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A compact room-temperature linear injector has been purposed to accelerate an
18.0 mA proton beam to 7.0 MeV for synchrotron-based proton therapy. The total
length is appropriately 5 m. It mainly consists of a 3.01 m radio frequency
quadrupole (RFQ) and a 0.82 m compact interdigital H-mode drift tube linac
(IH-DTL) structure. Based on a fast-bunching strategy, the RFQ, operated at
325 MHz, accelerates protons to 3.0 MeV. The phase advances have been
taken into consideration, and parametric resonance has been carefully avoided
by adjusting the vane parameters. After the modulation of the transverse and
longitudinal phase advances and a compact external quadrupole triplet, the
proton beam is injected into the subsequent IH-DTL. Based on modified
Kombinierte Null Grad Strukter (KONUS) beam dynamics, it accelerates protons
up to 7.0 MeV, which is composed of a re-bunching section and an accelerating
section. The accelerating gradient reaches 4.88 MV/m. The overall dynamic
simulation results show that the whole accelerating gradient reaches up to
1.62 MV/m with a transmission efficiency above 95%. The transverse and
longitudinal normalized RMS emittances at the exit of the DTL are 0.23 π
mm·mrad and 2.216 π keV/u·ns, which meet the synchrotron injection
requirements. The details of the specific design of this injector are presented in
this paper.
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1 Introduction

According to the latest estimations and investigations of the World Health Organization
in 2022, the global cancer burden shows a rapid growth trend, and it is estimated to have
risen to 18.1 million new cases and 9.6 million deaths [1]. Cancer has gradually become one
of the major public health problems [2]. Therefore, the applications of the accelerator in
treating, especially proton therapy, are expanding because of the characteristics of the
accelerated protons in energy deposition. The Shanghai Institute of Applied Physics has been
working on proton therapy facilities for 10 years [3–8]. The Advanced Proton Therapy
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Facility [8] is the first domestic proton therapy facility in China. To
upgrade the original injector purchased from abroad, a compact
scheme has been proposed and Figure 1 shows the overall schematic
layout.

This injector consists of an electron cyclotron resonance (ECR)
proton source, a low energy beam transporting line (LEBT), a
3.0 MeV radio frequency quadrupole (RFQ), a compact triplet
external matching section, and a 7.0 MeV drift tube linac (DTL).
Table 1 lists the specific design parameters.

The main considerations are as follows.

1. Fast-bunching philosophy is employed for the design of the
RFQ [9, 10].

2. A modified KONUS dynamics [11] is developed to simplify the
R&D of the DTL. That is, there is no magnet inside the DTL
cavity, which is convenient for integrated processing and
maintenance.

3. A single RF power source is utilized to provide RF power for
both sub-cavities. The RF is decoupled between both sub-
systems and the phases are adjusted independently by two
phase shifters.

4. Two methods are adopted for matching the designs of the RFQ
and DTL. One method is to adjust the vane-tip modulation at
the end cells of the RFQ to match the phase oscillation of the
DTL, and the other method is to use a simplified external
triplet matching section with no buncher for transversal
matching.

The PAMTEQM [12], TOUTATIS [13], LORASR [14], and
TraceWin codes [15] are applied for the design and simulation. The
detailed design processes are discussed further in the following
sections.

2 RFQ section

Based on the traditional four sections design strategy [16, 17], a
four-vane RFQ structure is adopted because of its relatively even
distribution of surface current density, easy cooling, stable structure
with higher mechanical strength, and higher shunt impedance at a
higher frequency. A trade-off optimizing strategy is considered to
appropriately decrease the injection energy and cut down the inter-
vane voltage to shorten the cavity length, reduce power
consumption, and stabilize operation.

2.1 Decrease injection energy

Generally, a complete RFQ is composed of four sections,
namely, the radial matching section (RM), shaping section
(SH), gentle bunching section (GB), and accelerating section
(AC) [9, 16, 17]. The front three sections are mainly in the
low-energy region. According to the cell length formula: L � βλ

2 ,
a relatively higher input energy lengthens these front cells, which
finally increases the entire cavity length and decreases the
accelerating gradient of the RFQ. In addition, the cavity length
is associated with power consumption. That is, the cavity power

FIGURE 1
The specific design scheme of this injector.

TABLE 1 Basic design parameters.

Parameters Value

Particle type H+

RF frequency (MHz) 325

Output beam energy (MeV) 7.0

Maximum duty factor 0.1%

Peak beam current (mA) 18.0

Minimum output beam peak current (mA) 12

Output transverse norm. Root mean squared (RMS) emittance (π
mm·mrad)

≤0.24
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consumption increases with the increase of the cavity length when
other parameters remain unchanged. Therefore, a low injection
beam energy should be adopted.

However, due to the increase of the space charge effect in the
lower energy section, lower input energy may lead to larger

emittance growth. Additionally, the input energy is concerned
with the extraction voltage of the ECR proton source. There are
two conditions in choosing the extraction voltage, adequate beam
intensity with relatively good quality and a reduction of the
sparking risk.

TABLE 2 Parameters of RFQs in proton accelerator facilities under operation or being commissioned.

Name Frequency (MHz) Current (mA) Inter-voltage (kV) Kilpatrick coefficient Input energy (keV) Out ene. (MeV)

SNS [19] 402.5 38 83 1.85 65 2.5

CADS-1 [20] 325 15 55 1.85 35 3.2

CSNS [21] 324 20 80 1.78 50 3.0

CPHS [22] 325 50 60–130 1.80 50 3.0

FIGURE 2
Evolution curves of (A) modulation factor “m” and (B) focusing strength “B” before (black lines) and after (red lines) optimization.

FIGURE 3
Evolution curves parameters. (A) Aperture “a”, (B) transverse and longitudinal zero-current phase shift σot and σol before (black lines) and after (red
lines) optimization, and (C) evolution of the zero-current transverse phase shift per focusing period in the transverse (black line) and longitudinal (red line)
directions for the optimized design.
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Therefore, combining other RFQs currently in operation with
previous design experience, the input energy is confirmed to be
30 keV.

2.2 Selection of inter-vane voltage

Compared with the ramped inter-vane voltage, a constant inter-
vane voltage design strategy [18] is good for simplifying processing

and operation difficulty, and it can reduce the dissipated peak power.
Therefore, the constant inter-vane voltage strategy is applied.

An appropriate magnitude of the inter-vane voltage should be
selected to ensure long-term stable operation and reduce the
sparking risk. High inter-vane voltage is beneficial to bunching
and accelerating beams, but it increases the power consumption and
sparking risk. Currently, the Kilpatrick factor is the main reference
standard [18]. The radio frequency f (MHz) and Kilpatrick field Ek
(MV/m) follow the empirical formula 1 [18]. With the continuous
progress of processing technology, the Kilpatrick coefficient b is
applied in evaluating the sparking risk, as shown in formula 2.
Table 2 summarizes the parameters associated with the RFQ
currently in operation with a frequency close to 325 MHz. The
coefficient is usually set below 1.8, and the inter-vane voltage is
chosen in the range of 70–80 kV.

f � 1.643E2
ke

−8.5
Ek

( ) (1)
Es � bEk (2)

The transverse focusing strength can be defined as shown in the
following formula 17:

B � qXVλ2

m0c2a2
(3)

where m0 is the relativistic mass, c is the velocity of light, a is the
minimum aperture of the RFQ, q is the particle charge, X is the
focusing parameter, and V is the inter-vane voltage.

Based on formula 3, the focusing strength B can be increased by
reducing the aperture and increasing V. The aperture changes as a
function of z when B varies along the RFQ and V remains constant.
However, a smaller aperture would limit the acceptance and increase
error sensitivity in machining and assembly. Therefore, combining
various factors and past design experience, as shown in Table 2, the

TABLE 3 Beam dynamics design results for the traditional and optimized
design.

Parameters Traditional Optimized

Frequency (MHz) 325 325

Input energy (keV) 30 30

Output energy (MeV) 3.0 3.0

Beam current (mA) 18.0 18.0

Inter-vane voltage (kV) 74.52 74.58

εtrans,norm,RMS
in (π mm·mrad) 0.2 0.2

Minimum apertures (mm) 1.744 1.92

Kilpatrick factor 1.8 1.7

Cavity length (cm) 319.22 301

Beam transmission (%) 97.5 98.0

εx,norm,RMS
out (π mm·mrad) 0.2156 0.2023

εy,norm,RMS
out (π mm·mrad) 0.2215 0.2066

εz,norm,RMS
out (π MeV·deg) 0.06894 0.06095

FIGURE 4
Main parameters of the RFQ (focusing strength B modulation factor m, synchronous phase φs, minimum aperture a, inter-vane voltage V, and
synchronous particle energy Wsyn).
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coefficient is set to 1.7, which means that the Es value is appropriately
30.6 MV/m and that the inter-vane voltage is up to 75 kV.

2.3 Fast-bunching optimization strategy

According to Kapchinsky’s adiabatic bunching condition [11,
12], the traditional GB section is separated into two sections,
namely, the pre-bunching section and the bunching section. In
the pre-bunching section, the electrode modulation factor m evolves
slowly from small values (close to 1), and then there is a fast ramping
in the bunching section.

A fast-bunching optimization strategy, namely, a smaller m
value in the SH section and a fast m ramping process in the GB
section is adopted to replace the traditional long adiabatic bunching
section and to further shorten the cavity length and achieve an
efficient bunching process. The modulation coefficient m is
optimized to ensure that the aperture a is within the allowable
range of matching. Figure 2A presents the evolution curves of m
before and after optimization. Compared with the traditional design,
the entire length of the RFQ is shortened.

To avoid the parametric resonance, the transverse and
longitudinal zero current phase shift σot and σol are considered,
as given by [16, 17]

σ20t �
B2

8π2
+ Δrf (5)

σ20l � −Zπ
2TU0 sin φs( )
AErβ

2 (6)

Δrf � −1
2
σ20l (7)

where B is the transverse focusing strength, Δrf is the RF transverse
defocusing factor, T is the accelerating efficiency, Er is the rest mass
per nuclei, and φs is the synchronous phase.

Figure 2B compares the optimized transverse focusing strength B
with the traditional design. In the fast-bunching section, the B is
increased to suppress the gradually growing defocusing effects such
as the space charge effect and RF defocusing effect and to speed up
bunching. However, in the accelerating section, as the particle velocity
increases, the defocusing effect is weakened and B is accordingly reduced
to weaken the longitudinal emittance growth and obtain a large aperture.
In addition, by reducing the B, the phase advance per focusing period can
be reduced accordingly. This can better match the subsequent DTL and
reduce the focusing and matching pressure of the triplets.

According to the matched beam envelope equation, the
normalized RMS emittance ε can be described as follows [16]:

εtn,rms � a2σtγ

λ
(8)

By changing the transverse phase shift σ0t, the beam size, and
emittance growth can be limited to an acceptable range. Figures 3A, B
display the comparisons of the aperture “a” and phase shift for the
traditional and optimized designs. In the traditional design, the

FIGURE 5
Multi-particle simulation results of the RFQ.
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oscillation amplitude of the transverse phase shift is larger, especially the
rapid decrease in the SH section followed by the increase in the
accelerating section, which inevitably results in the oscillation of the
beam size and emittance growth. In the optimized design, the transverse
phase shift develops smoothly and the corresponding aperture is larger,
which visually reduces the requirement for matching accuracy.

The units of the end of RFQ are designed carefully to better
match the subsequent accelerating elements longitudinally with no
buncher in the matching section. Figure 3C presents the optimized
result of the zero-current transverse phase shift per focusing period
in the transverse and longitudinal directions. The phase shifts are
25.3°. And 10.8° at the exit of the RFQ in both directions.

Table 3 lists the detailed beam dynamics design results. Compared
with the traditional design, the optimized design based on the fast-
bunching strategy is more compact and the beam quality is better.
Figure 4 exhibits the evolution of the main parameters, including the
focusing strength B, modulation m, synchronous phase φs, minimum
aperture a, inter-vane voltage V, and synchronous particle energyWsyn.

In this design, the maximum modulation coefficient is 2.5. The
value is close to the value of the RFQ in Linac4 [23], and themaximum
synchronous phase is up to −25°. The total number of cells is 311 with
a length of 3.01 m. The overall emittance growth percentages in the
horizontal and vertical directions are appropriately 1.15% and 3.3%,
respectively, which are acceptable for the subsequent cavity.

2.4 Multi-particle simulations

Weighing various factors, the design strategies are chosen. The
transmission efficiency is appropriately 98.0% in the PARMTEQM
code, while the total transmission efficiency is about 98.89% in the
TOUTATIS code, and the transmission efficiency is appropriately
98.1%. The small difference is mainly due to the different evaluation
criteria for beam loss. Figure 5 shows the RFQ simulation results,
which presents the multi-particle simulation result as well as the
transverse and longitudinal phase space evolution along the RFQ

FIGURE 6
Parameters evolve along the entire cavity using the TraceWin code. (A) Normalized RMS emittance, (B) transmission efficiency, (C) Kilpatrick factor,
and (D) particle distribution.

TABLE 4 Input twiss parameters.

Input twiss parameters α β(mm/mrad) εn,rms (πmm ·mrad)

x 2.84 0.96 0.21

y 2.87 0.97 0.21

Input twiss parameters α β(ns/keV) εn,rms (π keV · ns)
Z 0 0.0034 2.14
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longitudinal position. A total of 1,000,000 macro-particles, with a
4D water-bag input distribution, are injected. Beam loss mainly
occurs at the end of the fast-bunching section and the front end of
the accelerating section.

The phase shift at the exit is approximately 15° and the energy
spectrum is about 20 keV, which can effectively meet the acceptance
requirements of the subsequent KONUS IH-DTL and help to
weaken the difficulty of longitudinal bunching for the subsequent
DTL. Twiss parameters at the exit of the RFQ are used as the input
beam parameters of the external matching section.

Figure 6 exhibits the various parameters and particle
distribution evolution along the longitudinal position using the
TraceWin code. Figure 6A shows the evolution of normalized
RMS emittance. Due to the strong space charge force and weak
transverse focusing force at the entrance, the transverse emittance
grows significantly. Owing to the fast bunching, the longitudinal
normalized RMS emittance at the GB section grows sharply within
an acceptable range. Then the normalized RMS emittances tend to
be stable in the acceleration section after some particles are lost at the
end of the bunching section, which is illustrated in Figure 6B. As is
shown in Figure 6C, the Kilpatrick coefficient along the longitudinal
position changes smoothly, and the maximum is approximately

1.7 at the bunching section, which meets the design and processing
requirements. Figure 6D illustrates the fact that the loss of particles
mostly occurs at the end of the fast-bunching section.

3 DTL section

The quadrupole magnets were utilized in the external matching
section. After the matching process, the proton beam is injected into
the downstream DTL. The input beam parameters are listed in
Table 4. To shorten cavity length and simplify the fabrication and
installation process, the inter-digital H-mode (IH) DTL, with a
higher shunt impedance than Alvarez DTL, is considered [16,
24, 26].

3.1 DTL design strategy and discussions

For the IH-DTL, there are two kinds of dynamics principles,
namely, Kombinierte Null Grad Strukter (KONUS) [15, 24, 25] and
Alternative Phase Focusing (APF) [26]. Generally, the APF principle
is mainly used in weak beam currents. The synchronous phase varies

FIGURE 7
(A) Effective voltage, (B) maximum axis field, and (C) phases and electromagnetic structure at each gap center.
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in different gaps from −90° to 90° in a certain pattern, which invisibly
reduces the acceptance and acceleration efficiency. Therefore, the
KONUS beam dynamics principle is applied.

According to the KONUS beam dynamics principle [15, 24, 25], a
traditional period usually consists of three separated sections with
different functions, and these sections comprise a negative
synchronous phase bunching section, a transverse focusing section
with a quadrupole triplet, and a zero phase acceleration section,
respectively. This can effectively solve the contradictory situation of
longitudinal acceleration, bunching, and transverse defocusing. The
LORASR code [14] is employed for the design and simulation.

In this design, a modified KONUS principle is used, which
means that the transverse focusing segments inside the cavity are
moved outside the cavity and that the entire cavity is composed of
bunching sections and accelerating sections.

The key parameters are as follows.

1.The phase shift at the junction between two sections, which is a
transition from a negative phase to zero phases.
2.The geometrical length optimization of the transition drift tube
at the junction between two sections, which can be optimized
according to formula 9.
3.The selection of the energy difference and phase width in the
first accelerating gap.
4.The number of bunching gaps and acceleration gaps. Generally,
a well-balanced ratio of the number of bunching gaps to zero-
degree gaps is between 1:2 and 1:4.

L � 180 + φ( )
180

· βλ
2

(9)

3.2 Electric field arrangement

As shown in Figures 7A, B, the index maximum surface electric
field is set to 35.6 MV/m corresponding to a Kilpatrick limitation
value of 2.0, which is available for the maximum duty factor of 0.1%.
Figure 7C displays the actual electromagnetic structure and
corresponding phase distribution of each gap. The maximum
effective gap voltage is appropriately 0.327 MV, and the
maximum axial accelerating electric field is 13.45 MV/m. The
specific value is calculated in the subsequent electromagnetic
design. The average accelerator gradient is appropriately
4.88 MV/m.

Table 5 lists the main parameters of the DTL after optimization.
Protons are accelerated from 3.0 MeV to 7.0 MeV with a length of
0.82 m. There are 15 gaps in total: three for −30° of negative phase
bunching and 12 for acceleration in the zero phase. The simulated
beam transmission efficiency is 100%. The estimated RF power
dissipation is approximately 180 kW.

TABLE 5 Main design parameters and the related result of the DTL.

Parameter Value

Particle H+

Frequency (MHz) 325.0

Input energy (MeV) 3.0

Output energy (MeV) 7.0

Beam Current (mA) 18.0

Cavity length (cm) 81.33

Maximum gap voltage (MV) 0.3270

Accelerating gradient (MV/m) 4.450

Synchronous phase (deg.) −30°/0°

The gap number 15

Trans. Input norm. RMS. Emit. (π mm·mrad) 0.2110

Trans. Output norm. RMS. Emit. (π mm·mrad) 0.2260

Emit. Growth in x, y and z direction (%) 8%, 8%, 2%

Long. Input emit. (π keV/n·ns) 2.145

Long. Output emit. (π keV/n·ns) 2.216

Estimated RF power loss [kW) 180

Transmission efficiency (%) 100

FIGURE 8
Output phase space distribution (A) x-x’, (B) y-y’, (C) phase width vs. energy spread.
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3.3 Multi-particle simulations

Figure 8 shows the output particle distributions of the DTL.
Additionally, the figure shows the output energy spread is
appropriately 1.5%, and the output phase width is
about ±15 deg. Figure 9 displays the transverse and
longitudinal beam envelopes containing 99% of the particles
along the DTL. The maximum horizontal and vertical
envelope sizes are less than 3 mm, which is smaller than the
10 mm radius of the drift tube. In addition, the beam loss due to
the nonlinear longitudinal matching is relatively small, which is
not an issue for 0.82 m DTL.

4 Summary

A 7MeV compact proton linear injector for a synchrotron-based
therapy facility has been proposed to improve the cost performance
and accelerate the industrialization process of the proton therapy
facility. This injector is mainly composed of an ECR proton source, a
LEBT that includes a double electrostatic quadrupole lens, an RFQ
accelerator, an external matching section, and an H-type DTL
accelerator. Combining the fast-bunching philosophy for RFQ and
a modified KONUS beam dynamics principle for IH-DTL, the
physical design and multi-particle simulations have been
completed. After iterative optimization of RFQ, the parametric
resonance has been effectively avoided. The transmission efficiency
reaches 98.0%with a length of 3.01 m. Through the external matching
section, the beam is injected into the subsequent DTL and accelerated
to 7 MeV within 0.82 m. The total length from the exit of ECR to the
exit of the DTL is approximately 5 m. The overall multi-particle
simulation results show that the beam can be well controlled with a
beam transmission efficiency above 95% at 18 mA. The overall
average accelerating gradient has reached up to 1.62MV/m. The
transverse and longitudinal normalized rms emittance at the exit of
DTL is 0.23 π mmmrad and 2.216 π keV/uns, respectively, which
meets the overall design requirements and demands of the subsequent
facilities.
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