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The consensus of deterministic networks investigates the relationships between
consensus and network topology, which can bemeasured by network coherence.
The m-rose networks are composed of m circles, which share a common node.
Recently, scholars have obtained the first-order coherence of 5-rose networks.
This paper takes the more generalm-rose networks as the research object, firstly,
the m-rose networks are introduced. Secondly, the relationships between
Laplacian eigenvalues and polynomial coefficients are used to obtain the first-
order and second-order coherence of them-rose networks. Finally, the effects of
topology parameters such as the number of petalsm and the length of a cycle n on
the robustness of network consensus are discussed, and the validity of the
conclusion is verified by numerical simulation.

KEYWORDS

m-rose, coherence, Laplacian eigenvalues, consensus, robustness

1 Introduction

With the development of network science, the study of network dynamics has become a
hot spot. There are many networks in the real world, such as social networks [1], supply
chain networks, and ecological networks [2–4]. The study of networks can solve practical
problems in computer science, mathematical science, control science, and many other
disciplines. With the deepening of research, network research has made new progress in
many aspects, such as network synchronization [5–8], node containment control [9],
network consensus, and robustness [10–13].

The problem of network consensus studies how multiple individuals in the network achieve
consensus in direction, and location, which has potential applications in sensor networks,
communication control, and other aspects [14, 15]. The consensus of the network can be
measured by the network coherence, which can be quantified by the Laplacian spectrum of the
network [16]. Reference [17] investigated the first-order coherence of three types of symmetric
star networks and found that the increase in branch length and the number of branches of star
networks will weaken the consensus of three types of networks. Reference [18] studied the
consensus of scale-free networks with noise and found that the average degree of node dynamics
has a great impact on the network consensus. Reference [19] deduced the consensus problems for
a group of agents with heterophyllous dynamics, which can arouse future research in
synchronization processes over heterophyllous multiagent networks.

The advantage of a deterministic network is that the coherence can be solved, so it can
promote the in-depth study of practical network models. Reference [20] studied the consensus in
a deterministic network model given the initial state of the leader points. As a kind of
deterministic network, the m-rose networks have attracted the attention of scholars.
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Reference [21] proved that the 3-rose networks are determined by the
Laplacian spectrum by calculating the quadratic coefficients of the
Laplacian polynomial corresponding to the 3-rose networks. Reference
[22] obtained the first-order coherence of the 5-rose networks by using
the Laplacian spectrum and investigated the effect of the number of
petals on the consensus.

Inspired by the above literature, this paper analyzes the
robustness of consensus of the m-rose networks, which is more
applicable. The first and second-order coherence of the m-rose
networks is obtained by computing the Laplacian polynomials. It
was found that the topological structure parameters have a
significant impact on the robustness of the consensus of the m-
rose networks. The main innovation is as follows.

1. Compared with Ref. [22], this paper extends the 5-rose networks
to more general m-rose networks, eliminating the limitation of
network cycles and expanding its practical application range.

2. Due to the difficulty in solving the Laplacian spectrum of the m-
rose networks, we apply the Laplacian theorem and iterative
methods to obtain the Laplacian polynomial of the m-rose
networks, and then get the coherence of the m-rose networks.

3. The effect of the number of petalsm and the length of a cycle n on
the consensus of them-rose networks was considered, and it was
found that the smaller the topological parameters m and n, the
better the consensus of the networks.

2 Preliminaries

2.1 The Laplacian eigenvalues of network
The Laplacian matrix of network

G with S nodes is defined as L(G) =M(G) − A(G), whereM(G) =
diag (m1, m2, m3, . . . , mS−1, mS), mi denotes the degree of node i.
A(G) � (aij)S×S is the adjacency matrix, if i and j are connected, aij =
1, otherwise, aij = 0. Let the roots of equation |λI − L| = 0 be the
Laplacian eigenvalues of the network.

2.2 network coherence

In reality, the network will inevitably be disturbed by noise, and
the state of the network nodes will deviate from the consistent state.
At this time, network coherence is used to measure the network
consensus. To investigate how noise affects network consensus, the
first-order consensus dynamic model under noise interference is
described as follows [18]:

_x � −Lx t( ) + ρ t( ), (1)
x(t) ∈ RS is the state vector, L represents the Laplacian matrix, ρ(t) ∈
RS denotes the Gaussian white noise interference of S nodes at time t.
The first-order network coherence is defined as:

H1 � 1
S
∑S
i�1

lim
t→∞

var xi t( ) − 1
S
∑S
j�1

xj t( )⎧⎨⎩ ⎫⎬⎭, (2)

where var represents variance.
Define the output of system (1) as:

y � Mx, (3)
where M � I − 1

S 11
T , 1 is S-vector of all ones.

Combined with (1) and (2), H1 can be expressed as

H1 � 1
S
tr ∫∞

0
e−L

TtQe−Ltdt( ), (4)

where tr represents the trace of the matrix.
From [18], the relationships between the first-order

network coherence and the Laplacian eigenvalues are
described as follows:

H1 � 1
2S

∑S
i�2

1
λi
. (5)

Meanwhile, let x1(t), x2(t) be the velocity vector and the position
vector, respectively. The second-order consensus dynamic model
under noise interference is described as follows [10]:

_x1 t( )
_x2 t( )[ ] � 0 I

−L −L[ ] x1 t( )
x2 t( )[ ] + 0

I t( )[ ]ρ t( ). (6)

From [10], the relationships between the second-order network
coherence and the Laplacian eigenvalues are described as follows:

H2 � 1
2S

∑S
i�2

1

λ2i
. (7)

The network coherence H1 and H2 measures the robustness of
the system subject to the noise. Lower H1 and H2 means that nodes
reach better consensus at the average of their current states.

2.3 The m-rose networks

The m-rose networks are a generalization of friendship networks,
which are composed of m circles, and m circles have a common node
[23]. In this paper, we studym-rose networks R (m, n) with the length of
the cycle n, which have mn − m + 1 nodes and mn edges. R (6, 10) is
shown in Figure 1.

FIGURE 1
Schematic diagram of 6-rose network R (6, 10).
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3 The coherence ofm-rose networks R
(m, n)

To obtain the coherence of R (m, n), this paper first obtains the
Laplacian polynomial of 6-rose networks R (6, n), and gets the
Laplacian polynomial ofm-rose networks R (m, n) through a similar
method. According to the relationships between polynomial
coefficients and eigenvalues, the coherence of R (m, n) is further
calculated.

Let the Laplacian matrix corresponding to R (6, n) be L,
combined with the definition of the Laplacian matrix and the
topological structure of R (6, n). The Laplacian polynomial of R
(6, n) is Q1(λ) = |λI − L|, Q1(λ)

�
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0 0 0 / λ − 2 1
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then,

Q1 λ( ) � |λI − L| � M6n−5 λ( ) + −1( )n+1P5
n−1 λ( ) 2 + −1( )nPn−2 λ( )[ ]+

−1( )2n + −1( )6n−2 + −1( )8n−4 + −1( )10n−6 + −1( )12n−8[ ]P4
n−1 λ( ) U2n−2 λ( ) + O2n−2 λ( )( )

� λ − 12( )P6
n−1 λ( ) − 12P5

n−1 λ( )Pn−2 λ( ) + −1( )n+112P5
n−1 λ( ). (8)

Where M6n−5(λ) =
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Pn λ( ) �

λ − 2 1 0 / 0 0 0
1 λ − 2 1 / 0 0 0
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1 ..
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. ..
.
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Let the Laplacian matrix of R (m, n) be L*, similar to solving the

Laplacian polynomial of R (6, n), the Laplacian polynomial of R (m,
n) is Q2(λ) = |λI − L*|,

Q2 λ( ) � |λI − L*| � Mmn−m+1 λ( ) + −1( )n+1Pm−1
n−1 λ( ) 2 + −1( )nPn−2 λ( )[ ]+

−1( )2n + −1( )6n−2 +/ + −1( )2mn−2m+4[ ]Pm−2
n−1 λ( ) U2n−2 λ( ) + O2n−2 λ( )( )

� λ − 2m( )Pm
n−1 λ( ) − 2mPm−1

n−1 λ( )Pn−2 λ( ) + −1( )n+12mPm−1
n−1 λ( )

� Pm−1
n−1 λ( ) λ − 2m( )Pn−1 λ( ) − 2mPn−2 λ( ) + −1( )n+12m[ ].

Theorem 1. The first-order coherence of m-rose networks R(m,
n) is

H1 � n2 − 1
2 mn −m + 1( )

m − 1
6

+ 2 +m n − 2( )
12 + 12m n − 1( )( ).

Proof. Let 0 < α1 ≤ α2 ≤ / ≤ αn−1 be the Laplacian eigenvalues of
Pn−1(λ), Pn−1(λ) = an−1λn−1+ an−2λn−2 + / + a1λ + a0, 0 = β1 < β2 ≤
β3 ≤/ ≤ βn be the Laplacian eigenvalues of Kn(λ), Kn(λ) = (λ − 2m)
Pn−1(λ) − 2mPn−2(λ) + (−1)n+12m = bnλ

n + bn−1λ
n−1 + / + b1λ.

According to preliminaries,

H1 � 1
2 mn −m + 1( ) m − 1( )∑n−1

i�1

1
αi
+∑n

i�2

1
βi

⎡⎣ ⎤⎦. (10)

According to [17] and the Vieta theorem,

∑n−1
i�1

1
αi

� −a1
a0

� n2 − 1
6

, (11)

∑n
i�2

1
βi

� −b2
b1

� −a1 − 2ma2 − 2mPn−2 2( )
a0 − 2ma1 − 2mPn−2 1( )

� n − 1( ) n + 1( ) 2 +m n − 2( )[ ]
12 + 12m n − 1( ) . (12)

a0 � (−1)n−1n, a1 � (−1)n−2(n−1)n(n+1)6 , a2 � (−1)n−3(n−2)(n−1)n(n+1)(n+2)120 . Pn−2
(1), Pn−2 (2) are the first-order coefficient and quadratic coefficient of Pn−2(λ),

Pn−2 1( ) � −1( )n−3 n − 2( ) n − 1( )n
6

, Pn−2 2( )

� −1( )n−4 n − 3( ) n − 2( ) n − 1( )n n + 1( )
120

.
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By Eqs 10–12, we obtain,

H1 � n2 − 1
2 mn −m + 1( )

m − 1
6

+ 2 +m n − 2( )
12 + 12m n − 1( )( ).

Theorem 2. The second-order coherence ofm-rose networks R(m,
n) is H2 � 1

2(mn−m+1) {(m−1)(n2−1)
6 (n215 + 7

30) + [(n2−1)(mn−2m+2)
12mn−12m+12 ]2−

(n2−4)(n2−1)(mn−3m+3)
180mn−180m+180 }.

FIGURE 2
(A) Given the length of the cycle n, the change of H1 with m (B) Given the number of petals m, the change of H1 with n.

FIGURE 3
(A) Given the length of the cycle n, the change of H2 with m. (B) Given the number of petals m, the change of H2 with n.
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Proof. According to preliminaries,

H2 � 1
2 mn −m + 1( ) m − 1( )∑n−1

i�1

1
α2i

+∑n
i�2

1

β2i
⎡⎣ ⎤⎦. (13)

According to [20] and the Vieta theorem,

∑n−1
i�1

1
α2i

� a1
a0

( )2

− 2a2
a0

� n2 − 1
6

n2

15
+ 7
30

( ), (14)

∑n
i�2

1

β2i
� b2

b1
( )2

− 2b3
b2

� n2 − 1( ) mn − 2m + 2( )
12mn − 12m + 12

[ ]2

− 2
a2 − 2ma3 − 2mPn−2 3( )
a0 − 2ma1 − 2mPn−2 1( )

� n2 − 1( ) mn − 2m + 2( )
12mn − 12m + 12

[ ]2

− n2 − 4( ) n2 − 1( ) mn − 3m + 3( )
180mn − 180m + 180

. (15)

a3 � (−1)n−4(n−3)(n−2)(n−1)n(n+1)(n+2)(n+3)5040 . Pn−2 (3) is the third term
coefficient of Pn−2(λ), Pn−2(3) � (−1)n−5(n−4)(n−3)(n−2)(n−1)n(n+1)(n+2)5040 .

By Eqs 13–15, Theorem 2 is proved.

4 Numerical simulation

Figures 2A, 3A) shows the relationships between H1(H2) and
the number of petals m. When n is fixed, H1(H2) is positively
correlated with the number of petals m and increases at a
decreasing rate. The smaller the length of the cycle n is, the smaller
H1(H2) is. The consensus of the network is inversely proportional to the
coherence, so as the number of petals of them-rose networks increases,
the first-order (second-order) consensus of the network decreases. If the
number of petals m is sufficiently large, H1(H2) will tend to a constant
value and the consensus reaches its weakest.

Figures 2B, 3B shows the relationships between H1(H2) and the
length of the cyclen.Whenm isfixed,H1(H2) is positively correlatedwith
the length of the cycle n. The smaller the number of petals m is, the
smaller H1(H2) is. Therefore, when the length of the cycle of m-rose
networks increases, the first-order (second-order) consensus of the
network decreases.

Figure 4 shows the relationships between H2 and the
number of petals m and the length of the cycle n. It is
found that the influence of the length of the cycle n on the
coherence is stronger than the number of petals m. A similar
conclusion is drawn for the first-order consensus of the m-rose
networks.

5 Conclusion

In this paper, the robustness of the consensus of m-rose
networks is studied. Using the Laplacian theorem and
determinant properties, the concrete analytical expressions of
the first-order and second-order coherence of m-rose networks
are obtained. Based on the analytical formula, the effects of the
number of petalsm and the length of the cycle n of the network on
the consensus are simulated experimentally. When the length of
the cycle n is fixed, the consensus of the m-rose networks will
weaken with the increase of the number of petals m. The smaller
the length of the cycle n, the stronger the robustness of consensus.
When the number of petals m is fixed, the consensus of the m-
rose network will weaken with the increase of the length of the
cycle n. The smaller the number of petals m, the stronger the
robustness of consensus. When the number of petals m and the
length of the cycle n both increase, the consensus decreases, and
the impact of the length of the cycle n on the consensus is
stronger than the number of petals m.

In this paper, we consider the consensus of single-layer m-rose
networks. How to get the consensus of multi-layer m-rose networks
and the consensus of m-rose weighted networks are worthy of
further study.
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FIGURE 4
The change of H2 with the number of petals m and the length of the cycle n.
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