into a CDCC reaction code such as FRESCO [32]. The
continuum bins can have different values of orbital momentum.
The partial wave decomposition of Uloc

ii′ for general orbital
momentum for cluster scattering is presented in Appendix.

4 Application to 6Li scattering

We apply the aforementioned formalism to 6Li+120Sn scattering at
two 6Li incident energies, 27 MeV and 60MeV, near and above the
Coulomb barrier, respectively. 6Li has a well-developed α − d cluster
structure due to its small deuteron separation energy of 1.47 MeV.
Since a non-local potential for α-d scattering is not available, to
describe the continuum states of the 6Li projectile, we used a local
model with the same potential as in [33] to generate α-d continuum
bins. This model describes the α-d s-wave phase shifts and reproduces
the experimental excitation energy and width of the 3+ resonance
(E* = 2.186 MeV) of 6Li. The 6Li+120Sn study around the Coulomb
barrier in [33] has shown that this low-energy resonance in the d-wave
continuum plays an important role. Therefore, the CDCC expansion
considered a basis with lαd = 0 and 2. For the d-wave component, the
continuum wave functions were weighted by the T-matrix in order to
better describe the resonance [32]. The calculations have been
performed, ignoring the spin of the deuteron.

To calculate the couplings potentials Uii′(R), we used six bins for
each α-d partial wave, which was deemed sufficient. The maximum
α-d energy Eαd was 30 MeV for the calculation at 60 MeV since the
contribution of the last bin to the breakup cross section was very
small. As for the calculation at 27 MeV, the maximum value of only
6 MeV was possible due to instability of calculations with higher Eαd.
Variations of the maximum of Eαd lead to differences in the elastic
cross section of less than 4% in the whole angular range.
Convergence of the cross sections was reached by varying the
matching radius Rm and maximum total angular momentum J.
The optimal value Rm = 150 fm was obtained for both 6Li incident
energies, while the maximum total angular momentum J was
300 and 100 for 6Li energies of 60 and 27 MeV, respectively.

For α-120Sn and d-120Sn optical potentials, we used the Sao Paulo
potential (SPP) [26–28]. This potential is given by Eqs 7, 8 with the
non-locality parameter β = 4Z/(μCc), chosen the same as in [28]. The
SPP uses for Ui(X) the double-folding model both for real and
imaginary parts, assuming that they are proportional. The two-point
Fermi distribution [28] was chosen for model density of 120Sn. The
deuteron density was taken from the systematics found in [28], while
that for the α-particle was a sum of Gaussians taken from [34]. For
the imaginary part, we used the standard renormalization coefficient

0.78. The local-equivalent potential of SPP (LESPP) is obtained by
solving the transcendental equation [28]

VLE R, E( ) � VF R( )e−μβ2

2Z2
E−VC R( )−VLE R,E( )( ). (24)

The solution is energy-dependent. All three-body models
employing optical potentials use them only at a chosen fixed
energy equal to a certain fraction of the projectile energy E. For
example, in d − A scattering, this would be half the incoming
deuteron energy for nucleon–target potential. For cluster
scattering, the fixed energy of the Ci − A potential is
proportional to its mass, Ei � Ci

C1+C2
E. We compare the

standard CDCC calculations with LESPP to those obtained in
LECDCC developed in this work. We made sure that for β → 0,
they coinside with standard local folding potential calculations
when breakup is neglected.

Figure 2 shows selected coupling potentials calculated in
standard CDCC with LESPP and in LECDCC. The ULESPP

gs−gs (R)
and ULECDCC

gs−gs (R) couplings, shown in Figures 2A, B for 6Li
incident energies of 27 and 60 MeV, respectively, are very similar
in the surface region, around R ≈ 8–12 fm. At R = 0 fm, their real
parts differ by 4% at 27 MeV and by 19% at 60 MeV, but imaginary
parts of ULECDCC

gs−gs (0) are more than twice smaller than those of
ULESPP

gs−gs (0). A similar situation occurs for diagonal couplings
ULECDCC

ex−ex (R) between d-wave bin states with the first 2+

resonance (see Figure 2C). We have only plotted it for the 6Li
energy of 60 MeV because the differences there are expected to be
higher. Non-diagonal couplings between these states,ULESPP

ex−gs (R) and
ULECDCC

ex−gs (R), are also very similar at the surface. However, the
difference in the internal region is more significant.

Despite a significant difference in the coupling potentials
Uii′(R) within the short range of the optical potentials, the elastic
scattering angular distributions calculated in LECDCC turned
out to be very similar to those obtained in standard CDCC with
LESPP. Therefore, we only show their ratio in Figure 3. For an
incident energy of 27 MeV, the difference between the two
approaches does not exceed 4% in the whole angular range. At
60 MeV, numerical noise has not allowed us to unambiguously
determine this ratio at angles larger than 90°. Below 90°, the
difference between LECDCC and LESPP does not exceed 8%. We
also observe some oscillations in the LECDCC/LESPP ratio,
resulting from tiny oscillations in both these differential cross
sections, which are slightly out of phase. These oscillations are

FIGURE 1
Three-body C1 + C2 + A system associated with scattering of a
two-cluster nucleus C = C1 + C2 from the target A.
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caused by a small near-far-side interference, which results in a
small Fraunhofer diffraction pattern.

The breakup cross sections are more strongly influenced by
non-locality. The differential s-wave, d-wave, and total breakup

cross sections are shown in Figure 4. One can see that these cross
sections are dominated by the d-wave breakup and that treating
non-locality at the leading order in CDCC increases these cross
sections. At an incident energy of 27 MeV, this increase is most
noticeable at the main peak around 40°, while at 60 MeV, the
increase occurs at most angles. The LECDCC/LESPP ratio for
angle-integrated breakup cross sections is shown in Figure 5 as a
function of bin energy. One can see that the non-locality effect
can reach 20% in the breakup cross sections for both incident
energies for higher energy bins. Since this effect is bin-dependent,
it is possible that the non-locality effect can strongly depend on
kinematic conditions of breakup observation.

Finally, we found that the total breakup cross sections σbu
and reaction cross sections σreac are less affected by non-local
effects. These cross sections are collected in Table 1, showing
about 0.1% difference in σreac between LESPP and LECDCC
calculations. For σbu, this difference is 3% and 5% for 27 and
60 MeV, respectively.

The non-local effects in 6Li elastic scattering turned to be much
smaller than those associated with deuteron scattering— the simplest
nucleus with a cluster structure. We have identified the reason why
this happens, which is the Coulomb barrier (for smaller angles) and
strong absorption that make the reaction mechanism less sensitive to
the interactions in the nuclear interior. Since both LESPP and

FIGURE 2
λ = 0 LECDCC diagonal (A–C) and non-diagonal (D) coupling potentials for 120Sn+6Li at an incident energy of 27 MeV (A) and 60 MeV (B–D). The
excited state corresponds to the bin state with the first 2+ resonance.

FIGURE 3
Ratio of the differential cross section for 6Li + 120Sn elastic
scattering calculated in LECDCC to standard CDCC calculationswith a
local SPP potential at 27 and 60 MeV.

TABLE 1 d + α breakup and absorption cross sections for the 6Li +120Sn reaction calculated in CDCC with the local-equivalent SPP (LESPP) and in LECDCC with the
non-local SPP potential.

σbu (mb) 60 MeV σreac (mb) 60 MeV σbu (mb) 27 MeV σreac (mb) 27 MeV

LESPP 79.9 2,436 65.1 1,123

LECDCC 84.3 2,422 67.1 1,125
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LECDCC potentials are very similar at the surface, the cross sections
should be similar as well. We repeated both calculations reducing the
imaginary part by 50% for an 6Li incident energy of 60MeV. The
difference between LESPP and LECDCC has increased to 20% at 60°

and become an order of magnitude greater after 100°. However, the
elastic cross sections in this angular range are small. The difference in
breakup cross sections exceeded 20% after Eαd = 5 MeV. The angular
distribution for the breakup cross section also presents larger
differences with a reduced absorption, of ~10%–20% for small
angles and larger than 50% for angles larger than 60°. The
difference in reaction cross sections remains small.

5 Summary and conclusion

To assess the validity of a standard approach which replaces non-
local optical potentials by their local equivalents in cluster scattering
calculations, we developed a leading-order method to include the non-
locality of pairwise optical potentials into a three-body Hamiltonian
describing cluster scattering. This resulted in a coupled system of
transcendental equations for local-equivalent coupling potentials that

could be fed into standard CDCC equations. The application to 6Li
+120Sn scattering at the incident energy of 27 and 60MeV has shown
that elastic scattering is not much affected by non-locality, while
breakup cross sections in some kinematical regions could increase
the differential cross sections up to 20%.

Both elastic and breakup observables are determined by scattering
phase shifts in all CDCC channels, which determine asymptotics of
the channel wave functions. The LECDCC has been constructed to
provide phase-equivalent solutions to non-local problems. At small
distances, the LECDCC local CDCC channel functions should differ
more strongly from each other. Therefore, the cross sections of other
reactions that are more sensitive to internal parts of the three-body
wave function than the projectile breakup, such as transfer reactions,
could be more affected by the non-locality.

Using non-local optical potentials to describe various nuclear
reactions induced by nuclei with the pronounced cluster
structure requires further development of techniques to solve
the three-body Schrödinger equation. For such reactions,
beyond-leading-order effects could be very important. It is

FIGURE 4
Angular distribution for breakup using LECDCC and standard
CDCC calculations with the local-equivalent SPP potential (LESPP). (A)
Angular distribution for breakup in LECDCC (black curves) and
standard CDCC calculations with local SPP potential (red curves)
for 6Li + 120Sn scattering at 27 MeV (circles). Dashed, dot-dashed, and
solid curves correspond to d-wave, s-wave, and total breakup,
respectively. (B) Same for the 6Li incident energy of 60 MeV.

FIGURE 5
Ratio of the breakup cross section calculated in LECDCC to
standard CDCC calculations with local-equivalent SPP potential
(LESPP) for each bin. (A) Ratio of breakup cross sections for 6Li + 120Sn
scattering at 27 MeV (circles). The ratios for s- and d-wave
breakup are shown by triangles and squares, respectively. (B) Same for
the 6Li incident energy of 60 MeV. The s-wave ratio at the last point is
equal to three.
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well-known that in the region of strong nuclear interaction, a
two-body scattering wave function, obtained in a non-local
model, is smaller than that obtained in the leading-order
local-equivalent model by a quantity called the Perey factor
[35]. The Perey factor also appears in the three-body model
with velocity-dependent potentials [36]. However, incorporating
the Perey effect into the LECDCC scheme is not easy. Therefore,
it would make sense to try solving the non-local CDCC exactly.
The obstacle on this path is the absence of formalism for non-
local CDCC couplings. The easiest way to develop such
formalism is to extend the non-local adiabatic model proposed
for (d, p) in [37], but it would be applicable only to non-localities
of the Perey–Buck type. Optical potentials coming from ab initio
calculations have a more complicated structure, and including
them into the CDCC approach requires a major effort, which will
become an important task for future research.

Finally, this paper considered only the processes in which the
target A was not excited. Many experiments with weakly bound
projectiles involve nuclei, both the target and projectile, with low-
lying excited states that play an important role in the reaction
mechanism. It has just been demonstrated that using non-local
optical potentials with core excitation achieves a considerably more
successful description of the experimental data on (d, p) reactions as
compared to previous studies with local potentials [38]. When
nuclear excitations are explicitly included in coupled-channel
calculations, the imaginary part that describes absorption is
usually reduced. One can expect that non-local effects could be
stronger in coupled-channel calculations with reduced absorption.
The LECDCC introduced here could be readily extended to include
core excitations to study these effects.
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Appendix

Three-body Schrödinger equation in
laboratory and centre-of-mass frames

In a fixed frame of reference where experimental cross-sections
are measured, the laboratory frame, the Schrödinger equation for the
C1 + C2 +Awave functionΨlab(rC1, rC2, rA) of the C1 + C2 +A system
with non-local C1 − A, C2 − A and C1 − C2 interactions is written as

TC1 + TC2 + TA − E3( )Ψlab rC1 , rC2 , rA( ) � −∫ drC1′ drC2′ drA′

× δ rC2 −
C1rC1 + ArA

A + C1
− rC2′ + C1rC1′ + ArA′

A + C1
( )VC1A rC1′ − rA′ , rC1 − rA( )[

+ VC2A rC2′ − rA′ , rC2 − rA( ) δ rC1 −
C2rC2 + ArA

A + C2
− rC1′ + C1rC2′ + ArA′

A + C2
( )

+ VC1C2 rC1′ − rC2′ , rC1 − rC2( ) δ rA − C1rC1 + C2rC2

C1 + C2
− rA′ + C1rC1′ + C2rC2′

C1 + C2
( )]

× δ
C1rC1 + C2rC2 + ArA

A + C1 + C2
− C1rC1′ + C2rC2′ + ArA′

A + C1 + C2
( )Ψlab rC1′ , rC2′ , rA′( ),

(25)

where E3 is the three-body energy in the laboratory system.
Separating the centre-of-mass motion,

Ψlab rC1 , rC2 , rA( ) � ϕcm

C1rC1 + C2rC2 + ArA
A + C1 + C2

( ) Ψ rC1 − rC2 , rA − C1rC1 + C2rC2

C1 + C2
( ),

(26)
then introducing variables

r � rC1 − rC2,

R � C1rC1 + C2rC1

C1 + C2
− rA,

Rcm � C1rC1 + C2rC2 + ArA
A + C1 + C2

(27)

and integrating over r′ and Rcm′ in the r.h.s of Eq. (25) we get Eq. (2).

Partial wave decomposition of coupling
potentials U(n)

ii′ (R)
In the case of non-zero orbital momenta of continuum bins we

use, assuming zero spins for clusters C1 and C2, we have

ϕi ay − bs( ) � ���
4π

√ ∑
λ1λ2

ϕli
λ1λ2

ay, bs( ) Yλ1 ŷ( ) × Yλ2 ŝ( )[ ]limi
(28)

Then for spherical optical potentials

U n( )
ii′ R( ) � 4π∑

c

∑
j

π c( )
ii′ α

2n
c ∑

λλ1λ2λ1′
−( )λYλμ R̂( )∫∞

0
dyy2U c( )

j,λ y, R( )
× ∫∞

0
ds s2+2nHj s( )ϕli

λ1λ2
γ−1c y,

1
2γc

s( )ϕli′
λ 1′ λ2 γ−1c y, βcs( )

× ∑
μ1μ2μ

λ1μ1λ2μ2|limi( ) λ1′ μ1′λ2μ2 |li′mi′( ) λ1 − μ1λ1′ μ1′|λμ( ) λ10λ1′ 0|λ0( ) λ̂1 λ̂1′���
4π

√
λ̂
−( )μ1

� ���
4π

√ ∑
λμ

λμlimi|li′mi′( )Yλμ R̂( )∑
c

π c( )
ii′ α

2n
c ∫∞

0
dy y2 ∑

j

U c( )
j,λ y, R( )fn,λ

j( )li li′ y, R( )⎡⎢⎢⎣ ⎤⎥⎥⎦,
(29)

where

fn,λ
j( )li li′ y, R( ) � ∑

λ1λ2λ1′
−( )λ1′ λ̂1λ̂l̂i λ10λ1′ 0|λ0( )W λλ1li′λ2; λ1′ li( )

× ∫∞

0
ds s2+2nHj s( )ϕli

λ1λ2
γ−1c y,

1
2γc

s( )ϕli′
λ1′λ2 γ−1c y, βcs( ).

(30)
Finally, the radial part of the partial wave decomposition of the
continuum bin is

ϕl
λ1λ2

x, y( ) � ∑
Λlxly

−( )λ2
����������

2l + 1( )!
2lx( )! 2ly( )!

√
lx0Λ0|λ10( )

ly0Λ0|λ20( )W λ1Λlly; lxλ2( )xlxylyϕ l( )
Λ x, y( ) (31)

where lx + ly = l and

ϕ l( )
Λ x, y( ) � 2Λ + 1

2
∫1

−1
dμPΛ μ( ) x2 − 2μxy + y2( )−l/2ϕl

�������������
x2 − 2μxy + y2

√( )
(32)

where ϕl(r) is the radial part of the continuum bin in the partial
wave l. The integration variable s, chosen in (29), uses the short-
range nature of H(s), which makes accurate evaluation of (30)
easy. Then the integral over dy is similar to a standard CDCC
matrix element for which accurate numerical methods are in
place.
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