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Compared to voltage mode circuits, current mode circuits have advantages such
as large dynamic range, fast speed, wide frequency band, and good linearity. In
recent years, the development of call flow modeling technology has been rapid
and has become an important foundation for analog integrated circuits. In this
paper, a current mode chaotic oscillation circuit based on current differential
transconductance amplifier (CDTA) is proposed. This proposed circuit fully utilizes
the advantages of current differential transconductance amplifier: a current input
and output device with a large dynamic range, virtual ground at the input,
extremely low input impedance, and high output impedance. The linear and
non-linear parts of the proposed circuit operate in current mode, enabling a true
current mode multi scroll chaotic circuit. Pspice simulation results show that the
current mode chaotic circuit proposed can generate multi scroll chaotic
attractors.
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1 Introduction

In the past 40 years, due to the unique advantages of chaotic systems such as extreme
sensitivity to initial values and parameters, ergodicity, and pseudorandomness, chaos has
paid more attention to the combination of theory and practical applications, and has been
widely used in fields such as secure communication [1–3], image encryption [4–8], random
number generators [9–11], memristors [12–17], neural networks [18–25], and chaotic
synchronization control [26–30].

The chaotic signal generated by chaotic oscillation circuits or chaotic systems is the core
part of the entire chaotic communication system and has always been a research hotspot in
the field of chaos [31–38]. How to generate multi scroll chaotic attractors with more complex
topological structures has been widely concerned [39–41]. At present, most of the multi
scroll chaotic oscillators are implemented by operational amplifiers [42–44],
transconductance operational amplifiers (OTA) [45], current feedback operational
amplifiers (CFOA) [46, 47] and second-generation current conveyers (CCII) [48–50].
The principles and methods for designing multi scroll chaotic oscillators based on
operational amplifiers, CFOAs, and OTAs are summarized in [45]. In [46], a multi
scroll chaotic oscillator was implemented using CFOA, and 3–10 scrolls from 1 kHz to
100 kHz were generated in experiments. In [49], the authors proposed a simple multi scroll
chaotic oscillator implemented using a positive CCII and a negative CCII-. Circuit
simulation shows that the chaotic electronic oscillator can generate more scroll chaotic
attractors with higher frequencies. Because the operational amplifier belongs to the
traditional voltage mode (voltage input, voltage output) circuit, the chaotic oscillator
based on the operational amplifier has the problem of narrow bandwidth; OTA, CFOA
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and CCII belong to the voltage and current mixedmode devices, The
following problems exist in the chaotic oscillator based on OTA,
CFOA and CCII:

1) Since the chaotic oscillator composed of OTA, CFOA and CCII
still works in voltage mode, the output impedance is very high
and changes with frequency.

2) Due to the large parasitic parameters at the input terminals of
OTA, CFOA and CCII, the frequency bandwidth of the chaotic
oscillator based on OTA, CFOA and CCII is not large.

Currently, analog integrated circuit designs mostly use voltage
mode circuit designs [51–53]. With the development and
breakthrough of various new technologies represented by the
PCB process, traditional voltage mode circuits are no longer
suitable for low power supply voltage design requirements due to
their high impedance, high voltage gain, and high signal swing
characteristics, while current mode circuits have attracted
widespread interest due to their low impedance, zero or even
negative voltage gain, and broadband characteristics [54–59].
Current differential transconductance amplifier (CDTA) is a
current input and output device, characterized by extremely low
input impedance, high output impedance, and large dynamic range.

FIGURE 1
Circuit model of CDTA.

FIGURE 2
Circuit schematic diagram of CDTA.

FIGURE 3
Relation curve of Iz and Ip.
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Compared to OTA, CFOA, and CCII, it is a true current mode
device [60–63]. Two new implementations of current mode
quadrature oscillators using CDTA as active components are
proposed in [64]. The proposed circuit uses two grounded
capacitors to achieve current controllability of the oscillation
frequency. In [65], a floating decreasing and increasing
memristor simulator using OTA, CDTA, and two grounded
capacitors is used. Then, the proposed memristor simulator is
used in the design of chaotic oscillators and adaptive learning
circuits. Simulation results of a chaotic oscillator and an adaptive
learning circuit verify the effectiveness of the proposed design.
When it is used to form a current mode chaotic circuit, the input

FIGURE 4
Relation curve of Iz and In.

FIGURE 5
The transconductance gain of CDTA.

FIGURE 6
CDTA-C current mode integrator.
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and output impedances have nothing to do with frequency, which
can generate a larger number of chaotic attractors at high
frequencies. In addition, since the input end of the CDTA is a
virtual ground, the frequency parasitic parameters are small and the
bandwidth is large.

In this paper, a current mode chaotic circuit based on CDTA is
proposed, which can generate multi scroll chaotic attractor current
signals, promote the practical application of chaos communication,
chaotic neural network and other fields.

This paper is organized as follows. In Section 2, the CDTA is
studied by theoretical analyses and Pspice simulation. In Section 3,
the proposed current mode basic operation modules of chaotic
circuit based on CDTA is studied by theoretical analyses and
Pspice simulation. In Section 4, we draw our conclusions.

2 The CDTA

The CDTA is a current-input, current-output current mode
device with a large dynamic range. When forming a current mode
circuit, it has both low input impedance and high output impedance
characteristics. Figure 1 is the circuit symbol of CDTA.

Among them, p and n are the differential current input
terminals, z is the auxiliary terminal, the current at the z
terminal is the difference between the input currents of p and n,
the x terminal is the current output terminal, and IB is the external
bias current. The port characteristics of CDTA are as follows:

vp � vn � 0, iz � ip − in, ix � gmvz � gmZziz (1)
where gm is the function of the external bias current IB, there is
gm � f(IB).

A CMOS CDTA circuit is designed, and the circuit schematic
diagram is shown in Figure 2. Multiple x+ and x-ports can be
expanded as needed. The transistor constitutes the current
differential part, so that the z current of the auxiliary terminal is
equal to the current difference between the p and n terminals. After
an impedance is connected to the auxiliary terminal, the voltage vz of
the z terminal is obtained to realize the transconductance. The
amplifying unit converts vz into the current output of the x terminal.

The Pspice simulation results of CDTA are as follows: Power
supply voltage VDD = 2.5V, VSS = −2.5 V, external control current
Ib = 200 uA. If only Ip is scanned when In = 0A is given, the
relationship curve between Iz and Ip can be obtained as shown in
Figure 3; If only In is scanned when Ip = 0A is given, the relationship
curve between Iz and In can be obtained as shown in Figure 4.
According to these two curves, it is not difficult to see that Iz is a
difference relationship with Ip and In. When Ip = 1A, In = −1A, Ib =
200 uA, the transconductance gain of CDTA gm = Ix/Vz = Ix/(Ip-In)
can be obtained, and the simulation results are shown in Figure 5.

3 The proposed current mode basic
operation modules of chaotic circuit
based on CDTA

The basic operation modules of the chaotic system (such as
addition and subtraction, integration, etc.) and non-linear function
generating circuits (such as step function, saturation function, etc.)
can be easily realized by CDTA.

FIGURE 7
CDTA-C CDTA current mode adder and subtracter.

FIGURE 8
Current step function generation circuit composed of CDTA.
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3.1 Integrator module

It can be seen from Equation 1 and Figure 1 that the input
voltage of CDTA is zero and the input impedance is zero (the input
impedance of the actual circuit is very small). In addition, the output
impedance is also very high. When CDTA is used to form a current
mode integrator, the input and output impedance characteristics are
not destroyed. Figure 6 shows the current mode integrator
composed of CDTA and capacitor, the output current expression
is: Io � gm

C ∫ Iidt.
Since the capacitor is not connected to the input and output

terminals of CDTA, but is connected to the auxiliary terminal z of
CDTA, the CDTA-C current mode integrator has very low input

impedance and high output impedance, and has nothing to do
with frequency, The input impedance of the CDTA-C current
mode integrator is ideally 0, and the output impedance is the
output impedance of CDTA (usually MΩ level). When
implementing a chaotic circuit, the system parameters are
independent of frequency, so that it can output chaos signal
with a large bandwidth.

3.2 Adder module

Figure 7 shows the current mode addition and subtraction
operation module composed of CDTA. Since CDTA has p and n

FIGURE 9
The proposed current mode multi scroll Jerk chaotic oscillation circuit.

FIGURE 10
2-step wave simulation.
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as differential current input terminals, current mode addition and
subtraction can be easily realized. The output current expression is:

Io � ∑
i

j�1
Ij − ∑

n

j�i+1
Ij
.

3.3 Step function module

The step function can be approximated as a saturation function
with a sufficiently large slope. The basic unit circuit of the step
function using CDTA is shown in Figure 8. The saturation current
that the CDTA can achieve for a given supply voltage is denoted by
± |Isat|. Then the output current can be approximately expressed as:

Io � |Isat|sign(Ii − Ij). By connecting several basic units in parallel,
the step function sequence can be obtained, and the expression is:
Io � ∑Q

j�1 |Isat|sign(Ii − Ij).
It can be seen from the above that the non-linear function

generation circuit composed of CDTA compares the state variable
current with the comparison current, and outputs the current
saturation function. It can be seen that when CDTA is used to
form a chaotic circuit, whether it is a linear circuit part or a non-
linear circuit, all of themwork in the current mode, which can realize
the real current mode chaotic circuit.

In addition, due to the grounding of the input terminal
(generally virtual grounding when the circuit is implemented),

FIGURE 11
4-step wave simulation.

FIGURE 12
3-step wave simulation.
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the parasitic parameters are small, the frequency characteristics are
good, and the operating frequency bandwidth is wide.

Therefore, compared with operational amplifiers, OTA, CFOA
and CCII, CDTA is more suitable for implementing current mode
chaotic oscillator circuits. However, so far, there is no report on the
use of CDTA to form a chaotic oscillator circuit.

3.4 The proposed CDTA-based current
mode multi scroll Jerk chaotic oscillator
circuit

Due to the simplicity and good recursion characteristics of the
Jerk system, it has become a typical example for the study of multi

FIGURE 13
Two scroll chaotic attractor. (A) x-y phase diagram of chaotic attractor. (B) x-z phase diagram of chaotic attractor.
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scroll chaotic systems. This design adopts the classic Jerk system,
and its dimensionless state equation is:

_x � y − f y( )
_y � z − f z( )
_z � −a x + y + z( )

⎧⎪⎨
⎪⎩ (2)

The proposed CDTA-based current mode multi scroll Jerk
chaotic oscillator circuit is shown in Figure 9.

Themain circuit of the chaotic oscillation circuit is composed of three
CDTAs and three programmable equivalent capacitances CEQ, and the
circuit structure is very simple. Its non-linear function adopts a step
function, and the step function generating circuit is shown in Figure 8. By

FIGURE 14
Four scroll chaotic attractor. (A) x-y phase diagram of chaotic attractor. (B) x-z phase diagram of chaotic attractor.
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connecting several basic units in parallel, the step function sequence can
be obtained.

_I1 � gm1

C1
I2( )

_I2 � gm2

C2
I3( )

_I3 � −gm3

C3
I1 + I2 + I3 − f I1( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(3)

It can be seen from Figures 8, 9 that the non-linear function
generating circuit and the main circuit of the chaotic circuit are
both current mode circuits implemented by CDTA, with good
high frequency characteristics and large dynamic range, and can
be designed to generate more scrolls chaotic system. And
because the capacitor is connected to the auxiliary z
terminal, the input and output impedances are independent
of the frequency, so the chaotic system equation will not change
with the frequency.

FIGURE 15
Three scroll chaotic attractor. (A) x-y phase diagram of chaotic attractor. (B) x-z phase diagram of chaotic attractor.
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Derive the dynamic equation of the multi scroll chaotic oscillator
circuit corresponding to the circuit diagram shown in Figure 9.

This is a set of third-order non-linear autonomous ordinary
differential equations with the currents at the x + ports of the output
terminals of CDTA1, CDTA2, and CDTA3 respectively, and as the three
state variables, and the non-linear functions f(I2) and f(I3) as the
current step function. Through reasonable design of transconductance
and selection of capacitance, the dimensioned current signals I1, I2, I3,
time t are converted into signals x, y, z and dimensionless time. It can be
seen that the proposed current modemulti scroll chaotic oscillator circuit
shown in Figure 9 can realize the multi scroll Jerk system.

3.5 Design of even-numbered scroll Jerk
system

The non-linear function adopts step function:

f x( ) � N −M( )A1 + s x( ) +∑
N

n�1
s x − 2nA1( ) + ∑

M

m�1
s x + 2mA1( )

(4)
Where, N, M = 1,2,3,4, etc. Especially when N = M, there is

f x( ) � s x( ) +∑
N

n�1
s x − 2nA1( ) + ∑

N

m�1
s x + 2mA1( ) (5)

Where A = A1 is the saturation value of the saturation function,
and the number of scrolls can be generated is 2 *N+2. When N = 0,
f(x) � s(x), From this, 2-step waves can be obtained, and the
simulation is shown in Figure 10. It can be seen that the 2-step
function can be achieved, which can generate two saddle focal
equilibrium points with two indicators, and can achieve two scrolls.

From the above figures, we can get A = A1 = 30uA, take N = 1,
then we can get 4-step waves, and the simulation is shown in
Figure 11. It can be seen that the 4-step function can be
achieved, which can generate four saddle focal equilibrium points
with two indicators, and can achieve four scrolls.

3.6 Design of odd-numbered scroll Jerk
system

Using Eq. (4), an odd number of scrolls can be generated, and the
number of scrolls is N + M+2. Now take the generation of three scroll
numbers as an example. Let N = 1,M = 0, and the scroll number be N +
M+2 = 1 + 0+2 = 3. Then Eq. (4) becomes Eq. (6)

f x( ) � A1 + s x( ) + s x − 2A1( ) (6)
From this, 3-step waves can be obtained, and the simulation is

shown in Figure 12. It can be seen that the 3-step function can be
achieved, which can generate three saddle focal equilibrium points
with two indicators, and can achieve three scrolls.

3.7 Simulation of multi scroll chaotic circuit

According to the expression Eq. (4) of the non-linear function
f(x), when N andM take different values, different step waves will be

generated, which will affect the number of scroll generated. When
N = M and N = 0, two scroll attractors are generated, as shown in
Figure 13.

When N = M, N = 1, four scroll attractors are generated, as
shown in Figure 14.

When N = 1, M = 0, three scroll attractors are generated, as
shown in Figure 15.

As shown in these figures, the proposed CDTA-based
current mode multi scroll Jerk chaotic oscillator circuit can
display a theoretical number of scrolls in both the x-y and x-
z directions. The experimental results are consistent with the
theoretical results.

4 Conclusion

The circuit structure of the multi scroll chaotic oscillator based
on CDTA proposed in this paper is simple, the main circuit does not
contain passive resistance elements, has low input impedance, high
output impedance, and the input and output impedance are
independent of frequency, and the dynamic range is large, so
that the chaotic oscillator can generate more scrolls, and the
signal is not distorted.
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